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Abstract: Most plant viral infections are vector-borne. There is a latent period of disease inside the
vector after obtaining the virus from the infected plant. Thus, after interacting with an infected vector,
the plant demonstrates an incubation time before becoming diseased. This paper analyzes a mathe-
matical model for persistent vector-borne viral plant disease dynamics. The backpropagated neural
network based on the Levenberg—Marquardt algorithm (NN-BLMA) is used to study approximate
solutions for fluctuations in natural plant mortality and vector mortality rates. A state-of-the-art
numerical technique is utilized to generate reference data for obtaining surrogate solutions for multi-
ple cases through NN-BLMA. Curve fitting, regression analysis, error histograms, and convergence
analysis are used to assess accuracy of the calculated solutions. It is evident from our simulations
that NN-BLMA is accurate and reliable.

Keywords: mathematical modeling; artificial neural networks; numerical solutions; delay differential
equations; optimization techniques; machine learning; Levenberg—Marquardt algorithm

1. Introduction

Plant disease epidemiology studies how diseases affect plant populations and how to
combat plant diseases. Using spatial and temporal plant epidemiology models can provide
useful statistical and mathematical data about disease transmission. In the mid-20th century,
plant epidemiological models became prominent [1]. Examples of actual uses of this type
of model include cassava mosaic disease [2], pine wilt disease [3], and potato late blight [4].
Later, new methods for studying nonlinear dynamics and numerical simulations helped
solve complex ecological problems [5,6]. This accelerated the creation of more realistic and
complicated plant disease models.

An essential part of the plant epidemiological system is modeling the interactions
between infected and healthy plant populations, either directly or via a vector. Infected
vectors feed on healthy plants, infecting them. Similarly, non-infected vectors become
infected by diseased plants. The vector-borne plant disease is classified as persistent,
semipersistent, or non-persistent based on the infectious agent’s residence period in the
vector [7,8]. The vector ingests viruses while feeding on infected plant sap in persistent
transmission. The salivary glands then release the viruses into the plant tissue as they
penetrate the digestive system. The persistent mode of transmission differs from the
other two because it takes a long time for a vector to become infected with the virus and
become infectious [7,9]. In the case of vectors, this time lag is referred to as the latent phase
of infection.
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The latent period in plants is similar to the time it takes for a healthy plant to become
infected following infection [10]. The incubation period (or incubation time) is the time it
takes for symptoms to manifest following infection [1]. Depending on the plant species,
the incubation period varies [11]. Incubation durations for beet mosaic virus (BMV),
African cassava mosaic virus (ACMV), tobacco mosaic virus (TMV) and bean golden mosaic
virus (BGMV) are 7–15 days [12], 3–5 weeks [13], 5 h [14], and 5–6 days [15], respectively.
The incubation and latent periods in plants are distinct. However, the expression of disease
symptoms correlates with disease transmission [16]. Furthermore, determining the latent
period is challenging, whereas observing disease signs is straightforward. So our model
development analysis considers the incubation period.

Among the most frequent vector-borne viral diseases affecting crops, leaf curl disease
and mosaic disease are two of the most common. The whitefly (Bemisia sp.), which transmits
several viral infections to Jatropha, cassava, tomato, tobacco, cotton, and other plants, is a
hemipteran vector. Most of the disease is systematically spread by whiteflies, meaning that
a latent period is frequently observed [17]. Unfortunately, information on the latent and
incubation time of infection for various persistently transmitted diseases is lacking in the
literature. Due to the variety of viral agents and host plant species, both delay methods
have varying effects on disease severity. It also differs between whitefly species and host
plants. These delays may vary due to genetic complexity, climate fluctuation, phenotypic
heterogeneity, and plasticity [18]. The plant incubation period is usually longer than the
latent period in vectors. For example, ACMV has a 6-hour latent period and a 3–5 week
incubation period [13].

Ordinary differential equations (ODEs) models cannot account for the incubation
or latent period. However, models based on delay differential equations (DDEs) allow
system integration. It can represent a system’s dynamics when its evolution depends
on prior events. When time lag responses exist, delays are one of the most powerful
mathematical modeling tools [19]. DDE models are more sophisticated than ODE models
but more realistic. Prey–predator mathematical models with delay differential equations are
commonly employed [20,21]. Delay can teach us dynamic phenomena, such as instability,
oscillations, and bifurcation.

Van der Plank [1] used DDE to delay plant epidemics. Cooke [22] proposed a model
with an incubation time state variable for vector-borne diseases. Wang et al. [23] discussed
wheat starch and gluten’s thermal characteristics and interactions. Zhang [24] added the
plant incubation period to a Meng and Li [25] plant disease model, causing modifications
in the model’s dynamics. Munyasya et al. [26] proposed an integrated on-site and off-
site rainwater-harvesting system that enhances rainfed maize output for better climate
change adaption. Buonomo and Cerasuolo [27] presented and analyzed a soil-borne plant
disease dynamics model. Miao [28] suggested an accuracy of space-for-time substitution
for predicting vegetation status after shrub restoration.

An ODE model of the impact of replanting and roguing on eliminating plant disease
latency comprises a compartment for latently diseased plant populations [29]. The model
does not consider any vector compartment, but it includes classes of latently infected,
healthy, post-infection, and infectious plants. Holt et al. [2] proposed a model with infected
plants, healthy vectors, and susceptible vectors but no delays. The vector-borne plant
disease model [30] was modified by Jackson and Chen [31] by delaying plant incubation
and vector latent periods. The threshold value for delay-induced destabilization was
determined by observing changes in system solution dynamics. Li et al. used an updated
model [31] to analyze Hopf bifurcation, which included incubation and latent period
characteristics [32].

Banerjee and Takeuchi [33] identified several critical elements of the dynamics that
could lead to false findings. A long wait can stabilize or cure a system Buonomo, and Cera-
suolo [27]. Transcritical bifurcations, periodic oscillations, and stability switches can be
revealed if the vector-borne plant disease models’ parameters change [2,27,34]. The unde-
layed model analysis cannot be ignored [31,32]. A mathematical model (1) with parameters
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given in Table 1 [2,35], which was previously analyzed by Basir et al. [35] for persistent
vector-borne viral plant disease dynamics for the effect of both latent period and incuba-
tion delay of the dynamics of the deceased. This model is numerically analyzed using
a gradient-based numerical technique. Numerous studies claimed that gradient-based
techniques, such as RK-4, take up much more computer time than soft computing methods
with comparable accuracy and that it is difficult to produce accurate global estimates of
the truncation error [36,37]. For instance, at each step of the RK-4 method, the derivative
must be evaluated n times. Here, ’n’ is the order of accuracy of the RK-4 method, which
is a significant drawback of gradient-based algorithms [38]. Moreover, RK-4 suffers from
divergence for complex systems [39]. Failure in the case of singularity is another hurdle in
using these gradient-based numerical techniques. Keeping these disadvantages in mind,
the authors of this paper aimed to suggest an alternative gradient-free approach that can
handle problems, such as model (1), with accuracy and reliability. The key features of this
study are outlined as follows:

• In this paper, we analyzed an established mathematical model (1) for persistent
vector-borne viral plant disease dynamics, which is presented in Section 2. The set of
parameters substituted in the model is for the case of cassava mosaic disease.

• A gradient-free intelligent design of a two-layer artificial neural network architecture
and the Levenberg—Marquardt algorithm is utilized to formulate surrogate solu-
tions. A state-of-the-art numerical method is used to calculate reference solutions for
establishing the accuracy, validity, and reliability of NN-BLMA; see Section 3.

• The impact of variations in parameters, such as plant mortality and vector mortality
rate, on the model of persistent vector-borne viral plant disease dynamics is observed
through the surrogate solutions formulated by the designed NN-BLMA; see Section 4.
Graphical analysis for the convergence of NN-BLMA is carried out based on mean
square error, regression analysis plots, and error histograms. Moreover, statistical
values are tabulated to show the accuracy and reliability of the designed technique.

Table 1. Parameters’ description and their numerical values.

Parameters Description Values Unit

r Net growth rate of plants 0.3 time−1

K Carrying capacity 1 m−2

λ Infected vector to healthy plant disease transmission rate 0.025 vector−1time−1

µ Plants natural mortality rate 0.1 time−1

m1 Mortality of infected plants 0.01 time−1

Π Vector population’s overall growth rate due to immigration or births 40 time−1

β Transmission rate between diseased vector and healthy plant 0.03 plant−1time−1

d Vector mortality rate 0.1 time−1

2. Problem Formulation

This section develops a mathematical model for persistent vector-borne viral plant
disease dynamics. The model considers plant and vector populations without explicitly
including the mosaic virus. H(t) signifies healthy plants, while the infected plants are
represented by I(t), Q(t) represents uninfected, and W(t) represents the infected white-
flies population.

Due to restricted plantation space and natural resources, logistic growth r and carrying
capacity K are considered for healthy plants [2]. A healthy plant becomes infected when it
comes into contact with an infected vector. When an infected vector and a susceptible plant
are present, λ is the transmission rate, and λHW is the number of sensitive individuals
moving from the susceptible compartment to the infected compartment.

An insect pest, such as a whitefly, shifts its host in response to changing biological
and environmental conditions. They generally move between fields of crops [40,41]. They
breed in the fields. The Holling type III survival curve describes their life course because
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of the high death rate they experience early on [41]. Whiteflies (adults and nymphs) can
transmit illness.

Crops are typically planted and reaped at specific times of the year. Most crops are
reaped a few months after they are produced. A few vectors travel from close or distant
patches and reproduce in the vegetation. Vectors grow by migrating from another patch
because of reproducing in the same patch or vegetative area. For the same reason, seasonal
fluctuations in vector populations are ignored [35].

An open system is considered in this model. Assume Π is the rate of vector birth
and migration into the system. No vertical virus transmission is allowed, and a vector
cannot infect another vector. Viruses do not destroy or defend vectors. The vector retains
the virus and does not recover. However, the infective insects do not get sick from the
virus [31]. Let the mortality rate of plants and vectors be represented by µ and d, respectively.
Infection-related plant death is expected to be higher than average plant mortality. m1 is
the infection-related mortality of infected plants. Thus, the overall plant mortality rate is
m = µ + m1. Consider β to be the conversion between uninfected vectors (i.e., Q) and the
infected plant (i.e., I). So, βQI signifies entering the number of uninfected vectors Q into
the infected vectors W compartment.

In truth, both plant and vector infection takes time. Let τ1 ∈ R+ be the healthy
plant’s incubation time following successful infection. At time t, the disease transmission is
given by the expression λe−mτ1 H(t− τ1)W(t− τ1), where the positive constants described
previously are λ and µ. The term e−mτ1 denotes the chance of a healthy plant surviving
through the incubation time [t− τ1, t], i.e., the number of susceptible plants that came into
touch with an infected vector at time t− τ1 and lived up to time t to become infected plants.

Again the latent period in a vector is τ2 ∈ R+. At time t, the expression βe−dτ2 Q(t− τ2)
I(t− τ2) describes the transmission of infection, where e−dτ2 reflects the vector’s survival
probability across the latent time [t − τ2, t]. The number of uninfected vectors met an
infected vector at time t− τ2 and survived until time t to become infected [35]. Based on
the given assumptions, the mathematical model is

dH
dt

= rH
[

1− H + I
K

]
− λHW,

dI
dt

= λe−mτ1 H(t− τ1)W(t− τ1)−mI,

dQ
dt

= Π− βQI − dQ,

dW
dt

= βe−dτ2 Q(t− τ2)I(t− τ2)− dW,

(1)

The initial biological conditions are
H(t) > 0, I(t) > 0, Q(t) > 0, W(t) > 0; t ∈ [−τ, 0], τ = max[τ1, τ2],

The parameters used in the model (1) assigned some numerical values for solving the
model numerically, and Table 1 shows its description and numerical values.

3. Design Methodology

This section examines artificial neural networks (ANN) using a novel approach
to machine learning by focusing on the supervised neuronal learning mechanisms of
these networks to utilize the study of the model for persistent vector-borne viral plant
disease dynamics.

3.1. Artificial Neural Network (ANN)

An artificial neural network is a network of interconnected core components known as
neurons that receives various inputs and generates only one output; each neuron represents
a mapping. A neuron’s output is a function of the total of its inputs produced by the
activation function.
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3.2. Activation Function

To introduce nonlinear properties, an activation function is used in an ANN. In a
neural network, (Xi, Wi) stands for inputs, weights, and f (Xi), which is the input function
that is sent to the network’s output. This output function can then be used as an input for
any additional layers or the final output [42–44].

The number of hidden units can be optimized using a multilayer perceptron (MLP).
Both the weights and biases of the connections were enhanced as well. The construction of
a standard MLP with one hidden layer is as follows:

Hj =
n

∑
i=1

WijXi + bj, (2)

Xi represents the inputs, where Wij and bj represent connection weights and biased
vectors, respectively. Here, a log–sigmoid function is used as an activation function in the
feed-forward neural network model, which is given below.

f j(x) =
1

1 + e−Hj
. (3)

The MLP, also known as the feed-forward neural network (FNN), is a type of neural
network with a hidden layer between the input and output layers. This layer is called the
“hidden layer.” The number below the hidden layer represents the number of neurons used
inside the network. Figure 1 shows an artificial neural network controller.

 

Figure 1. Architecture of an artificial neural network controller.

A backpropagated Levenberg—Marquardt method is used to train the feed-forward
neural network. Local minima can be found using the LM algorithm, which is built-in in
many applications.

Additionally, NN-BLMA is implemented in two phases. Figure 2 depicts the Algo-
rithm’s whole workflow, including all of its steps.

• For collecting the initial reference data set, we solve the model (1) numerically by
using a state-of-the-art technique. Here we use the RK− 4 method, which commonly
gave better results, in Mathematica using the “NDSolve” package. The numerical
technique generates 5001 in the range of [0, 50] with a 0.01 stepsize.

• After that, the NN-BLMA is executed by using “nftool”, a built-in MATLAB tool,
to train, validate and test the targets (reference data set). The design technique uses
60% of the targets for training and 20% each for validation and testing. The maximum
iteration is set to 1000 with a 60 number of neurons. Table 2 presents the parameters
for the design scheme execution, and Algorithm 1 is the pseudo-code of the designed
NN-BLMA.

Table 2. The NN-BLMA parameters settings for implementation.

Index Learning Methodology Training Validation Testing Hidden Neuron Max. Iteration

Description Levenberg—Marquardt 60% 20% 20% 60 1000
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Design Methodology

Phase-I

The “NDSolve” package in 

Mathematica generates a 

reference solution of 5001 for 

each problem.

Phase-II MATLAB 

setup

Working

Parameters 

Setting

The backpropagated Levenberg-

Marquardt algorithm (BLMA) is 

used to validate, test, and train 

approximate solutions of model 

1.

Training Testing Validation

60% 20% 20%

Figure 2. Working mechanism of the NN-BLMA for solving the nonlinear model of vector-borne
viral plant disease dynamics.

The novel machine learning of NN-BLMA is easy to apply, handles nonlinear problems,
and is also a gradient-free technique that converges faster than other machine learning
technique [45–48].

Algorithm 1 Pseudocode of NN-BLMA:

Starting of NN-BLMA Construction: Construct inputs and reference
data set using RK-4 method in Mathematica
Data selection: Input and target data must be selected in
non-linear format, i.e., matrices.
Startup: Taking number of neurons and distributing the
reference data set into training, testing and validation

• 60 Hidden neurons
• 60% data for training
• 20% data for testing
• 20% data for validation

Architecture: Each input is given a weight, and the input to
the transfer function is formed by adding the weights of all of
the inputs together along with the bias.
Stopping criteria: If all of the conditions listed below are
met, the previous process will end automatically.

• Mu reach to its maximum value
• Number of iteration reaches to maximum
• Performance value reaches to minimum
• Validation’s performance became less then maximum fail
• Gradient’s performance dropped below minimum gradient

The network is generalised using training data. If the outputs
are good, proceed to Saving Output; otherwise, retrain the
network.
Retraining: Change the startup parameters and train the network
again
Saving outputs: End the process by saving the results
graphically as well as numerically
Ending of NN-BLMA
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4. Numerical Experimentation and Discussion

To study the design algorithms’ performance and efficiency, we discuss various cases
of the nonlinear model of vector-borne viral plant disease dynamics. The cases are based
on variation in two parameters (i.e., plants’ natural mortality rate, µ, and vector mortality
rate, d). We set the same numerical value for both parameters in the first case. In case two,
there is a slight decrease in the µ parameter and a slight increase in the parameter d, while
in the third case, there is an increase in the parameter µ and a decrease in the d parameter
compared with the first case. Figure 3 illustrates the mathematical model and the cases
detail for vector-borne viral plant disease dynamics.

Modeling
d𝐻𝐻
d𝑡𝑡

= 𝑟𝑟𝑟𝑟 1 −
𝐻𝐻 + 𝐼𝐼
𝐾𝐾

− 𝜆𝜆𝜆𝜆𝜆𝜆
d𝐼𝐼
d𝑡𝑡

= 𝜆𝜆e−𝑚𝑚𝜏𝜏1𝐻𝐻 𝑡𝑡 − 𝜏𝜏1 𝑊𝑊 𝑡𝑡 − 𝜏𝜏1 − 𝑚𝑚𝑚𝑚
d𝑄𝑄
d𝑡𝑡

= Π − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝑑𝑑𝑑𝑑
d𝑊𝑊
d𝑡𝑡

= 𝛽𝛽e−𝑑𝑑𝜏𝜏2𝑄𝑄 𝑡𝑡 − 𝜏𝜏2 𝐼𝐼 𝑡𝑡 − 𝜏𝜏2 − 𝑑𝑑𝑑𝑑

Cases

The cases of the model are 
based on variations in 
plants’ natural mortality 
rate (i.e., μ) and vector 
mortality rate (i.e., d).

1 2 3

μ=0.1 and d=0.1 μ=0.05 and d=0.15 μ=0.15 and d=0.05

Figure 3. Vector-borne viral plant disease dynamics’ model with its different cases.

The design technique generates output data sets with probabilities of 60% of the
sample data for testing, 20% for training, and 20% for validation. The performance graph
of the design technique shows us its mean squared error (MSE). Figures 4–6 depict the
best validation performance provided by the design technique because the error is min-
imized after some epochs of training but may increase on the validation data set as the
network begins to overfit the training data. The training is halted after six consecutive
rises in the validation error, and the best performance is picked from the epoch with the
lowest validation error. The case 1 performance values are in the range of 2.9721× 10−9,
7.1129× 10−9, 3.0066× 10−8 and 2.8222× 10−5. Similarly, the case 2 and case 3 performance
values are in the range of 1.3057× 10−9, 3.6923× 10−11, 1.17878× 10−9, 1.9703× 10−4,
and 9.9788× 10−11, 3.1230× 10−9, 2.4709× 10−8, 2.7474× 10−4, respectively.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. NN-BLMA MSE for healthy and infected plants, and infected and uninfected whitefly of
case 1. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

(c) (d)

Figure 5. NN-BLMA MSE for healthy and infected plants, and infected and uninfected whitefly of
case 2. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. NN-BLMA MSE for healthy and infected plants, and infected and uninfected whitefly of
case 3. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

The statistical performance of all the cases in gradient, mu, and validation failures are
illustrated in Figures 7–9. The gradient values for the case 1 lie in between 8.2149× 10−8,
2.4163 × 10−6, 2.3721 × 10−4 and 0.2785, whereas the values for case 2 and case 3 are
9.2809× 10−8, 1.5761× 10−6, 1.4908× 10−4, 27.6472, and 1.1132× 10−8, 4.0741× 10−6,
3.0463× 10−4, 0.49652, respectively. The mu values for all the cases lie in the range 10−4 to
10−13. The network output concerning the target for the training, validation, and test sets is
shown on the regression plot. The data must fall on a 45-degree line where the network
outputs and targets are equal for a perfect match. When the data fall on a 45 degree,
the regression plot gives us a value of R = 1. This article shows the regression analysis of
all the cases in Figures 10–12. From the figures, regression values are 1 for all cases, which
perfectly matches the network and the targets.

(a) (b)

(c) (d)

Figure 7. Value of gradient, mu and validation check of NN-BLMA for case 1. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).
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(a) (b)

(c) (d)

Figure 8. Value of gradient, mu and validation check of NN-BLMA for case 2. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).

(a) (b)

(c) (d)

Figure 9. Value of gradient, mu and validation check of NN-BLMA for case 3. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).
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(a) (b)

(c) (d)

Figure 10. Analysis of regression of the design NN-BLM algorithm for case 1. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).

(a) (b)

(c) (d)

Figure 11. Analysis of regression of the design NN-BLM algorithm for case 2. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).
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(a) (b)

(c) (d)

Figure 12. Analysis of regression of the design NN-BLM algorithm for case 3. (a) H(t). (b) I(t). (c) Q(t).
(d) W(t).

The tables below provide the data information provided by the computing system.
The tables show the best performance values in training, testing, validation, etc. Table 3
displays the best performance data for case 1, while the best performance data for case 2
and case 3 are displayed in Tables 4 and 5, respectively. These tables also show the hidden
neuron count, iterations, and time spent.

Table 3. Performance values of the design NN-BLMA, and time spent by the computing system to
obtain solutions for case 1.

H(t) I(t) Q(t) W(t)

Training 1.68× 10−9 7.50× 10−9 2.29× 10−8 2.10× 10−5

Validation 2.97× 10−9 7.11× 10−9 3.01× 10−8 2.82× 10−5

Testing 1.35× 10−9 7.61× 10−9 2.67× 10−8 2.43× 10−5

Gradient 8.2149× 10−8 2.4163× 10−6 2.3721× 10−4 0.2785

Mu 1× 10−12 1× 10−8 1× 10−8 1× 10−5

Epoches 33 1000 1000 1000

Regression 1 1 1 1

Time 30 30 30 30



Entropy 2021, 24, 1511 13 of 19

Table 4. Performance values of the design NN-BLMA, and time spent by the computing system to
obtain solutions for case 2.

H(t) I(t) Q(t) W(t)

Training 1.12× 10−9 3.41× 10−11 1.15× 10−9 1.79× 10−4

Validation 1.31× 10−9 3.69× 10−11 1.18× 10−9 1.97× 10−4

Testing 3.38× 10−9 4.01× 10−11 1.18× 10−9 2.01× 10−4

Gradient 9.2809× 10−8 1.5761× 10−6 1.4908× 10−4 27.6472

Mu 1× 10−12 1× 10−11 1× 10−9 1× 10−4

Epoches 56 1000 1000 1000

Regression 1 1 1 1

Time 30 30 30 30

Table 5. Performance values of the design NN-BLMA, and time spent by the computing system to
obtain solutions for case 3.

H(t) I(t) Q(t) W(t)

Training 9.84× 10−11 2.84× 10−9 1.04× 10−8 2.53× 10−4

Validation 9.98× 10−11 3.12× 10−9 2.47× 10−8 2.75× 10−4

Testing 1.38× 10−10 3.16× 10−9 1.23× 10−8 2.69× 10−4

Gradient 1.1132× 10−8 4.0741× 10−6 3.0463× 10−4 0.49652

Mu 1× 10−12 1× 10−8 1× 10−8 1× 10−4

Epochs 50 1000 1000 1000

Regression 1 1 1 1

Time 30 30 30 30

The histogram of errors between targets and outputs after training a neural network
is shown in Figures 13–15. Different color bars show the errors in the training, validation,
and testing data. The error bars in which most of the points lie are very close to the zero
error line, which means targets and the outputs are well matched and have the fewest
errors, which shows the accuracy of our design technique. The error values for case 1 lie in
the range 10−3 to 10−4, 10−4 to 10−6, 10−4 to 10−6, and 10−2 to 10−3. For case 2 and case 3
the error values lie in the range 10−4 to 10−5, 10−5 to 10−7, 10−4 to 10−5, 10−3 to 10−4, 10−2

to 10−3, 10−4 to 10−6, 10−4 to 10−6, 10−3 to 10−5, and 10−2 to 10−3, respectively.

(a) (b)

Figure 13. Cont.
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(c) (d)

Figure 13. Analysis of the error histogram in terms of the target data and the approximate solutions
for case 1. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

(c) (d)

Figure 14. Analysis of the error histogram in terms of the target data and the approximate solutions
for case 2. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

(a) (b)

Figure 15. Cont.
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(c) (d)

Figure 15. Analysis of the error histogram in terms of the target data and the approximate solutions
for case 3. (a) H(t). (b) I(t). (c) Q(t). (d) W(t).

Further, Figure 16 compares the numerical solution of the model obtained by the “ND-
Solve” package in Mathematica (targets) to the solution obtained by executing NN-BLMA
(outputs). The solid lines show the solution obtained by solving the model numerically by
the “NDSolve” package in Mathematica, while the circles show the solution by NN-BLMA.
In the figure, we see that the solutions obtained from NN-BLMA come exactly on the targets’
solutions lines, which shows how accurate our design technique is. These figures also
indicate the model’s variation due to some parameters in the model. It is obvious from the
figures that healthy plants and uninfected whiteflies rise when there is an increase in plant
mortality rate and a drop in vector mortality rate. In contrast, a drop in plant mortality
rate and an increase in vector mortality rate leads to a rise in infected plants and whiteflies.
The comparison of statistical data given by the ’NDSlove’ package in Mathematica with the
outputs of NN-BLMA is illustrated in the tables below. Table 6 illustrates the comparative
analysis of both the solutions for case 1, while the comparison for case 2 and case 3 are
illustrated in Tables 7 and 8, respectively.
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Figure 16. Numerical solutions’ comparison of NN-BLMA with the solution obtained with other
numerical methods. (a) Healthy plants H(t). (b) Infected plants I(t). (c) Uninfected whiteflies Q(t).
(d) Infected whiteflies W(t).
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Table 6. Comparative analysis of numerical solution with the solutions obtained from NN-BLMA for
case 1.

H(t) I(t) Q(t) W(t)

t Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA

0 0.3 0.301402499 0.1 0.100121 100 100.0008 5 4.941716

0.5 0.295659 0.295796496 0.659197 0.659184 114.0068 114.0061 4.828814 4.811659

1 0.270171 0.270148397 1.121609 1.121648 126.3683 126.3679 5.584575 5.598602

1.5 0.225534 0.225481705 1.610816 1.610781 137.0851 137.0855 9.607768 9.620728

2 0.158531 0.158487646 2.28979 2.289811 145.892 145.892 21.79219 21.80038

2.5 0.078258 0.078217137 3.113732 3.113741 152.3632 152.3629 51.27621 51.28554

3 0.020596 0.020563851 3.647005 3.646977 156.6824 156.6827 108.024 108.0293

3.5 0.002145 0.002150992 3.673769 3.673765 159.9924 159.9922 193.49 193.4844

4 6.66× 10−5 6.67153× 10−5 3.500676 3.646977 163.2073 163.2072 303.6808 303.6772

Table 7. Comparative analysis of numerical solution with the solutions obtained from NN-BLMA for
case 2.

H(t) I(t) Q(t) W(t)

t Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA

0 0.3 0.301386 0.1 0.100008961 100 100.0002874 5 4.91848547

0.5 0.2877 0.287758 1.021413 1.021411462 111.136459 111.1363243 4.74700621 4.704905202

1 0.243996 0.243941 1.778091 1.778087194 120.0058588 120.0057731 5.886795798 5.906826879

1.5 0.178663 0.178615 2.615206 2.615204348 126.6983972 126.6984875 11.85176957 11.86964906

2 0.099554 0.099532 3.721032 3.721035712 130.919435 130.9195312 29.55952416 29.56956409

2.5 0.033451 0.033442 4.748642 4.748643211 132.5695704 132.5695372 69.40014059 69.40036895

3 0.005173 0.005141 5.142219 5.142218201 132.6625165 132.6624534 137.4934921 137.5035161

3.5 0.000284 0.000276 5.084467 5.084461504 132.5157456 132.515754 231.7495915 231.7676383

4 4.2× 10−6 1.5× 10−5 4.939332 4.939329075 132.6092218 132.6092389 350.3411185 350.3583379

Table 8. Comparative analysis of numerical solution with the solutions obtained from NN-BLMA for
case 3.

H(t) I(t) Q(t) W(t)

t Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA Numerical NN-BLMA

0 0.3 0.29984487 0.1 0.10015 100 100.0001 5 4.930092

0.5 0.300552 0.30057977 0.43618653 0.43611909 116.834648 116.8346 4.92687225 4.91208

1 0.287377 0.28740484 0.71468896 0.71462628 132.625296 132.6252 5.47558404 5.499553

1.5 0.259799 0.25980546 0.99348118 0.99348179 147.331811 147.3318 8.22851282 8.216368

2 0.21123 0.21120628 1.36866609 1.3687244 160.767638 160.7677 16.453172 16.44464

2.5 0.136805 0.13676428 1.88979607 1.88976049 172.537448 172.5374 36.7607881 36.7496

3 0.056486 0.05643249 2.38574334 2.38574809 182.351472 182.3515 79.3186069 79.29844

3.5 0.010986 0.01094595 2.54620998 2.54620843 190.689067 190.6891 150.762051 150.7577

4 0.000742 0.00072402 2.42175547 2.42176342 198.537627 198.5377 248.404668 248.4245

5. Conclusions

In this paper, we analyzed a mathematical model for persistent vector-borne viral
plant disease dynamics. The model includes equations for healthy and infected plants and
uninfected and infected whiteflies. The selected set of parameters for numerical simulation
is for the cause of the mosaic disease in cassava. To see the impact of variation in the
mortality parameters on the model, we made different cases in which we vary both plant
and vector mortality parameters. The reference data (targets) for NN-BLMA were generated
by solving the model numerically for all the cases in Mathematica. The designed technique
uses the targets to train, test, and validate the ANN and to see the impact of variation in
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plants’ natural and vectors’ mortality rates. The key points concluded from the study are
given below.

• From the study, we see an increase in the mortality rate of plants, along with a decrease
in the mortality rate of vectors, increases in healthy plants and uninfected whiteflies,
and decreases in infected plants and infected whiteflies. In contrast, a drop in the
mortality rate of plants and an increase in the mortality rate of vectors results in a
decrease in healthy plants and uninfected whiteflies and an increase in the number of
infected plants and infected whiteflies.

• Further, the accuracy of the design technique is illustrated through extensive graphical
and tabular data, which include the best performance in terms of the mean squared
error, histogram, and regression analyses.
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Nomenclature
ANN Artificial neural network
NN-BLMA Backpropagated neural network based Levenberg—Marquardt Algorithm
MLP Multilayer perceptron
FNN Feed-forward neural network
BMV Beet mosaic virus
ACMV African cassava mosaic virus
TMV Tobacco mosaic virus
BGMV Bean golden mosaic virus
DDE Delay differential equations
MSE Mean squared error
H Healthy plants
I Infected plants
Q Uninfected whiteflies
W Infected whiteflies
r Net growth rate of plants
k Carrying capacity
λ Rate of disease transmission from infected vector to healthy plant
µ Plants natural mortality rate
m1 Mortality of infected plants
Π Cumulative birth or immigration rate of vector population
β Transmission rate between diseased vector and healthy plant
d Vector mortality rate
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