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Abstract: In complex network environments, there always exist heterogeneous devices with different
computational powers. In this work, we propose a novel scalable random linear network coding
(RLNC) framework based on embedded fields, so as to endow heterogeneous receivers with different
decoding capabilities. In this framework, the source linearly combines the original packets over
embedded fields based on a precoding matrix and then encodes the precoded packets over GF(2)
before transmission to the network. After justifying the arithmetic compatibility over different finite
fields in the encoding process, we derive a sufficient and necessary condition for decodability over
different fields. Moreover, we theoretically study the construction of an optimal precoding matrix in
terms of decodability. The numerical analysis in classical wireless broadcast networks illustrates that
the proposed scalable RLNC not only guarantees a better decoding compatibility over different fields
compared with classical RLNC over a single field, but also outperforms Fulcrum RLNC in terms of
a better decoding performance over GF(2). Moreover, we take the sparsity of the received binary
coding vector into consideration, and demonstrate that for a large enough batch size, this sparsity
does not affect the completion delay performance much in a wireless broadcast network.

Keywords: random linear network coding (RLNC); wireless broadcast network; scalable network
coding

1. Introduction

In a communication network, linear network coding (LNC) advocates intermediate
nodes to linearly combine received messages before transmission, so as to improve various
network performances, such as increasing network throughput, reliability, and reducing
transmission delay. Random linear network coding (RLNC) provides a distributed and
asymptotically optimal approach for linear coding with coefficients randomly selected
from a base field [1]. It shows the potential to improve the performance of unreliable or
topologically unknown networks such as D2D networks [2], ad hoc networks [3], and
wireless broadcast networks [4–7].

One of the reasons that hinder the large-scale practical applications of RLNC is the
compatibility issue of different computational overheads. In complex network environ-
ments, there exist heterogeneous devices with different computational powers. Specifically,
sources and certain receivers usually have ample computational powers while a large
number of intermediate nodes and other receivers are computationally constrained such
as the data collectors in ad hoc networks or low-cost devices in the Internet of Things
paradigm [8]. It turns out that the coding compatibility among heterogeneous devices with
different computational powers has to be considered in RLNC design.

This paper proposes a novel framework for scalable RLNC design based on embedded
fields. The adjective scalable means that the finite fields chosen in the encoding process are
not limited to a single base field but a set of embedded fields which consists of a large finite
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field and all its subfields. The encoding process at the source consists of two stages. In stage
1, based on a precoding matrix, all original packets are linearly combined over different
finite fields to form precoded packets. In stage 2, the final packets to be transmitted are
formed by randomly combining the precoded packets over GF(2). The heterogeneous
receivers can recover the original packets over different fields under different computa-
tional constraints.

It is worthwhile to remark that prior to this work, there have been studies [9–14]
that have taken different fields into account in the course of RLNC design. On one hand,
the so-called Telescopic codes [9–11] and Revolving codes [12] considered different fields
aiming at reducing the decoding complexity. However, they assume that all receivers have
the same decoding capability, that is, they need support the arithmetic over the largest
defined finite field. On the other hand, a flexible RLNC scheme called Fulcrum [13,14]
makes use of GF(2) and its extension field GF(28) for code design and it supports receivers
to decode over both fields. Actually, Fulcrum can be regarded as a special instance in our
proposed framework, while the decoding rule over GF(2) considered therein is weaker than
the one proposed in this paper. In addition, there is limited discussion on the construction
of an optimal encoding matrix in Fulcrum.

The main contributions of this paper are summarized as follows.

• We mathematically justify how to make the arithmetic over different finite fields
compatible.

• We derive a necessary and sufficient condition for decodability at a receiver over
different finite fields. In particular, the proposed decoding rule over GF(2) is stronger
than the one proposed in Fulcrum.

• We theoretically study the construction of an optimal precoding matrix in terms of the
decodability performance.

• By numerical analysis in classical wireless broadcast networks, we demonstrate that
the proposed scalable RLNC not only guarantees a better decoding compatibility over
different fields compared with classical RLNC over a single field, but also provides a
better decoding performance over GF(2) in terms of smaller average completion delay
compared with Fulcrum.

• In numerical analysis, we also take the sparsity of the received binary coding vector
into consideration, and demonstrate that for a large enough batch size, this sparsity does
not affect the completion delay performance much in a wireless broadcast network.

This paper is structured as follows. Section 2 reviews the mathematical fundamentals
of embedded fields. Section 3 first presents the general principles of the proposed scalable
RLNC framework and then formulates the encoding and decoding process. Section 4
investigates the design of an optimal precoding matrix. Section 5 numerically analyzes
the proposed scalable RLNC and compares its performance with classical RLNC over a
single finite field as well as Fulcrum. Moreover, we take the sparsity into consideration and
illustrate the influence on its performance. Conclusion is given in Section 6.

2. Mathematical Fundamentals

In our proposed scalable RLNC framework, different receivers will be able to recover
the original packets over different finite fields, upon their different computational powers.
In order to make the arithmetic over different finite fields compatible, we need the concept
of embedded fields, which will be briefly reviewed in this section. One may refer to [15] for
a detailed introduction on finite fields.

Recall that a finite field GF(2d1) is a subfield of GF(2d2) if and only if d1|d2. Thus,
GF(2d1), GF(2d2), . . . , GF(2dD ) are said to form embedded fields F if d1 < d2 < . . . < dD
and d1|d2| . . . |dD. For arbitrary GF(2di ) and GF(2dj ) in F with i < j, as GF(2dj ) can be
regarded as GF

(
(2di )dj/di

)
, it can be expressed not only as a ddj

-dimensional vector space

over GF(2), but also as a dj/di-dimensional vector space over GF(2di ) at the same time.
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Example 1. Assume that d1 = 1, d2 = 2, d3 = 4. The field GF(24) can be expressed as a
four-dimensional vector space over GF(2) as well as a two-dimensional vector space over GF(22).
Let α be a root of the irreducible polynomial x2 + x + 1 over GF(2) so that GF(22) = {0, 1, α, α2}.
The polynomial g(x) = x4 + x + 1 is irreducible over GF(2) but reducible over GF(22) and can
be factorized as g(x) = (x2 + x + α)(x2 + x + α2). Let β be a root of the irreducible polynomial
f (x) = x2 + x + α over GF(22) and β a root of f (x), so that g(β) = β4 + β + 1 = 0 as well. Then,
every element in GF(24) can be expressed as a0 + a1β + a2β2 + a3β3 with aj ∈ {0, 1}. Moreover,
α = β2 + β = β5, so that GF(22) = {0, β0, β5, β10}. Based on this, every element in GF(24) can
also be uniquely expressed as b0 + b1β, b0, b1 ∈ GF(22), which is summarized in Figure 1. In
Figure 1, the integers 0 to 15 are the decimal representation of the binary 4-tuple (a3, a2, a1, a0),
e.g., 13 refers to 1 + β2 + β3, which can be expressed 1 + αβ.

Figure 1. Every element a0 + a1β + a2β2 + a3β3, aj ∈ {0, 1} in GF(24) has a unique expression in the
form of b0 + b1β, b0, b1 ∈ {0, 1, α, α2} = GF(4), where α2 + α + 1 = β2 + β + α = β4 + β + 1 = 0. The
integers 0 to 15 represent the decimal expression of the binary 4-tuple (a3, a2, a1, a0).

3. Framework Description
3.1. General Principles

In this paper, we focus on the construction of a general scalable RLNC framework over
embedded fields, so we attempt to alleviate the influence of specific models of networks.
In the course of framework description, we merely classify the nodes in a network into
three types: a unique source node, intermediate nodes and receiver nodes. Assume that
the source has the highest computational power, so that it can generate coded packets
over embedded fields. The intermediate nodes in the network just recode the received
data packets over GF(2), so as to fully reduce the overall computational complexities in
the network. The heterogeneous receivers have different decoding capabilities. Under its
own computational constraint, every receiver can judge whether sufficient coded packets
have been received for decoding. More importantly, even though a receiver may not have
sufficient computational power to deal with the arithmetic in a larger field over which some
received packets are coded, it can still fully utilize these packets instead of directly throwing
away in the process of decoding. For instance, assume that two received packets w1 and
w2 are respectively equal to p1 + p2 + αp3 and p2 + αp3, where p1, p2, p3 are original
packets generated by the source node and α is an element not equal to 0 and 1 in the field
GF(2dD ). For the receiver under the strongest field constraint GF(2), the original packet
p1 can be recovered by w1 + w2 instead of directly throwing w1, w2 away. Consequently,
the proposed scalable RLNC framework not only ensures the decoding capabilities of
heterogeneous network devices but also fully reduces the required number of received
packets for decoding.

3.2. Encoding and Recoding

In every batch, the source s has n original packets pi, 1 ≤ i ≤ n, each of which is an
M-dimensional column vector over GF(2), to be transmitted to receivers. Without loss of
generality, assume M is divisible by 22D

, which can be achieved by padding dummy bits
into every packet. With increasing D, the double exponentially increasing packet length
M may cause the practical issue of an excessive padding overhead. Such an issue can be
effectively solved based on the methods proposed in [16,17].

The encoding process at s has two stages. First, based on pi, 1 ≤ i ≤ n, for each
1 ≤ d ≤ D, extra rd precoded packets are generated based on coding coefficients selected
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from GF(22d
). In this process, every original packet pi is regarded as a vector of md = M/2d

symbols, each of which consists of 2d bits and represents an element in GF(22d
). The

multiplication of pi by a coefficient in GF(22d
) is thus realized by symbol-wise multiplication.

Note that when d1 < d2, the coefficients in GF(22d1 ) also appear in GF(22d2 ), but the coding
arithmetic changes. The mathematical fundamentals in the previous section guarantee the
coding compatibility which will be illustrated in the next example.

Example 2. Assume M = 4, n = 2, d1 = 1 and d2 = 2. Based on two original packets
p1 = [1 0 0 0]T and p2 = [1 1 0 1]T, a precoded packet is to be generated over GF(4) = {0, 1, α, α2}
by the linear combination αp1 + α2p2. First regard p1 and p2 as vectors of 2 symbols over GF(22),

that is, p1 =

[
α
0

]
and p2 =

[
α + 1

1

]
=

[
α2

1

]
. Then,

αp1 + α2p2 =

[
α2

0

]
+

[
α
α2

]
=

[
1

α + 1

]
= [0 1 1 1]T (1)

According to Figure 1, in GF(24), α = β2 + β = β5 and α2 = β2 + β + 1 = β10. As every element
in GF(24) = GF(42) can be uniquely expressed as b0 + b1β, b0, b1 ∈ GF(4), every four-dimensional
vector [a3 a2 a1 a0]

T over GF(2) as the following element in GF(16)

[a3 a2 a1 a0]
T = a3β6 + a2β + a1β5 + a0.

Based on this rule, p1 = β6 and p2 = β6 + β + 1. Consequently, β5p1 + β10p2 = β + β10 =
β + β5 + 1, which is [1 α + 1]T over GF(4) and [0 1 1 1]T over GF(2), same as (1) obtained by the
GF(4) arithmetic.

After stage 1, there are a total of N = n + r1 + r2 + . . . + rD precoded packets, the
first n of which are just the original packets. Let G =

[
In A1 . . . AD

]
denote the n× N

precoding matrix for the N precoded packets, where In refers to the n× n identity matrix
and Ad is a coefficient matrix defined over GF(22d

).
In stage 2, every coded packet c the source finally sends out is a random GF(2)-linear

combination of the N precoded packets, that is,

c = [p1 p2 · · · pn]Gh,

for some randomly generated N-dimensional column vector h over GF(2), which is referred
to as the coding vector for packet c. For a systematic scheme, the first n coded packets
c1, . . . , cn transmitted by the source are just n original packets, that is, the coding vector
for cj is just an N-dimensional unit vector with the jth position equal to 1. Every coded
packet will affix its coding vector to its header. In contrast, the information of precoding
matrix G can either be affixed to the header of every packet or presettled to be known at
every receiver.

At an intermediate node, the coded packets it transmits are GF(2)-linear combinations
of its received packets. Specifically, if an intermediate node receives coded packets c1, . . . , cl
with respective coding vectors h1, . . . , hl , then it will recode them to generate a new coded
packet c′ to be transmitted as

c′ = a1c1 + . . . + alcl ,

where a1, . . . , al are random binary coefficients. The concomitant coding vector for c′ is
a1h1 + . . . + alhl .

It is worthwhile to note that prior to this work, a flexible RLNC scheme called Fulcrum
has been investigated in [13,14]. Fulcrum can be regarded as a special instance in our
proposed framework with the setting D = 3 and r1 = r2 = 0.
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3.3. Decoding

Define a linear map ϕ : GF(2)N → GF(22D
)n by

ϕ(v) = Gv.

for every column vector v ∈ GF(2)N . The notation ϕ also applies to a set V of vectors:
ϕ(V) = {ϕ(v) : v ∈ V}.

Moreover, let Ud, 0 ≤ d ≤ D, denote the vector subspace of GF(2)N spanned by unit
vectors u1, u2, . . . , u∑d

d′=0 rd′
where a unit vector uj refers to an N-dimensional vector with

the only nonzero entry at position j.
For a receiver t, assume dt is the largest field for computation, and m packets have been

received. Let H denote the N ×m matrix over GF(2) obtained by columnwise juxtaposition
of the coding vectors of the m received packets, andH the column space (over GF(2)) of H.

In order to recover original packets under the field constraint GF(22dt ), we need make
use of coding packets with coding vectors in Udt ∩H rather than inH. This is because the
lower ∑d′>dt rd′ entries in every coding vector corresponds to the original precoded packets

generated by the source over a larger field than GF(22dt ). We next characterize the following
necessary and sufficient condition for decodability at t up to field constraint GF(22dt ).

Theorem 1. Based on the m received packets, the original n source packets can be recovered at t if
and only if

dim(ϕ(Udt ∩H)) = n. (2)

Proof. First assume (2) holds. Then, there must exist n vectors, denoted by v1, . . . , vn in
Udt ∩H such that

dim(ϕ({v1, . . . , vn})) = n. (3)

Consequently, there exists an m × n matrix K over GF(2) such that [v1 . . . vn] = HK,
and (3) implies the full rank n of GHK. As the last ∑d′>dt rd′ rows in HK are all zero, the

elements in GHK belong to GF(22dt ), and hence there exists an n× n matrix D over GF(22dt )
subject to GHKD = In, that is, the original packets can be recovered at t.

Next assume that the original n packets can be recovered at t. Then, there exists an
m× n matrix D over GF(22dt ) such that GHD = In. Further, D can be written as D1D2,
where D1, D2 are over GF(22dt ) and of respective size m× n and n× n. Thus, GHD1 is a
matrix over GF(22dt ) of full rank n. Recall that none of the elements in the last ∑d′>dt rd′

columns in G is in GF(22dt ). Thus, every element in GHD1 belonging to GF(22dt ) implies
that the last ∑d′>dt rd′ rows in HD1 are all zero. Moreover, as H is defined over GF(2), we
can further deduce that D1 can be written as D′1D′′1 for an m× n matrix D′1 over GF(2) and
an n× n matrix D′′1 over GF(22dt ), such that the last ∑d′>dt rd′ rows in HD′1 are all zero too,
that is, the columns in HD′1 belong to Udt ∩H. In addition, the full rank of GHD1 implies
the full rank of GHD′1. Equation (2) is thus proved to hold.

Based on the above theorem, we can further characterize the following equivalent
condition for decodability at a receiver from the perspective of matrix rank. For 0 ≤ d ≤ D,
denote by Hdt the ∑d′>dt rd′ × m submatrix of H obtained by restricting H to the last
∑d′>dt rd′ rows.

Corollary 1. Based on the m received packets, the original n source packets can be recovered at t if
and only if

rank(G(HKdt)) = n, (4)

where Kdt is an m× (m− rank(Hdt)) matrix whose columns constitute a basis for the kernel of
the column space of Hdt such that Hdt Kdt = 0.



Entropy 2022, 24, 1510 6 of 14

Note that the column space of HKdt are exactly the subspace Udt ∩H in (2), and all
entries in the last ∑d′>dt rd′ rows of HKdt are zero, so the computation of (4) only involve

arithmetic over GF(22dt ). Moreover, in order to check (4), it suffices to select rank(HKdt)
linearly independent column vectors in HKdt , juxtapose them into a matrix H′, and check
whether rank(GH′) = n. With the number m of received packets at t increasing, the matrix
Kdt and H′ can be established in the following iterative way.

Algorithm 1. Denote by hm the N-dimensional coding vector over GF(2) for the mth received
packet at receiver t. Without loss of generality, assume that there is at least one non-zero entry in
hm. Let hm

dt
denote the vector restricted from hm to the last ∑d′>dt rd′ entries. The next procedure

efficiently produces desired Kdt and H′.
Initialization. Let Kdt , H′, B and Bdt be empty matrices. They are to consist of a m rows, N

rows, N rows and ∑d′>dt rd′ rows respectively.
Iteration. Consider the case that the mth packet with coding vector hm is just received, and

assume receiver t has dealt with the former m− 1 coding vectors hj, 1 ≤ j < m. Perform either of
the following two depending on hm

dt
.

• If hm
dt

is a zero vector, then update Kdt as

Kdt =

[
Kdt 0

0 . . . 0 1

]
, (5)

and respectively append a zero column vector to B and to Bdt on the right. Further check
whether hm is a GF(2)-linear combination of columns in H′. If so, keep H′ unchanged.
Otherwise, update H′ as [H′ hm]. The iteration for the current value of m completes.

• If hm
dt

is not a zero vector, check whether it is a GF(2)-linear combination of columns in Bdt . If
no, respectively update B, Bdt and Kdt as

B = [B hm], Bdt = [Bdt hm
dt
], Kdt =

[
Kdt

0 . . . 0

]
, (6)

and the iteration for the current value of m completes. Otherwise, perform the following steps.
First compute an (m− 1)-dimensional vector k subject to Bdt k = hm

dt
, and then update Kdt as

Kdt =

[
Kdt k

0 . . . 0 1

]
. (7)

Further compute a new vector v = Bk + hm, and respectively append a zero column vector to
B and to Bdt on the right. Check whether v is a GF(2)-linear combination of columns in H′. If
so, keep H′ unchanged. Otherwise, update H′ as [H′ v]. The iteration for the current value of
m completes.

Note that after the above procedure, the sum of the number of nonzero columns in Bdt and the
number of columns in Kdt is m. The nonzero columns of Bdt keep to form a basis of the column space
of Hdt = [h1

dt
. . . hm

dt
]. The columns of Kdt keep to form a basis of the null space spanned by columns

of Hdt . The columns in H′ keep to be a basis of the column space of HKdt , where H = [h1 . . . hm].

Example 3. Assume that D = 2, n = r0 = 3, and r1 = r2 = 1. The 3× 5 precoding matrix G is
designed as

G =

[1 0 0 α β
0 1 0 α2 β
0 0 1 1 β

]

where β is a primitive element in GF(24) and α = β5, which can be regarded as a primitive element
of GF(22) ⊂ GF(24).
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Assume that at a receiver t, GF(22) is the largest field for computation, and 4 packets have been
received with the columnwise juxtaposition of the respective coding vectors prescribed by

H =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1
1 1 1 1


As Hdt = [1 1 1 1] herein, the aforementioned iterative approach can yield the following Kdt and
concomitant H′:

Kdt =

1 1 1
1 0 0
0 1 0
0 0 1

, H′ =


1 1 0
1 0 1
0 1 1
0 0 1
0 0 0

,

where the columns of H′ form a basis for the subspace Udt ∩H. Consequently, GH′ =

[1 1 α
1 0 1 + α2

0 1 0

]
.

Since 1 + α + α2 = 0 in GF(22), rank(GH′) = 2, that is, (4) does not hold. Therefore, the receiver
requires to receive more packets before decoding all original packets.

Assume h5 = [1 0 0 1 1]T is the coding vector for the 5th received packet. Then, the matrix
Kdt is dynamically updated to

Kdt =


1 1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

but there is no change for H′, because H · [1 0 0 0 1]T belongs to the column space of H′.
Assume h6 = [0 0 1 0 0]T is the coding vector for the 6th received packet. First, dynamically

update Kdt to

Kdt =


1 1 1 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

,

Then, as h6 = [0 0 1 0 0]T does not belong to the column space of H′, update H′ as [H′ h6]:

H′ =


1 1 0 0
1 0 1 0
0 1 1 1
0 0 1 0
0 0 0 0

.

Consequently, GH′ =

[1 1 α 0
1 0 1 + α2 0
0 1 0 1

]
, and it has full rank 3, so the receiver can recover the source

packets. Actually, in this case, the source packets can be recovered by merely GF(2)-based operations.

In two special cases that dt = D and dt = 0, i.e., receiver t has the highest and the
lowest computational power respectively, (4) degenerates to a more concise form.

Corollary 2. When dt = D, (4) is equivalent to

rank(GH) = n. (8)
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When dt = 0, (4) is equivalent to

rank(H)− rank(Hdt) = n. (9)

Recall that Fulcrum [13,14] can be regarded as a special RLNC scheme of our frame-
work. One may notice that in Fulcrum, the decoding rule over GF(2) at a receiver is

rank(H) = N, (10)

which is sufficient but not necessary. In contrast, (9) is both necessary and sufficient. As to
be seen in Section 5, there is an observable performance gain when (9) is adopted as the
decoding rule instead of (10). Moreover, our proposed scalable RLNC is more flexible than
Fulcrum, because the receivers with intermediate computational power can fully utilize its
decoding capability to decode over intermediate fields (rather than only over GF(2)), so
that the number of required coded packets can be reduced.

3.4. Decoding Complexity Analysis

In this subsection, we briefly analyze the computational complexity of the proposed
scalable RLNC scheme at receiver t with the field constraint GF(2dt ). We assume that after
a sufficiently large recoding process over GF(2), the last r positions in every received binary
column vector h, which corresponds to the r precoded packets generated over the larger
fields than GF(2), are nonzero. According to Corollary 1, when enough coded packets have
been received such that the condition

rank(G(HKdt)) = n

is satisfied, receiver t can recover all original packets by linear combining n coded packets
over GF(2dt ). Accordingly, it requires at most n2M/dt multiplications and n(n− 1)M/dt ad-
ditions over GF(2dt ) in the decoding process. Following the same consideration in [4,18,19],
we assume that it respectively takes dt and 2d2

t binary operations to realize addition and
multiplication between two elements in GF(2dt ). Consequently, the total number of required
binary operations can be characterized as O(Mndt) to recover every M-bit original packet.

Herein, we did not consider the complexity to compute the inverse matrix of GHKdt
because in practice the packet length M is much larger than n, and this convention has also
been adopted in [4,19] for computational complexity analysis.

4. Optimal Construction of Precoding Matrix G

Based on the analysis in the previous section, we are motivated to carefully design
such a precoding matrix G that the full rank of H is equivalent to the full rank of GH,
which can optimize the decodability performance for fixed parameters n and N. To achieve
this goal, for the precoding matrix G, we first introduce the following condition that is
stronger than the conventional maximal distance separable (MDS) property.

Definition 1. An n× N matrix G over GF(22D
) is said to be MDS under GF(2)-mapping if for

any full-rank N × n matrix H over GF(2), rank(GH) = n.

Recall that if G satisfies the conventional MDS property, all n columns in it are linearly
independent. Obviously, the conventional MDS property is a prerequisite for the proposed
MDS property under GF(2)-mapping. However, Example 3 demonstrates an MDS matrix
G that is not MDS under GF(2)-mapping. To the best of our knowledge, except for a brief
attempt in [13], there is no prior literature involving the construction of a matrix satisfying
the MDS property under GF(2)-mapping. We next characterize an equivalent condition on
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the MDS property under GF(2)-mapping, so as to facilitate the explicit construction. Given
an n× N matrix G, let C denote the set of row vectors generated by G:

C = {mG : m ∈ GF(22D
)n}. (11)

For every c ∈ C, let Nc denote its null space in GF(22D
)N .

Theorem 2. An n× N matrix G is MDS under GF(2)-mapping if and only if

dim(Nc ∩GF(2)N) < n, ∀ c ∈ C\{0} (12)

Proof. We prove the theorem in a contrapositive argument. Assume that there exists a
nonzero c ∈ C such that dim(Nc ∩GF(2)N) ≥ n, and let m be a row vector over GF(22D

)
satisfying c = mG. Then, we can select n linearly independent column vectors h1, . . . , hn
over GF(2) from Nc. Write H = [h1 . . . hn]. Thus, mGH = cH = 0, so that GH is not full
rank n, i.e., G is not MDS under GF(2)-mapping.

Assume that G is not MDS under GF(2)-mapping, and let H be a full rank N × n
matrix over GF(2) subject to rank(GH) < n. Then, there exists an n-dimensional row
vector m such that mGH = 0. Write c = mG, so that cH = 0. Since H is full rank n, there
are at least n linearly independent vectors (which are the columns of H) belonging to Nc,
i.e., dim(Nc ∩GF(2)N) ≥ n.

For c ∈ C, let η(c) denote the number of elements in c belonging to GF(22D
)\{0, 1},

and define an indicator δ which is set to 1 if c consists of an element equal to 1 and set to 0
otherwise. The following is a useful corollary of Theorem 2.

Corollary 3. If an n× N matrix G is MDS under GF(2)-mapping, then the followings hold

η(c) + δ > N − n, ∀ c ∈ C\{0}. (13)

C ∩GF(2)N = {0}. (14)

Proof. Assume there is a nonzero c ∈ C with η(c) + δ ≤ N − n, i.e., N − η(c) ≥ n + δ.
Define a new vector c′ by restricting to its components belonging to GF(2), so that the
dimension of c′ is N − η(c). Thus, the dimension of the null space of c′ in GF(2)N−η(c)

is N − η(c)− δ, which is no smaller than n. Correspondingly, dim(Nc ∩GF(2)N) ≥ n, a
contradiction to the MDS property under GF(2)-mapping for G according to (12).

If there is a nonzero c ∈ C belonging to GF(2)N , then η(c) = 0 so that (13) cannot hold
as N > n, and thus G cannot be MDS under GF(2)-mapping.

Conditions (13) and (14) are insufficient for the MDS property under GF(2)-mapping.
The key reason is the possibility of the following

∑<j> αj ∈ GF(2), αj ∈ GF(22D
)\{0, 1}. (15)

For this reason, we should pay more attention in the matrix design to avoid the involvement
of those elements in (15). The special case N = n + 1 is easier to manipulate.

Proposition 1. When N = n + 1, an n× N matrix G is MDS under GF(2)-mapping if and only
if (14) holds.

Proof. The necessity has been shown in Corollary 3. To prove sufficiency, assume (14)
holds for C defined in (11) based on G. Let c be an arbitrary vector in C. As (14) holds,
η(c) > 0. In the case η(c) = 1, there must be at least one element in c equal to 1, because
otherwise we can find another vector in C with all elements in GF(2), a contradiction to (14).
Thus, dim(Nc ∩GF(2)N) < n for this case. Consider the case η(c) ≥ 2. Without loss of
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generality, write c = [c1 . . . cη(c) 0 . . . 0] with cj 6= 0. We can assume cj not all identical,
because otherwise we can again find another vector in C with all elements in GF(2), a
contradiction to (14). Moreover, for arbitrary two elements a, b ∈ GF(22D

), a + b = 0 if and
only if a = b. Hence, there are at most η(c)− 2 linearly independent vectors in GF(2)η(c)

that are in the null space of c, which further implies dim(Nc ∩ GF(2)N) < n. We have
proved (12) and thus the considered G is MDS under GF(2)-mapping.

Corollary 4. When N = n+ 1, there exists a systematic n×N matrix G = [In AD] over GF(22D
)

that is MDS under GF(2)-mapping if and only if n < 2D.

Proof. Assume n < 2D. Define an n-dimensional column vector a = [α, α2, . . . , αn]T, where
α is a primitive element of GF(22D

). In this way, all elements in a are distinct and every GF(2)-
combination ∑1≤j≤n ajα

j among them does not belong to GF(2). By Proposition 1, [In a] is
an MDS matrix under GF(2)-mapping. When n ≥ 2D, let a = [α1, . . . , αn]T be an arbitrary
n-dimensional vector in GF(22D

). In order to make [In a] MDS under GF(2)-mapping,
according to (14) in Corollary 3, there is not any element αj belonging to GF(2). If there is a

basis, say {α1, . . . , α2D} of GF(22D
) in a, then 1 can be written as a GF(2)-linear combination

of the basis, so that (14) does not hold. If there is not a basis of GF(22D
) in a, then there

exists an n-dimensional nonzero row vector v over GF(2) subject to va = 0, so that (14)
does not hold either. Thus, it is impossible for [In a] to be MDS under GF(2)-mapping.

Based on the above corollary, the required field size is exponentially larger than N in
the construction of an n× N systematic MDS matrix under GF(2)-mapping. This implies
that it is infeasible to construct such a practical precoding matrix G for large N. For this
reason, it is alternative to choose to randomly generate G, which may cause a near-optimal
decodability behavior as illustrated in the next example.

Example 4. Define the following vectors a1 = [α α2 α3 . . . α7]T and a2 = [α2 α4 α6 . . . α14]T

over GF(28) in which α is a primitive element. It can be checked that both matrices [I7 a1] and [I7 a2]
are MDS under GF(2)-mapping. Although the 7× 9 matrix G = [I7 a1 a2] is not MDS under
GF(2)-mapping, among 42435 7-dimensional subspaces of GF(2)9, there are only 127 instances to
break the desired MDS property, that is, every basis for each of the instances forms a 9× 7 matrix H
with rank(GH) < 7.

5. Numerical Analysis

In this section, we numerically analyze the performance of applying the proposed
systematic scalable RLNC scheme to a wireless broadcast network, which is a classical
model to demonstrate the advantage of RLNC [4–7]. The number n of original packets in
a batch is varied from n = 6 to 24. In every timeslot, the source broadcasts one packet to
all receivers. The memoryless and independent packet loss probability for every receiver
is pe = 0.2, that is, in every timeslot, every receiver can successfully receive a packet with
probability 1− pe. We consider the scheme with parameters D = 2, r = 2 where r1 = r2 = 1.
In the n × N precoding matrix G = [In A1 A2], the entries in A1 and A2 are randomly
selected from GF(22) and GF(24), respectively. In the numerical analysis of scalable RLNC,
the single source s has n original packets to be broadcast to a total of 30 receivers with
different decoding capabilities. Specifically, the 30 receivers fall into 3 different groups and
the 10 receivers in every group has the same decoding capability, and can decode based on
the decoding rule (4) over GF(2), GF(22) and GF(24), respectively. In the first n timeslots, the
source broadcasts n original packets, whose coding vectors are (n + r)-dimensional unit
vectors, to all receivers. Starting from timeslot n + 1, the source broadcasts coded packets,
each of which is generated based on a random N-dimensional column vector h over GF(2),
till all the receivers can recover the n original packets. Herein, for every parameter setting
and every considered RLNC scheme, we conduct 1200 independent rounds of simulation
which result in 95% confidence intervals.
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Figure 2 depicts the average group completion delay per packet for the 3 groups
of receivers, respectively labeled as “Scalable-GF(2x)”, x ∈ {1, 2, 4} of the considered
scalable RLNC scheme. The group completion delay means the number of extra coded
packets the source broadcasts till all the 10 receivers in the group can recover n original
packets. For a better comparison, the figure also depicts the average group completion
delay per packet, labeled as “RLNC-GF(2x)”, for a group of 10 receivers of three different
classical systematic RLNC schemes over different fields GF(2x), x ∈ {1, 2, 4}. Recall that in
the classical systematic RLNC scheme over GF(2x), the source first broadcasts n original
packets and then randomly coded packets with n-dimensional coding vectors over GF(2x).
One may observe from Figure 2 that for the case of GF(24), the average completion delay
of scalable RLNC is almost same as the classical RLNC. Over other smaller fields, even
though scalable RLNC yields higher average completion delay than classical RLNC, it
simultaneously guarantees the decoding compatibility at heterogeneous receivers, which
cannot be endowed by classical RLNC schemes. For instance, assume that the source adopts
classical RLNC over GF(22) to generate coded packets. On one hand, the group of receivers
with decoding capability constrained to GF(2) will fail to recover the original packets. On
the other hand, the groups of receivers with decoding capability over GF(24) cannot fully
utilize their higher computational power so that the average completion delay cannot be
further reduced compared with decoding over GF(22). As a result, the performance loss for
the cases of smaller fields in our proposed scalable RLNC compared to classical RLNC is
the cost of decoding compatibility over different fields.
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Figure 2. The average group completion delay per packet for the receivers of different systematic
RLNC schemes in a wireless broadcast network with r1 = r2 = 1 and packet loss probability pe = 0.2.

For the considered systematic scalable RLNC scheme, recall that for decoding over
GF(2) in the proposed scalable RLNC, Equation (9) obtained in Sec. III is a necessary and
sufficient rule while Equation (10), originally adopted in [13,14] for Fulcrum decoding, is a
non-necessary rule. Figure 3 compares the average group completion delay per packet for
10 receivers as well as the average completion delay per packet at a single receiver when the
receivers adopt different decoding rules (9) and (10) over GF(2). For the average completion
delay at a single receiver, a noticeable performance gain can be observed. In particular,
when the number of original packets is less than 10, the average completion delay at a single
receiver is reduced by more than 20% based on the decoding rule (9) instead of (10). For
the average group completion delay, the performance gain by adopting (9) instead of (10)
becomes less obvious because it is offset by the increasing number of receivers in a group.
Compared with Fulcrum, which only supports decoding over the smallest field GF(2) or
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the largest field GF(22D
), in addition to the performance gain illustrated in Figure 3, our

proposed scalable RLNC is more flexible. This is because the receivers with intermediate
computational power can fully utilize its decoding capability to decode over intermediate
fields (rather than only over GF(2)), so that the average completion delay can be reduced.
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Figure 3. The average group completion delay per packet for 10 receivers as well as the average
completion delay per packet at a single receiver when the receivers adopt different decoding rules (9)
and (10) over GF(2).

In the remaining part of this section, we shall analyze the performance of our scalable
RLNC scheme by adjusting the sparsity 0 < Ph < 1 of h, which controls to the probability
for every component in h to be one. Specifically, for every packet to be transmitted by
the source, the expected number of precoded packets to form it is Ph(n + r). In previous
analysis of this section, Ph is set to 1/2. We next consider a more sparse h with Ph ≤ 1/2.

According to the work in [20], given that there are (i− 1) (n + r)-dimensional linearly
independent binary vectors with sparsity Ph, the probability that a new randomly generated
(n + r)-dimensional binary coding vector hi with sparsity Ph is linearly independent with
them is lower bounded by

1− (1− Ph)
n+r−i. (16)

This bound indicates that except for the case i close to (n + r), the lower bound keeps
very close to 1. Further, at the end of Sec. IV, we have illustrated that a random G will bring
a near-optimal decodability behavior, that is, the full rank of H will lead to the full rank
of GH with high probability. As a result, although our proposed scalable RLNC scheme
with two-stage encoding process is different from the conventional sparse RLNC described
in [20], we are motivated to bring the sparsity into our proposed scheme and attempt to
meet a balance between completion delay and decoding complexity. The work in [14] has
taken the sparsity into consideration in their performance analysis of Fulcrum, which is a
special instance of our proposed scalable RLNC scheme.

In simulation, besides the consideration of sparsity Ph, we also extend the value range
of n from [6, 24] to [8, 64] and set r1 = r2 = 2. All other parameter settings are same as those
in Figure 2. The 3 solid curves in Figure 4 illustrate the average group completion delay
per packet for the 3 groups of 10 receivers under different field constraints GF(2), GF(22)
and GF(24) for scalable RLNC with sparsity Ph = 1/2. The 3 dotted curves in Figure 4
illustrate the completion delay performance under different field constraints GF(2), GF(22)
and GF(24) for scalable RLNC with Ph = 1/4. It is interesting to observe that with the batch
size n increasing, under the same decoding constraint (i.e., two curves in the same color),
the completion delay performance for the case Ph = 1/4 will converge to the case Ph = 1/2.
This result indicates that the lower bound in (16) is rather loose when i is close to n + r,
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and moreover, for a large enough batch size n, a more sparse vector h will not affect the
completion delay performance much in a wireless broadcast network.
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Figure 4. The average group completion delay per packet for scalable RLNC with different sparsity Ph.

6. Conclusions

In this work, the proposed scalable RLNC framework based on embedded fields
aims at endowing heterogeneous receivers with different decoding capabilities in complex
network environments. In this framework, we derive a general decodability condition
by the arithmetic compatibility of embedded fields. Moreover, we theoretically study the
specific construction of an optimal precoding matrix G and illustrate the rationality of the
near-optimal behavior of a randomly generated G.

In numerical analysis, we demonstrate that the proposed scalable RLNC not only
guarantees a better decoding compatibility compared with classical RLNC, but also pro-
vides a better decoding performance over GF(2) in terms of smaller average completion
delay compared with Fulcrum. In addition, the numerical analysis also demonstrates that
for a large enough batch size, the sparsity of the vector h does not affect the completion
delay performance much. As a potential future work, the theoretical insight behind this
observation deserves a further investigation so as to facilitate the design of a scalable RLNC
scheme with a better tradeoff between decoding complexity and completion delay.

Last, the present scalable RLNC framework assumes block-based coding. It would
also be interesting to make use of the embedded fields structure to generalize the design of
sliding window-based random linear coding schemes such as the ones studied in [21–23].
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