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Abstract: Venture capital (VC) is a form of private equity financing provided by VC institutions to
startups with high growth potential due to innovative technology or novel business models but
also high risks. To against uncertainties and benefit from mutual complementarity and sharing
resources and information, making joint-investments with other VC institutions on the same startup
are pervasive, which forms an ever-growing complex syndication network. Attaining objective
classifications of VC institutions and revealing the latent structure of joint-investment behaviors
between them can deepen our understanding of the VC industry and boost the healthy development
of the market and economy. In this work, we devise an iterative Loubar method based on the Lorenz
curve to make objective classification of VC institutions automatically, which does not require setting
arbitrary thresholds and the number of categories. We further reveal distinct investment behaviors
across categories, where the top-ranked group enters more industries and investment stages with
a better performance. Through network embedding of joint investment relations, we unveil the
existence of possible territories of top-ranked VC institutions, and the hidden structure of relations
between VC institutions.

Keywords: syndication network; venture capital; network embedding; investment behaviors;
objective classification

1. Introduction

Venture capital (VC) is typically defined as the investment made by professional in-
stitutions in unquoted startup companies with long-term financial growth potential, high
risks but also possible enormous returns [1]. Over the past 30 years, VC has been an impor-
tant financing source for early-stage and emerging companies with innovative technology
or business models. Besides financial support, VC institutions can also provide a startup or
young business with valuable sources of guidance, consultation, and bring tremendous
benefits by tapping into domestic business communities via knowledge spillover effect [2].
China now receives over 40 percent of global VC investments [3], and more and more
Chinese startups and urban economies are benefiting from VC investments [4,5]. A variety
of VC-backed companies, such as Tencent, Alibaba, and Baidu, have had a huge influence
on China and the worldwide economy.

Making joint-investments with other VC institutions, which forms an ever growing
syndication network with complex structure, is a good way to share information [6],
resources [7] and benefit from mutual complementarity [8], diversity [9,10] to against
uncertainties [11–14].

VC institutions are bounded by their current and past syndication, i.e., joint invest-
ments with others. Besides identifying leading VC institutions, the syndication network
of VC institutions can be used to predict the alliance’s exit [15], quantify the social capital,
evaluate the reputation of VC institutions [16], and predict the portfolio failure rate [17].
Unveiling the latent structure of VC syndication networks and investment behaviors is
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crucial for deepening our understanding of the VC industry and boosting the healthy
development of the market and economy. However, VC syndication network encodes
nodal interactions but neglects other investment behavior information, such as the number
of IPO (Initial Public Offering), M&A (Merge and Acquisition), and the number of invest-
ments, and hidden richer higher-order structure should be better revealed, all of which are
important for VC analysis.

Previous studies indicate that there is a leader-follower phenomenon in the Chinese
VC market, for example, a few leading VC institutions have better access to high-quality
startups and they usually set up investment plans, while other VC institutions have a
higher tendency to follow [18,19]. When young inexperienced VC institutions make joint
investments with leading VC institutions of great reputation, they would have a smaller
chance to renege or shirk [20], and usually can gain a better position for competition by
building a word-of-mouth reputation connections [20,21]. And leading VC institutions also
can act as bridges for resources and investment skills exchange, as they are usually hub
nodes in the syndication network [19]. The ecosystem of VC market is way more compli-
cated than a leader-follower structure, but most previous studies only focus on identifying
leading VC institutions [22–24], and they usually do not have an objective criterion for
identifying other groups of VC institutions. For example, Batjargal et al. [22] analyzed em-
pirical data to reveal investment patterns associated with leading VC institutions. Huang
et al. [23] found the triadic closure probability is higher if a leading VC institution is in
it. Yet, the above works only used the terminology of “leading VC institutions”, but the
classification is determined according to subjective criteria or practical experience from
VC practitioners. Recently, a few works are dedicated to identifying leading VC institu-
tions from joint-investment networks. The task is then equivalent to determine the most
influential nodes via various centrality measurements in complex network analysis [25–29].
Yang et al. [24] employed a weighted k-means algorithm to identify leading VC institutions
based on various centrality measurements. With the aid of graph convolutional deep
learning model, Gu et al. [30] discovered that the attention matrix can be applied to rank
VC institutions. However, most related works are based merely on network centrality
measurements or partial nodal interactions, and these works pay more attention to leading
VC institutions but do not make a classification of remaining institutions. Besides, they also
neglect the richer higher-order structure and other investment behavior information such
as IPO, M&A, and investment frequency, which hinders gaining a more comprehensive
understanding of the VC market. To the best of our knowledge, few works are focusing on
the objective classification of VC institutions and further ranking of obtained groups.

Starting a new VC institution is an activity that entails a high level of risk, both
success, and failure cases are valuable. Failure is also an important characteristic of the
entrepreneurial reality though it is also been viewed from a negative perspective [31]. In
this paper, we propose an iterative Loubar method [32–34] based on Lorenz curve [35] to
make objective classification of successful as well as unsuccessful VC institutions based
on their principled features, which do not require setting arbitrary thresholds to separate
different categories and the number of categories can be automatically determined. The
features fed to our method include the number of IPO (Initial Public Offering)&MA (Merge
and Acquisition) and the number of investments of VC institutions, which are important
indicators of investment performance [12].

The systematical differences between positions in the VC syndication network and
investment behaviors among VC institutions in each category prove the validity and
practicability of our method. VC institutions in top-ranked categories generally enter more
industries and get involved in more investment stages, have a higher network centrality,
and have better investment performance. In addition, through the network embedding
techniques [36], we unveil a latent structure of different categories of VC institutions, where
top-ranked VC institutions have their territories. Our study can benefit on developing
better investment strategies and portfolio optimization.
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2. Data Preprocessing

In this paper, we conduct the study based on the SiMuTong database that records
detailed information about each investment, including the VC institution that made the
investment, the startup company that got invested, investment date, investment amount,
currency, share, investment stage, and some basic information about the startup, for
example, its industry and the location of its headquarter. We remove investment records
without information about the investor or startup. And, for better consistency, we map
the industry type of startup companies provided by Simutong to the ones in the Industrial
Classification for National Economic Activities of China (ICNEAC). In addition, we convert
the investment amount that was in foreign currency into RMB.

In the western world, the VC industry emerged in 1946 and experienced its first
boom and bust cycle from 1982 to 1993 [12]. While in China, VC is still a relatively newly
emergent industry (see Figure 1a). Before the 1990s, China received few VC investments.
After 2000, The size of the annual investment amount and the number of investment
activities underwent a rapid increase, and they both manifest a roughly five-year cycle
(see Figure 1a). From 2014 to 2017, there was a spur of VC institutions that around four
thousand new VC institutions entered the market (see Figure 1b), which further indicates
the urgency of developing a quantitative science of VC institutions.

(a)             (b)

Figure 1. Basic statistics of VC investment activities in China: (a) The number of investments and the
number of startups got invested in each year; (b) The number of new VC institutions that enter the
Chinese market each year.

3. Iterative Loubar Algorithm for Objective Classification

In the VC literature, traditional ranking algorithms use either the Delphi method
based on interviews with practitioners, which are usually limited on the sampling size
and influenced by subjective experience, or the network-based centrality measures, which
neglect higher-order structure. For example, for the Delphi method, the number of experts
got interviewed is usually quite small, and it lacks an objective evaluation criterion and
a clear conflict reconciling mechanism when two or more interviewed experts do not
come to a consensus on the same question. Besides, both the Delphi and the centrality-
based methods pay disproportionately more attention to leading VC institutions rather
than underperforming ones, and they are unable to give an objective classification of VC
institutions. In this paper, we devise an iterative Loubar method without setting arbitrary
thresholds and the number of categories, both of which can be automatically determined.

The input evaluation indicators of VC institutions fed to the algorithm are the number
of investments and the number of IPO&MA. VC institutions that can make a large number
of investments usually have substantial funds, which is a manifestation of good financial
condition and great social capital; while the number of investments exited through IPO
and M&A is the most successful way of exit for VC institutions [12].

Our iterative Loubar method works as follows: First, ascendingly ordering all VC
institutions according to their number of investment deals, accumulate their values on the
vertical axis, and normalize both axes by the corresponding maximum (i.e., normalize the
data by the cumulative number of investments for the vertical axis, and the number of
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VC institutions for the horizontal axis). This curve is also named the Lorenz curve [32]
(see the lightest blue curve in Figure 2a). Then take the derivative of the Lorenz curve at
(1, 1) and extrapolate it to the point at which it intersects the horizontal axis, which gives
us an objective threshold to separate the first level of VC institutions from others on this
indicator. All VC institutions above this threshold will be classified as temporary level 1
on this indicator. The same process is repeated on the other indicator, here, the indicator
is the number of IPO&MA (see Figure 2b), which will also classify some VC institutions
into level 1 on this indicator. Eventually, only the VC institutions in both level 1 on the two
indicators can be classified as the first category (named “first-tier”, see Figure 2c).
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Figure 2. The illustration of our iterative Loubar method on classifying VC institutions: The partition
based on (a) the number of investments, (b) the number of IPO and M&A. (c) the classification results
are based on the number of investment deals and the number of IPO and M&A. The digit in the
parentheses indicates the size of the category. The color of the symbols indicates the density of data
points, a darker color corresponds to a higher density.

We then exclude VC institutions in first-tier from the Lorenz curve and re-normalize the
remaining curve to repeat the previous process for both indicators to obtain VC institutions
in level 2 (we name the second category as “second-tier”, see orange hexagon in Figure 2c),
which would have the ones in both level 2 on the two indicators and the ones in level 1
on one indicator and in level 2 on the other indicator. If necessary, we can make three
subdivisions for the second category. The algorithm goes on until no VC institution is
left (see Figure 2a,b), and here we obtain five categories (see Figure 2c), which are also
in meaningful ranking from first-tier to fifth-tier as we will illustrate later. By contrast,
ordinary clustering methods cannot make ranking for obtained clusters. The Lorenz
curves are depicted in progressively transparent shades of blue (from light to dark ones,
corresponding to level 1 to level 5 in Figure 2a,b), and the corresponding derivatives at
(1, 1) from light red to dark red. Our method can be easily extended to situations with
more input indicators. More details and discussions of the iterative Loubar algorithm can
be found in Appendix A.

We eventually classified firms into five categories. Those leading VC institutions in
the first category are labeled as “first-tier”, the ones in the following are categorized as
“second-tier”, “third-tier”, “forth-tier”, and “fifth-tier”, respectively (see Figure 2c). The
VC institutions classified into the first category (e.g., Starter Story, Statista, Sequoia Capital
China, and China Growth Capital) by our method are in accordance with authority ranking
reports, which rank VC institutions based on their capability in earning money, reputation,
investment frequency and so on [37]. Compared to the first category, the ones in the second
category (orange hexagon in Figure 2c) have fewer investments or IPO and M&A. This
group also contains VC institutions with a large number of investments (in level 1 on
this indicator) but fewer IPO and M&A (level 2 on the other indicator), and vice versa.
The majority of VC institutions in the fifth category (“fifth-tier”, see purple hexagons in
Figure 2c) have only a few investments and IPO and M&A exits, but there are some VC
institutions that make a large number of investments but end up with quite a few successful
exits, which generally have a worse investment performance and much less successful.
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4. Investment Behaviors and Performance Analysis

We make further investigations on VC institutions of each category and discover that
they have quite different investment behaviors. We first analyze the number of investment
deals, IPO and M&A, investment stage, and investment industries for VC institutions in
each category. During different investment stages, which consist of seed, initial, expansion,
and maturity, startup companies need different resources or guidance from VC institutions.
Thus the number of stages that a VC institution got involved in can reflect their ability
on the whole investment cycle. While the number of industries that a VC enters is also a
manifestation of their knowledge in various fields and the size of funding. As shown in
Figure 3, VC institutions in the first category not only enter a wider range of industries but
are also involved in more investment stages. There is a clear decrease in such indicators for
VC institutions from the fi.
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Figure 3. Comparisons between VC institutions from different categories on the number of (a) indus-
try, and (b) investment stages that they involved.

We then evaluate the success rate of VC institutions from different categories by divid-
ing the number of IPO&MA by the total number of invested startups. As shown in Figure 4a,
the IPO and M&A rate of VC institutions from the first category is even lower than the ones
from second- to forth-tier. This is counter-intuitive since many VC ranking systems give
higher ranks to VC institutions based on their high IPO rates [37,38]. Some evidence also
suggests that leading VC institutions have a larger fraction of investments that exit through
an IPO or M&A [39]. To better investigate the investment performance, we propose a new in-
dicator named hawk eye index (HEI), which is defined as the amount of money invested into
the startups that exit through IPO divided by the total amount of money of all investments. It
is formulated as follows: HEI = (AmtIPO/AmtTotal)/(#investmentsIPO/#investmentsTotal).
As shown in Figure 4b, the median HEI of VC institutions in the first category ranks first
and decreases over the remaining four tiers in order. A higher HEI indicates that the VC
institution might try out for a larger number of investments, but have a better ability to
allocate more resources on deals that are of greater potential and eventually successful.

In addition, VC institutions play an important role in the development of the economy,
their survival rate and sustainable development are closely related to economic growth.
Here, the survival rate is defined as the proportion of VC institutions that have yet to
continue to invest after t years after their first investment. We calculate the survival rate
of VC institutions from different categories obtained by our iterative Loubar classification
method. We find that the longevity curves rank in decreasing order in accordance with
ordered categories by our iterative Loubar classification algorithm that VC institutions
from the first-tier have the highest survival rate and the fifth-tiers have the lowest (see
Figure 5). Based on statistical analysis, Govindarajan et al. discovered that nearly 40%
of companies cannot survive within the first 5 years [40], which is just an average for the
whole market, but the whole system can be quite heterogeneous. From Figure 5, we can
observe that over 95% of first-tier VC institutions can survive over 5 years, while more
than 90% of fifth-tier VC institutions died in 5 years after their first investment. The variety
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of survival rates might be caused by the heterogeneity of VC institutions. The longevity
survival curves, which rank in decreasing order for first-tier to fifth-tier VC institutions,
also confirm the effectiveness of our iterative Loubar classification algorithm.
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Figure 4. Comparisons between VC institutions from different categories on (a) the success rate,
which is measured by the fraction of invested startups that exit through IPO or M&A, and (b) the
hawk eye index (HEI). Note that the first-tier category has a low median success rate but the highest
median HEI, which indicates that they tend to invest more money on eventually successful startups
out of a large number of alternative choices.
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Figure 5. Comparisons between VC institutions from five categories on the survival rate.

Syndication between VC institutions is a common investment strategy to share re-
sources, access to better deal flows, reduce risks as well as complement skills [12]. In this
paper, we analyze the difference in syndication behaviours of VC institutions from different
categories. We first compute the number of joint investments Wab between VC institutions
from categories a and b, and we then calculate the total number of joint-investments of
each category Wa = ∑b Wab. Then the syndication tendency from category a to b can be
represented as Wab/Wa, which indicates that each row is subject to normalization, and it is
worth noting that the matrix of Wab/Wa is asymmetric (see Figure 6).

From Figure 6, we can clearly observe that the VC institutions from the first-tier
category syndicate more frequently with VC institutions from the same group than with VC
institutions from other groups, which indicates a rich-club phenomenon. VC institutions
in other categories except for the ones from the fifth-tier category also have the highest
tendency to make joint investments with VC institutions from the first-tier category, which
are indicated by darker color in the first column of Figure 6. VC institutions in the fifth-tier
category, most of which are new entrants, have the strongest tendency to syndicate within its
category. This might suggest that resources, better deal flows, and even information is more
concentrated in those VC institutions from the first-tier category, and most VC institutions
would like to mingle, but certain barriers exist. It is worth noting that VC institutions
in every category have the lowest syndication tendency with VC institutions from the
forth-tier category (see the fourth column in Figure 6), in comparison, the syndication
tendency with VC institutions from the fifth-tier category is even much larger (see the fifth
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column in Figure 6), which is roughly at least twice higher than with the forth-tier category.
These new VC institutions from the fifth-tier category might be more attractive to other VC
institutions to collaborate with, but the forth-tier category might already pass such a new
entrance phase and has less potential or resources to revive.

first
-tier

second-tier
third-tier

forth-tier
fifth

-tier

first-tier

second-tier

third-tier

forth-tier

fifth-tier

0.16 0.15 0.076 0.045 0.57

0.33 0.26 0.14 0.06 0.22

0.42 0.3 0.11 0.059 0.11

0.48 0.28 0.12 0.048 0.073

0.52 0.26 0.11 0.026 0.086 0.1

0.2

0.3

0.4

0.5

Figure 6. Syndication probability Wab/Wa of VC institutions from different categories. The first-
tier group and the fifth-tier group have the highest tendency to make joint-investment with VC
institutions within the same category. Each row is subject to normalization, but each column is not
subject to normalization.

The syndication patterns can be better revealed through a complex network perspec-
tive. If two VC institutions make a joint investment, then we connect these two nodes
in the network. We further compare the structural differences of VC institutions from
different groups via computing the degree centrality, closeness centrality [41], and k-core
centrality [42]. Degree centrality measures the number of edges that a VC institution has in
the joint-investment network. With more ties, a VC institution usually has more investment
opportunities and better deal flows [12]. Closeness measures its average distance to all
other nodes that VC institutions with a high closeness centrality are averagely closer to
other nodes [43]. The coreness (also referred to k-core) is a more sophisticated centrality
measure, which can be obtained by iteratively removing vertices with a degree less than
k [42] or by iterating the H-index operator [44]. The core-periphery structure indicates a
higher-order organization in the VC syndication network. VC with a high k-core value
is generally in a more central position with a stronger influence in the network [42]. We
find that the VC institutions from different categories are of typically different values,
and the first-tier category are more central than VC institutions from other categories (see
Figure 7). From first-tier to fifth-tier VC institutions, there is a clear decreasing trend on
all these network indicators, which also confirms the effectiveness of ranking for groups
obtained by our iterative Loubar method. We further validate the quality of classification
by our algorithm by comparing the structural differences with the algorithm proposed
by Yang et al. [24], which uses a weighted k-means method to identify leading VC insti-
tutions and classify VC institutions into different groups. Recent evidence indicates that
weighted k-means is a pretty good clustering algorithm for grouping VC institutions when
compared with other clustering methods [24], and thus in this paper, we compare our
classification results with the weighted k-means clustering algorithm. We discover that
groups identified by the weighted k-means algorithm have no significant difference on all
three network centrality indicators (see Figure 8). Since network centrality measurements
are classical ways of quantifying how important a VC institution is, our algorithm has a
better classification performance.
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Figure 7. The difference between VC institutions of five categories identified by our iterative Loubar
algorithm on three network centrality indicators: (a) degree; (b) closeness; and (c) k-core.
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Figure 8. The difference between VC institutions of five categories identified by the weighted k-
means algorithm [24], which cannot rank obtained clusters, on three network centrality indicators:
(a) degree; (b) closeness; and (c) k-core. Note the α, β, γ, . . . only denote different groups but not
the rank.

5. Latent Structure of Joint-Investment Behaviors

To further investigate the phenomena observed above, we exploit network embedding
algorithms to better unveil the latent structure of VC institutions in the Chinese VC market.
Our embedding method builds upon the DeepWalk architecture [45], which is a direct
adaptation of the word2vec [46] model in the context of graphs. Random walk sequences
on the syndication network, which are considered as “sentences” in the natural language
processing, are fed to the SkipGram model [46] to obtain real-value vector representations
for each VC institution. If two VC institutions are of a closer relationship in the syndication
network, then they have a close relationship in the embedded metric space. The vector
representation can be easily integrated into other computational models to make accurate
predictions on joint investment behaviors and to cluster similar VC institutions. Since
the embedding vectors of syndication also encode the complex network structure in the
investment space, they can also help us have a better view of the evolution of the Chinese
VC industry.

In this work, to get their vector representations, based on the accumulative joint-
investment networks, we embed VC institutions into a 100-dimensional metric space,
which is suggested by the recent advance on determining an appropriate embedding
dimension [47]. To visualize the embedding vector, we use t-SNE [48] to project the high-
dimensional vector representation into two dimensions. We visualize the syndication
evolution process in Figure 9 and we can tell that there are only a few VC institutions that
have joint investments before 2000. Compared with the VC institutions from other cate-
gories, first-tier and second-tier VC institutions entered the Chinese market at a relatively
earlier time (see Figure 9a). But some first-movers might be less successful and fall into
lower-ranked categories (see Figure 9a). In 2003, many first-tier VC institutions already take
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the central position (see Figure 9b), which indicates that their investments play a key role in
the Chinese VC industry. The syndication around first-tier and second-tier VC institutions
began forming densely connected communities. VC institutions with fewer syndication
events are located far from the majority (See Figure 9b–d), among which we notice several
first-tier VC institutions that entered the investment market for the first time. These VC
institutions are sort of rising stars that started from the fringe of the network but ended
up as a superstar with a central position. They gain good opportunities to syndicate with
second-tier and first-tier VC institutions and gradually move to the densely connected elite
community (see Figure 9c,d). It is worth noting that there are two separate groups in the
Chinese market, one of which is mainly consisted of VC institutions from the forth-tier and
fifth-tier categories, which are in accordance with the results presented in Figure 6. The
fifth-tier group has a densely connected structure among them, so they might have limited
opportunities to source high-quality deal flow (i.e., select promising startup companies)
and to nurture investments (i.e., add value to portfolio companies) [12].

first-tier 
second-tier
third-tier
forth-tier
fifth-tier

first-tier
second-tier
third-tier
forth-tier
fifth-tier

second-tier
third-tier
forth-tier 
fifth-tier

first-tier
second-tier  
third-tier
forth-tier
fifth-tier

(a) (b)

(c)   first-tier (d)

Figure 9. The two-dimensional projection of the cumulative syndication networks obtained by t-SNE
algorithm in the year (a) 1998, (b) 2003, (c) 2008, and (d) 2011. Each node represents a VC institution
with node color indicating the classification category obtained by our iterative Loubar method, and
the gray line signifies the syndication relation between VC institutions.

Network embedding not only encodes the syndication relationship between VC insti-
tutions but also provides a natural explanation for the architecture of real complex networks
with a latent metric space. We measure the geometric properties of VC institutions by
quantifying the number of nodes within a certain distance R.

As shown in Figure 10a, the average number of VC institutions that are in the vicinity
of a first-tier VC institution varies significantly across categories. VC institutions in the
first-tier category are more central as the average number in their vicinity grows faster
when R is larger. We discover that there is a plateau for a first-tier VC institution to
encounter other first-tier ones when R is around 1.2 to 1.5, that there is no clear significant
increase. This suggests the existence of possible territories of first-tier VC institutions
that generally a few of them would dominate a certain range, where no more other first-
tier institutions can be encountered. We then set R = 1.35, which resides in the plateau
phase, and we find that first-tier VC institutions are surrounded by many fifth-tier VC
institutions (indicated by a large fraction of entities in the fifth category, see the first value
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of the purple line in Figure 10b), while first-tier VC institutions themselves seem to avoid
each other, which is indicated by a near-zero fraction. While fifth-tiers are either closer
to first-tier VC institutions or closer to each other. When we look at a wider range, e.g.,
R = 2 (see Figure 10c), first-tier VC institutions are still much closer to each other than the
rest. This indicates that the first-tier VC institutions cooperate frequently, but they all have
some smaller VC institutions that are only closer to themselves, which might form their
own territories.
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Figure 10. (a) The average number of VC institutions in the vicinity of a first-tier VC institution. The
horizontal axis is the distance R in the embedded space and the vertical axis is the average number of
VC institutions from different categories in the vicinity of a VC institution. The results are averaged
for all VC institutions from the first-tier category. (b) The average fraction of VC institutions from
different categories encountered in the vicinity with R = 1.35 and (c) R = 2 for VC institutions from
different categories.

6. Conclusions

In this paper, we devise an iterative Loubar algorithm to make an objective classifi-
cation of VC institutions and ranking obtained categories, which does not require setting
arbitrary thresholds and the number of categories and can be easily extended to cases
with more indicators. We discover that the average performances of VC institutions in
identified categories, from the first-tier category to the fifth-iter, on various investment
behaviors indicators, largely follow a descending order, which confirms the validity of our
algorithm. VC institutions from top-ranked first-tier categories generally enter a wider
range of investment industries, involve in more investment stages, as well as have a larger
number of syndication with VC institutions from other categories. The only exception lies
in the success rate, where those VC institutions in the first-tier category are not high, but
we find that they have the highest hawk eye index, which indicates that they might make
many tryouts but are able to allocate more resources into startups with great potential. This
also suggests that the ordinary success rate, which equals the fractions of exits through IPO
and M&A [12], is not a proper indicator to identify leading VC institutions. In addition, we
find that most VC institutions have a stronger syndication tendency than VC institutions
from the first-tier category. The exception is the fifth-tier category, which has a much
stronger tendency to make joint-investment within its category. It is worth noting that VC
institutions from every category have the lowest syndication tendency towards the VC
institutions from the forth-tier category. The latent structure of the syndication network
unveiled by network embedding further confirms our previous findings and suggests the
existence of possible territories of first-tier VC institutions that generally a few of them
would dominate a certain range, which is indicated by the plateau in Figure 10a, where no
more other first-tier institutions can be encountered.

Our algorithm can be easily extended to make finer classifications. For example, in the
second category, there are some VC institutions that have a larger number of investments
that are identified as level 1 on this indicator and level 2 on the IPO&MA indicator (see those
relatively scattered orange hexagons on the bottom-right in Figure 2c), such institutions
might be less successful than those with the number of investments at level 2 but IPO&MA
at level 1 (see those a few concentrated orange hexagons on the top-left in Figure 2c).
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In the future, a closer investigation of the investment strategies of VC institutions
in each category would be critical for developing a quantitative theory on the success
of VC institutions. In this study, we focus our analysis on the Chinese market due to
the limitation of data accessibility, which poses great challenges for making comparative
analyses across countries.
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Appendix A

Appendix A.1. Lorenz Curve

Lorenz curve was first proposed by Max O. Lorenz in 1905 to depict inequality in
wealth distribution in economics. It was then developed by Corrado Gini to quantify
income inequality or wealth inequality within a nation or a social group. The Lorenz curve
is a cumulative distribution showing the proportion of overall income (or wealth) possessed
by the bottom x% of the people [35]. The percentage of households is plotted on the x-axis,
and the percentage of income is plotted on the y-axis. For the Lorenz curve, the steeper the
curvature, the stronger the inequality. Besides measuring inequality in wealth distribution,
Lorenz curve is widely applied to quantify inequality among the size of individuals in
ecology [49] and identifying the hotspots in urban studies [32].

Appendix A.2. Loubar Algorithm

The x-axis of Lorenz curve is the normalized cumulative fraction of entities, and the
y-axis is the normalized cumulative fraction of the sum value of all entities. The area
between the diagonal and the curve corresponds to the standard Gini coefficient. The
ordinary Loubar algorithm classifies objects into different classes based on the tangent line
at (1, 1) of the Lorenz curve. The steeper the slope, the smaller the number of dominant
individuals, which have a large value (e.g., a high income). In order to find the classification
threshold δ, we take the intersection point F∗ (see Figure A1) between the tangent line of
normalized L(F) at point (1, 1) and the horizontal x-axis L = 0 (see Figure A1) [32]. In this
analysis, we extend the method in an iterative way to obtain consecutive VC levels. Once

www.pedata.cn
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VC institutions at level l have been extracted, they are excluded from the distribution, and
the threshold is recalculated to identify VC institutions at level l + 1.
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Figure A1. Illustration of the criteria selection on the Lorenz curve of the Loubar method.

Appendix A.3. Iterative Loubar Classification Algorithm

As for the VC partition task, in order to objectively partition them based on their invest-
ment performance indicators, we devise an iterative nonparametric Loubar method [32–34,50]
based on the derivative of Lorenz curves [35].

We first sort all VC firms ascendingly based on the number of invested start-ups,
we then normalize the x-axis by the total number of VC institutions (see Figure 2a). In
other words, the value n on the x-axis represents the first n percent of VC firms with the
smallest investment numbers. The cumulative value of the investment numbers is the
y-axis (see Figure 2a), which is also in the range of [0, 1] after normalization. We then
draw the tangential line of the cumulative curve at point (1, 1) and divide all VC firms by
the intercept point of the tangential line on the x-axis. VC firms with a larger investment
number than the intercept point are assigned to the first level and then eliminated from the
current set. Then we reapply the procedure on the set of remaining VC firms to obtain the
second level, and so on (see illustration of the algorithm in Figure 2a). We end up with five
levels in total.

Then, we apply the same procedures to the other indicator, the number of IPO and
M&A, similarly, we also obtain four levels. Then VC firms that are in both first levels are
classified as first-tier, which are VC firms with a larger number of invested start-ups and a
larger number of IPO&MA; then, for remaining VC firms that are in the second level or
above for both indicators are classified as second-tier. Second-tier VC firms comprise three
sub-types: the ones in both the second level on the investment numbers and IPO&MA, ones
in the second level on the investment numbers and in the first level on the IPO&MA, and
ones in the first level on the investment number and second level on the IPO&MA. If neces-
sary, second-tier VC firms can be further divided into three sub-categories. Similarly, we can
obtain fourth-tier and fifth-tier VC institutions, where we can have more sub-categories.

Different from other studies that use empirical experience or arbitrary thresholds to
make classification, the applied iterative Loubar method is more objective, with thresholds
derived directly from the data per se.

Appendix A.4. Iterative Loubar Classification Performance for Different Types of Distributions

Lorenz curve was first proposed to measure inequality, and many real-world distri-
butions (e.g., income) are of high heterogeneity, which is also related to other concepts
including dispersion or concentration. Here, we also make some tests on distributions with
different heterogeneity.
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We find that the iterative Loubar algorithm generally works well on heterogeneous
distribution (e.g., scale-free distribution with P(x) ∝ x−α, see Figure A2a), for which the
number of categories and their number of entities are reasonable (see Figure A2c). This
is also the case in this work, as the distribution of the number of invested start-ups and
IPO&MA are all close to scale-free distributions.

We then test the iterative Loubar algorithm on Gaussian distribution (see Figure A2d),
and find that its first category already takes more than half of the population (see Figure A2f),
which mixes individuals with largest values and near the average. And then the number
of entities if the remaining categories decrease fast. Such classification may not be satis-
factory and also indicate the limitation of the iterative Loubar method in dealing with
normal distributions.

We further consider two extremes. One is that every entity is of the same value (see
Figure A2g), then the distribution is highly concentrated (see Figure A2i). In this case, the
Loubar algorithm can correctly divide all the data into one group.

The other one is that each entity has a different value, for example, taking values from
1 to N, respectively, where the distribution is uniform and quite dispersed (see Figure A2j).
From the perspective of clustering, we may cluster each entity into a different category or
classify the whole population as one group as they form a manifold [51]. However, the
iterative Loubar method does not return any of such partitions, due to the fractal nature of
such a distribution, the partition goes in a dichotomy way in that the first category contains
half of the population, and the second category contains one-quarter, and so on Figure A2l).
This is also a situation in the Loubar method may not be appropriate.
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Figure A2. Performing the iterative Loubar method on different distributions of data. (a) A power-law
distribution with its exponent α = 2.65, which is displayed in a log-log fashion. (b) The illustration
of the iterative Loubar method on the power-law distribution shown in (a). (c) The distribution of
the classification results, which shows the number of categories and the number of enetities in each
category, from the power-law distribution by the iterative Loubar method. (d–f) The same as (a–c) but
on a normal distribution with mean equals 0.5 and standard deviation equals 0.1. (g–i) The same as
(a–c) but on a delta distribution, where every entity is of the same value. (j–l) The same as (a–c) but
on a uniform distribution, where all n entities have different values and equals 1 to n, respectively.

Figure A2. Cont.
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Figure A2. Performing the iterative Loubar method on different distributions of data. (a) A power-law
distribution with its exponent α = 2.65, which is displayed in a log-log fashion. (b) The illustration
of the iterative Loubar method on the power-law distribution shown in (a). (c) The distribution of
the classification results, which shows the number of categories and the number of enetities in each
category, from the power-law distribution by the iterative Loubar method. (d–f) The same as (a–c) but
on a normal distribution with mean equals 0.5 and standard deviation equals 0.1. (g–i) The same as
(a–c) but on a delta distribution, where every entity is of the same value. (j–l) The same as (a–c) but
on a uniform distribution, where all n entities have different values and equals 1 to n, respectively.

Figure A2. Performing the iterative Loubar method on different distributions of data. (a) A power-law
distribution with its exponent α = 2.65, which is displayed in a log-log fashion. (b) The illustration
of the iterative Loubar method on the power-law distribution shown in (a). (c) The distribution of
the classification results, which shows the number of categories and the number of enetities in each
category, from the power-law distribution by the iterative Loubar method. (d–f) The same as (a–c) but
on a normal distribution with mean equals 0.5 and standard deviation equals 0.1. (g–i) The same as
(a–c) but on a delta distribution, where every entity is of the same value. (j–l) The same as (a–c) but
on a uniform distribution, where all n entities have different values and equals 1 to n, respectively.
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