
Citation: Zhang, Z. Generalized

Species Richness Indices for Diversity.

Entropy 2022, 24, 1504. https://

doi.org/10.3390/e24101504

Academic Editor: Rainer Klages

Received: 15 September 2022

Accepted: 18 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Generalized Species Richness Indices for Diversity
Zhiyi Zhang

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
zzhang@uncc.edu

Abstract: A generalized notion of species richness is introduced. The generalization embeds the
popular index of species richness on the boundary of a family of diversity indices each of which is
the number of species in the community after a small proportion of individuals belonging to the least
minorities is trimmed. It is established that the generalized species richness indices satisfy a weak
version of the usual axioms for diversity indices, are qualitatively robust against small perturbations in
the underlying distribution, and are collectively complete with respect to all information of diversity.
In addition to a natural plug-in estimator of the generalized species richness, a bias-adjusted estimator
is proposed, and its statistical reliability is gauged via bootstrapping. Finally an ecological example
and supportive simulation results are given.
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1. Introduction

Consider an ecological community with a well-defined set of species X = {`k;
k = 1, · · · , K} and an associated distribution of proportions, also known as species abun-
dances, p = {pk; k = 1, · · · , K}. More generally, X and p may be considered as a countable
alphabet and an associated probability distribution, where K may be a finite integer or
infinite. In this article, the `ks may be interchangeably referred to as letters of an alphabet or
species in a community, and p may be referred to as a species abundance distribution or a
probability distribution. The notion of diversity in a community has been of long standing
research interest. What is diversity and how should it be quantified have been the two
fundamental questions at the center of diversity literature for many decades. A large num-
ber of diversity indices have been proposed in the history, for example, those by Simpson
in [1], Shannon in [2], Rényi in [3] and Tsallis in [4] are among many most commonly used
indices, each of which has been argued to have particular merit. The opinions on diversity
and possible numerical indices to measure it are indeed diverse. There are even doubts in
the general concept of diversity, for example see [5,6]; and there is also a school of thought
which believes that the species richness is the only acceptable diversity index, for example
see [7]. There have also been unifying efforts to define diversity indices to accommodate a
range of such indices, for example see [8–11], among others. Nevertheless when it come
to measuring diversity, there is a lack of agreement for a generally satisfactory univariate
index. The general consensus in the existing literature seems to be that a better description
of diversity should be a multidimensional index set, or a profile. A good introduction to
diversity profiles is offered in [10] where many basic concepts are articulated and many
related references are found.

The departure point of this article is the species richness index, K, the number of
different species in a community. The species richness index is a part of almost every
discussion in the existing literature, and it is so for a good reason. Like the notion of
happiness, diversity is an intuitively clear notion for most, but is difficult to quantify. Does

Entropy 2022, 24, 1504. https://doi.org/10.3390/e24101504 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24101504
https://doi.org/10.3390/e24101504
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1175-1259
https://doi.org/10.3390/e24101504
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24101504?type=check_update&version=2


Entropy 2022, 24, 1504 2 of 22

there exist a universally accepted index (or an index profile) that would please all? The
answer is unknown. If there does, it has not been found. If not, then the objective would
be to find one that would have wider acceptance. Either way, the search should and does
continue. In that regard, the species richness index K is perhaps one of the simplest, the
most direct and most intuitive of all existing diversity indices. It is difficult to dismiss such
an index.

Nevertheless the species richness index has many weaknesses which can be summa-
rized into the following list.

1. It is oblivious to the magnitude of species abundances.
2. It is ultra-sensitive to redistribution of any arbitrarily small proportion.
3. It is difficult to estimate based on a sample.
4. It does not provide an ordering, or a partial ordering, for communities with infinite

number of species.

The first weakness is easily illustrated by a simple example. Consider two distributions
with K = 2, p = {0.5, 0.5} and q = {0.99, 0.01}. The species richness is 2 for both but
it clearly does not capture the intuitive notion of diversity. In the diversity literature
species richness is sometimes considered a separated type of index from those taking
abundances into consideration. This article argues that the separation is not necessary and
a slight change of perspective would embed species richness in a profile that naturally
takes abundances into consideration.

The second weakness is also easily illustrated by a simple example. Consider p = {1−
ε, ε} where ε > 0 is an arbitrarily small value. The species richness of p is K = 2. However
taking the abundance p2 = ε and redistributing it to m new species, k = 2, · · · , m + 1,
evenly, a new distribution q = {q1 = 1− ε, qk = ε/m; k = 2, · · · , m + 1} is created. It is
easily seen first that the species richness of q is K = m + 1, second that m is arbitrarily large
so the species richness of q can be carried over all bounds, and third that the arbitrarily
large difference in species richness between p and q is due to an arbitrarily small difference
between p and q.

The second weakness demonstrated above is not unique to the species richness. Con-
sider Shannon’s entropy, H = ∑K

k=1 pk ln(1/pk). Taking an arbitrarily small quantity ε > 0
(from any pk), re-distributing it evenly to m new species each of which with proportion
ε/m, and hence creating distribution q, it would then add approximately

m

∑
i=1

ε

m
ln

m
ε
= ε ln m− ε ln ε (1)

to H in evaluating entropy of q. (1) may be carried over all bounds as m increases indefi-
nitely.

In fact, this issue of ultra-sensitivity is well-known beyond the boundary of diver-
sity literature. In modern data science where the sample space is large, non-metrized,
non-ordinal, and not completely pre-scribed, statistical inference often relies on infor-
mation theoretical quantities that are sensitive to the probabilities of rare events. Such
information-theoretic quantities are often ultra-sensitive toward small perturbations in the
tail of a distribution.

The third weakness is essentially caused by the second weakness. As demonstrated
above, two distributions, different only in the way that one is an arbitrarily stretched
version of another by an arbitrarily small mass in abundance, can have arbitrarily different
values in species richness. In that regard, in a random sample of size n, the species with
stretched proportions collectively have very small probability to be represented. This makes
it nearly impossible to estimate K with any reliability non-parametrically. Estimating K
with a random sample is a long standing difficult problem in statistics. Interested readers
may refer to two excellent survey papers, ref. [12,13], respectively. More specifically, a
worthy line of approaches based on Turing’s formula may also be of interest, see [14]. See
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also for example, [15–18]. Nevertheless it is fair to say that, not surprisingly, there are no
known generally satisfactory estimators of K.

The fourth weakness is in the generality of the definition. Generally one would prefer
to have a notion of diversity not only for communities with finite K but also for K = ∞. The
species richness does not provide an ordering, or a partial ordering, for all communities
with K = ∞, In fact, it does not provide an ordering or partial ordering communities with a
same K < ∞.

The generalized species richness proposed in this article resolves, or at least alleviates
all these weaknesses. Toward introducing the generalized species richness indices, consider
the second weakness mentioned above once more. Recognizing the fact that an infinitesimal
perturbation in the abundance distribution could greatly impact species richness, one may
ask the following questions.

1. If 100× α%, where α ∈ (0, 1), of the communities belonging to species with the lowest
abundances is trimmed, what would be the species richness of the remaining community?

2. What is the least number of species that can be represented by 100× (1− α)% of
the community?

Let the non-increasing ordered p = {pk; k ≥ 1} be denoted by

p↓ = {p(k); k ≥ 1} (2)

where p(k) ≥ p(k+1) for all k ≥ 1. The answer to both above questions is, for a fixed
α ∈ (0, 1),

Kα = Kα(p↓) = ∑
k≥1

k× 1
[
∑k−1

i=1 p(i) < 1− α ≤ ∑k
i=1 p(i)

]
(3)

= max

{
k :

k

∑
i=1

p(i) < 1− α

}
+ 1 (4)

= min

{
k :

k

∑
i=1

p(i) ≥ 1− α

}
(5)

where 1[·] is the indicator function. For a given α ∈ (0, 1), there is only one non-zero term
in the summation of (3) with an integer value k such that 1− α is sandwiched between
∑k−1

i=1 p(i) exclusive and ∑k
i=1 p(i) inclusive. See a graphic representation of Kα in Figure 1.

Kα is the proposed generalized species richness, and it may also be reasonably referred to
as the α-trimmed species richness. Let

K(p) = {Kα(p); α ∈ (0, 1)} (6)

be referred to as the species richness profile.
Revisiting the example of p = {0.5, 0.5} and q = {0.99, 0.01} mentioned above for

the first weakness of species richness K = K0, with say α = 0.05, it is easily seen that
K0.05(p) = 2 and K0.05(q) = 1. Revisiting the example of p = {1− ε, ε} and its stretched
version q = {q1 = 1− ε, qk = ε/m; k = 2, · · · , m + 1} mentioned above for the second
weakness of species richness K = K0, it is also easy to see that arbitrary stretching of
ε, that is, letting m increase indefinitely, will not carry Kα(q) over all bounds so long as
ε < α. In this regard, it is clear that Kα may be viewed as a robustified version of species
richness. With the influence from arbitrary stretching of an infinitesimal mass in abundance
controlled (but not eliminated), the difficulty level in estimating Kα is considerably reduced
from that in estimating K. Finally the fourth weakness of species richness is eliminated
since Kα is always finite so long as α > 0 for distributions with K < ∞ as well as K = ∞.
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Figure 1. Graphic definition of Kα = k given α.

In Section 2, several properties of the generalized species richness are established. More
specifically, it is established that every member of K in (6) is a diversity index as it satisfies
a weak version of the usual axioms of diversity indices; and a notion of “breakdown point”
is introduced and the robustness of Kα is gauged accordingly. Furthermore, a notion of
“completeness” in profiles is introduced and K of (6), as a profile, is shown to be complete.

To estimate Kα, let an identically and independently distributed (iid) sample of size n be
summarized into sample species frequencies, {Yk; k ≥ 1}, and relative species frequencies,
p̂ = { p̂k = Yk/n; k ≥ 1}; and let p̂↓ = { p̂(k); k ≥ 1} be a non-increasingly ordered p̂. A
natural estimator of Kα is (3), (4) or (5), with p̂(i) in place of p(i), that is,

K̂α = Kα(p̂↓) = ∑
k≥1

k× 1[∑k−1
i=1 p̂(i) < 1− α ≤ ∑k

i=1 p̂(i)]

= max

{
k :

k

∑
i=1

p̂(i) < 1− α

}
+ 1 = min

{
k :

k

∑
i=1

p̂(i) ≥ 1− α

}
, (7)

specifically noting that K̂α is based on the same functional Kα(·) in (3) but evaluated at
the empirical distribution p̂↓ instead of p↓. It is easy to see that (7) is simply counting the
number of species in the sample after 100× α% of the observations in the sample with the
lowest (observed) species relative frequencies trimmed. K̂α in (7) will be referred to as the
plug-in estimator of Kα in subsequent text.

However K̂α significantly under-estimates Kα due to a well-known phenomenon—a
perpetual under representation of small probability letters in a finite sample. This phe-
nomenon was perhaps first explicitly identified by Alan Turing during World War II in an ef-
fort to break the German naval enigmas, and is referred to as the Turing phenomenon in the
subsequent text. The core of the Turing phenomenon is the total probability associated with
letters of the alphabet that are not represented in a sample, that is, π0 = ∑k≥1 pk1[Yk = 0],
also sometimes known as the “missing probability”. In non-parametric estimation of
information-theoretic quantities, small probability letters often carry much information
and the fact many (possibly infinitely many) of them are missing in a sample often causes
a significant downward bias. For example, in view of ∑k≥1 wk pk = 1 where wk = 1
and pk > 0, Shannon’s entropy H = ∑k≥1(ln(1/pk))pk is an weighted average of {pk}
with wk = ln(1/pk). For another example, the species richness K = ∑k≥1(1/pk)pk is a
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weighted average of {pk} with wk = 1/pk. In both cases, the small probability events
get heavy weights and therefore under-representation of them in a sample translates to
under-estimation. In comparison of the two examples mentioned above, the Turing phe-
nomenon has a much more profound impact on estimation of K than H in the sense that
(ln(1/p))p → 0 and (1/p)p → 1 as p → 0. Having realized the difficulty in estimating
such quantities, it would seem reasonable to device mechanisms, either by modifying
the estimands (provided that the modified estimands remain relevant) or the assumption
on the underlying distribution, to control the behavior of corresponding estimators. For
example, ref. [19,20] discuss certain optimal rates of convergence for a class of estimators
of entropy and community size under certain condition to prevent pk from being arbitrarily
small, in turn to control the behavior of the estimators. This article however seeks such
controls by means of α-trimming, both in the estimand, Kα, as well as in its estimator, K̂α,
specifically with regard to the notion of species richness.

On the other hand, K̂α in (7) may be improved by means of bias correction. There
are many possible ways to correct the bias. For simplicity, an estimator based on the basic
bootstrap method is proposed as in (14) of Section 3. In the same section, the statistical
properties of both Kα(p̂↓) of (7) and Kα(p̂

]
↓) of (14) are discussed. More specifically several

asymptotic properties of partial sums of p̂↓ are given. Based on these asymptotic results,
several conservative one-sample and two-samples inferential procedures regarding the
underlying generalized species richness are proposed and justified. Several simulation
results are also reported in gauging the performance of the estimators. Finally an real life
ecological data set is used to illustrate the proposed method.

The article ends with an appendix where many lemmas, corollaries and propositions,
along with their proofs, are found.

2. Properties of Generalized Species Richness Indices

Diversity as an intuitive notion is quite clear in most minds. However the quantifi-
cation of diversity is still quite a distance away from a point of universal consensus. In
the diversity literature it is commonly accepted that an index may be reasonably referred
to as a diversity index if it satisfies several axioms. For notation convenience, let PK be
the family of all distributions such that K = ∑k≥1 1[pk > 0], that is, on a community with
K species (or a finite alphabet with cardinality K), and let P be the family of all possible
distributions on a general countable community. It follows that P = ∪∞

K=1PK. Let D(p)
be a functional defined for every p ∈P . The essential axioms of diversity indices include:

A1: A diversity index D(p) is invariant under any permutation of species labels, that is,
any permutation on the index set {k; k ≥ 1}.

A2: A diversity index D(p) is minimized at p = {p(1) = 1, p(k) = 0; k ≥ 2}.
A3: A diversity index D(p) is maximized at p = {p(k) = 1/K; k = 1, · · · , K}, the uniform

distribution in PK for every positive integer K.
A4: For any distribution p, let p∗ be the associated distribution of p resulted from a

transfer of a mass δ > 0 from a higher pi to a lower pj subject to δ ≤ pi − pj, with all
other pks remain unchanged. A diversity index D(p) satisfies D(p) ≤ D(p∗).

The list of axioms may grow longer representing a more stringent imposition on the
underlying diversity indices. There are also stronger versions of the axioms. For example,
A2 as stated is a weaker version of one that requires the index D(p) to be minimized only
at p = {p(1) = 1, p(k) = 0; k ≥ 2} but not at any other distributions. Similarly A3 as stated
above also has a stronger version which requires the index D(p) to be maximized only
at p = {p(k) = 1/K; k = 1, · · · , K} but not at any other distributions. Axiom A4 also has
a stronger version which requires a strict inequality, that is, D(p) < D(p∗). The weaker
axioms are chosen in this article because species richness K, the reference index of the
discussion, satisfies them.

Regardless the length or the version of the axioms, Axiom A1 is the most essential
of them all and is universally accepted. It is important to recognize the implication of
A1—every diversity index is a functional of p only through p↓. Consequently the domain of
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all diversity indices can be represented by the subset of P that contains only distributions
in non-increasing order, denoted as P↓.

For a given α ∈ (0, 1), it is clear Kα satisfies A1, A2 and A3. The fact that Kα satisfies
A4 is true but is not so obviously. This fact is one of the main results of this article and
is summarized in Proposition A1 along with a lengthy proof, both of which are given in
Appendix A. The fact that Kα satisfies all axioms A1 through A4 suggests that it may be
reasonably regarded as a diversity index.

To quantify the robustness of the generalized species richness indices against dis-
turbances due to re-distributions of a small abundance (or probability) mass, a notion of
breakdown point may be introduced. Breakdown point, roughly speaking, is the greatest
proportion of data, whose worst behavior may not carry a function of the data over all
bounds. To be more precise, let p ∈ P be an abundance distribution, let ε ∈ (0, 1) be an
arbitrarily small value, and let ε1 = {ε1,k; k ≥ 1} and ε2 = {ε2,k; k ≥ 1} be two non-negative
sequences, each of which is with total mass of ε > 0, that is, ∑k≥1 ε1,k = ∑k≥1 ε2,k = ε. Let

pε = p− ε1 + ε2 (8)

represent a perturbation by subtracting a mass ε away from p by means of ε1 and adding
back the same mass by means of ε2.

Definition 1. Let D(p) be any non-negative function of p ∈P . The breakdown point of D at p is

Bp(D) = sup

{
ε : sup

ε1,ε2

D(pε) < ∞

}
. (9)

Obviously 0 ≤ Bp(D) ≤ 1. A higher value of Bp(D) is regarded as an indication that
D is more robust at p.

Definition 2. Let Bp(D) be as in Definition 1. Let P0 be a sub-family of P . For any given
α ∈ (0, 1], if Bp(D) ≥ α for every p ∈P0, then D(p) is said to be 100× α% robust with respect
to P0. In particular, if Bp(D) ≥ α for every p ∈P , then D(p) is said to be 100× α% robust.

Example 1. The species richness, K, is 0%-robust. This is so because supε K((1− ε)p + ε) = ∞
for any p ∈P and any small ε > 0.

Example 2. The generalized species richness, Kα, is 100× α%-robust. This claim is one of the
main results of this article and is summarized in Proposition A2. Both the proposition and its proof
are given in Appendix A.

In passing, it may also be of interest to evaluate the robustness of two other community
diversity indices, Shannon’s entropy H = −∑k≥1 pk ln pk and the Gini-Simpson index
D = 1−∑k≥1 p2

k .

Example 3. Shannon’s entropy is 0%-robust. To see this, for a given p, let ε > 0 be an arbitrarily
small value and let a total mass of ε > 0 cumulatively trimmed from the right end in p↓ =
{p(1), p(2), · · · }, that is, using the language of Definition 1,

ε1 = {0, · · · , 0, εKε , p(Kε+1), p(Kε+2), · · · }

which has zeros in the first Kε − 1 positions and εKε = ε − ∑∞
i=Kε+1 p(i) in the Kε th position.

In such a construction, the remainder of the mass of 1 − ε covers Kε species, and p↓ − ε1 =

{p(1), · · · , p(Kε−1), ∑Kε
i=1 p(i) − ε, 0, 0, · · · }. Redistributing the mass ε > 0 uniformly over
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m indices from i = Kε + 1 to i = Kε + m with mass ε/m, resulting in p↓ − ε1 + ε2 =

{p(1), · · · , p(Kε−1), ∑Kε
i=1 p(i) − ε, ε/m, · · · , ε/m, 0, · · · }. It follows that, as m→ ∞,

H(p↓ − ε1 + ε2) ≥ ln(m/ε)→ ∞.

Example 4. The Gini-Simpson index is 100%-robust. This is clearly true because 0 < D(p) ≤ 1
for any abundance distribution p ∈P .

A diversity profile is a set of diversity indices containing more than one index. A
profile is generally preferred over a single diversity index because it is commonly accepted
that diversity is a multi-dimensional notion and is better captured by a multivariate index.
An immediate question naturally arises: how much diversity information is contained
in a profile? This question can be partially answered with a notion of completeness
defined below.

Definition 3. A profile of indices, Dp = {Dα(p); α ∈ A} where A is a set containing more than
one element, is said to be complete, if, for any two distributions p and q, p↓ = q↓ if and only if
Dα(p) = Dα(q) for every α ∈ A.

Definition 3 essentially says that a complete profile Dp uniquely determines p↓, and in
turn uniquely determines any other diversity index evaluated at p↓.

Example 5. K(p) of (6) is complete. This claim is clearly true noting, for each positive integer i,
p(i) = max{α : Kα(p↓) = i} −max{α : Kα(p↓) = i− 1}.

K(p) of (6) is not the only complete profile. The two well known families of diversity
indices given in the following two examples are also complete.

Example 6. The generalized Simpson’s diversity indices, D(p) = {Du(p) = 1−∑k≥1 pu
k ; u ≥ 1},

is complete. The fact that D(p), indexed by positive integers u ≥ 1, is a family of diversity indices
is established by Grabchak, Marcon, Lang and Zhang (2017). The claim of completeness follows the
fact that η = {∑k≥1 pu

k ; u ≥ 1} uniquely determines p↓, a fact established in [21].

Example 7. Rényi’s diversity profile H(p) = {Hα(p) = (1− α)−1 ln(∑k≥1 pα
k ); α ∈ (0, 1) ∪

(1, ∞)} is complete. The completeness follows the fact that the subset of H(p), H∗(p) = {Hu(p) =
(1− u)−1 ln(∑k≥1 pu

k ); u ≥ 1}, uniquely determines η = {∑k≥1 pu
k ; u ≥ 1}, which uniquely

determines p↓.

3. Inference

Let the discussion of this section begin with a natural estimator of Kα, K̂α = Kα(p̂↓), as
given in (7), which may be viewed an estimator based on the right-tail of p̂↓ being trimmed
by a fixed mass α. This estimator however presents several difficulties in developing valid
inferential procedures regarding Kα. Towards describing some of these difficulties, the
following proposition is first stated and proved.

Proposition 1. Let p = {pk; k ≥ 1} be the underlying distribution on a countable alphabet,
satisfying pk ≥ pk+1 for every k ≥ 1, let p̂ = { p̂i; i ≥ 1} be the corresponding relative letter
frequencies in an iid sample of size n, and let K′ be a positive integer such that 1 ≤ K′ < K. Suppose
the multiplicity of pK′ in p is one. Then as n→ ∞,

1.
√

n
(

∑K′
i=1 p̂i −∑K′

i=1 pi

)
D−→ N

(
0, ∑K′

i=1 pi

(
1−∑K′

i=1 pi

))
;

2. P
(√

n
(

∑K′
i=1 p̂(i) −∑K′

i=1 p̂i = 0
))
→ 0; and

3.
√

n
(

∑K′
i=1 p̂(i) −∑K′

i=1 pi

)
D−→ N

(
0, ∑K′

i=1 pi

(
1−∑K′

i=1 pi

))
.
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Proof. Part 1 directly follows from the central limit theorem. For Part 2, first consider
an aggregation of the letters as follows. If K < ∞ let K′′ = K, and if K = ∞ let K′′ be
any index such that p∗K′′ = ∑∞

i=K′′ pi < pK′ . Let the observed relative letter frequencies
in the sample be aggregated accordingly, in particularly let p̂∗K′′ = ∑∞

i=K′′ p̂i. Let p̂∗ =
{ p̂1, · · · , p̂K′ , · · · , p̂K′′−1, p̂K′′}, and let p∗ = {p1, · · · , pK′ , · · · , pK′′−1, pK′′}. It follows that

p̂∗
p→ p∗, that is to say that, P(p̂∗ ∈ nε(p∗)) → 1 where nε(p∗) is an arbitrarily small

ε-neighborhood centered at the point p∗. Noting pks are arranged in a non-increasing order,
pK′ has multiplicity 1, K′′ is finite, and nε(p∗) is arbitrarily small, the event {p̂∗ ∈ nε(p∗)}
implies the event that the set of K′ largest p̂s are identical to the first K′ p̂s in p̂, that is,
On(K′) = {{ p̂i; i = 1, · · · , K′} = { p̂(i); i = 1, · · · , K′}}. It follows that P(On(K′))→ 1, and
that for any ε > 0.

P

(∣∣∣∣∣√n

(
K′

∑
i=1

p̂(i) −
K′

∑
i=1

p̂i

)∣∣∣∣∣ > ε

)
= P

(∣∣∣∣∣√n

(
K′

∑
i=1

p̂(i) −
K′

∑
i=1

p̂i

)∣∣∣∣∣ > ε

∣∣∣∣∣On(K′)

)
P(On(K′))

+ P

(∣∣∣∣∣√n

(
K′

∑
i=1

p̂(i) −
K′

∑
i=1

p̂i

)∣∣∣∣∣ > ε

∣∣∣∣∣Oc
n(K

′)

)
P(Oc

n(K
′))

= 0× P(On(K′)) + P

(∣∣∣∣∣√n

(
K′

∑
i=1

p̂(i) −
K′

∑
i=1

p̂i

)∣∣∣∣∣ > ε

∣∣∣∣∣Oc
n(K

′)

)
P(Oc

n(K
′))

≤ P(Oc
n(K

′))→ 0.

Part 2 follows.
For Part 3, since

√
n

(
K′

∑
i=1

p̂(i) −
K′

∑
i=1

pi

)
=
√

n

(
K′

∑
i=1

p̂(i) −
K′

∑
i=1

p̂i

)
+
√

n

(
K′

∑
i=1

p̂i −
K′

∑
i=1

pi

)
,

and the first term converges to zero in probability by Part 2, the asymptotic normality
follows Part 1 by Slusky’s theorem .

The first difficulty of K̂α = Kα(p̂↓) is that it cannot be guaranteed to be consistent under
general conditions. To see this, one needs only to consider a special case of ∑i≤Kα

pk = 1− α.
By Part 3 of Proposition 1, for sufficiently large n,

P

(
√

n

(
Kα

∑
i=1

p̂(i) −
Kα

∑
i=1

pi

)
> 0

)
= P

(
Kα

∑
i=1

p̂(i) −
Kα

∑
i=1

pi > 0

)
= P

(
Kα

∑
i=1

p̂(i) > 1− α

)
= P(K̂α ≥ Kα + 1) ≈ 0.5 > 0. (10)

(10) implies inconsistency and, in addition to that, (10) also suggests that, for sufficiently
large n, K̂α could over-estimate Kα, albeit by at most one. Clearly the said inconsistency is
caused by the discrete nature of the functional Kα(p̂↓).

The second difficulty of K̂α = Kα(p̂↓) is its significant downward bias when n is
relatively small. To illustrate the bias, consider the extreme case of α = 0 in Kα, which is
simply the species richness index, K, in case of a finite sample space. If K is relatively large,
a relatively small iid sample of size n would likely not cover all K species in the community.
In fact, the sample would typically miss a large number of species, that is, Kobs � K where
Kobs is observed number of species in a sample. Consequently the empirical distribution,
p̂ = { p̂k; k = 1, · · · , K} would consist of mostly zeros and hence would severely under-
represent p = {pk; k = 1, · · · , K} in terms of species richness. When α > 0 but small, the
same qualitative argument explains the significant downward bias of K̂α.

The possible inconsistency, along with the persistent and significant downward bias,
gives much difficulty in developing inferential procedures under general conditions based
on asymptotic properties such as Part 3 of Proposition 1.
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Next consider bootstrapping 100× (1− β)% confidence intervals (in general standard
notions), respectively, of the quantile method [θ̂∗β/2, θ̂∗1−β/2] and of the centered quantile

method, also known as the basic method, [2θ̂ − θ̂∗1−β/2, 2θ̂ − θ̂∗β/2], where θ̂ denotes the

estimator based on the original sample of size n and θ̂∗1−β/2 and θ̂∗β/2, respectively, denote
the 100× (1− β/2) th and 100× β/2 th percentiles of the bootstrapping samples.

First let it be noted that the quantile method [θ̂∗β/2, θ̂∗1−β/2] is an inadequate 100× (1− β)%
confidence. To see this, let the extreme case of Kα = K with α = 0 be considered once again.
There, given an empirical distribution, p̂↓ = { p̂(1), p̂(2), · · · }. It is clear that K̂α � Kα as
already argued above. For the same reason, by sampling from p̂↓, every K̂∗α ≤ K̂α � Kα.
Consequently [θ̂∗β/2, θ̂∗1−β/2] necessarily excludes Kα far to the right, causing the coverage
of the bootstrapping interval to have much lower coverage than 1− β. This is to say that,
in terms of estimating Kα, the downward bias of K̂α strikes twice in bootstrapping with
the quantile method, once in using the original sample and once in using a bootstrapping
sample. In fact, it is commonly observed with real data sets that

K̂∗α,β/2 < K̂∗α,1−β/2 � K̂α � Kα, (11)

where K̂∗α,β/2 and K̂∗α,1−β/2 are the 100× (1− β/2) th and 100× β/2 th percentiles of the

estimates of K̂α based on bootstrapping samples. See Example 8 below. The discomfort-
ing (11) essentially disqualifies the bootstrapping confidence interval based on the quantile
method as a valid inferential tool.

However bootstrapping based on the centered quantile method, also known as the basic
bootstrapping method, is qualitatively different. There the downward bias K̂α − Kα is off set
by the bootstrapping downward bias K̂∗α − K̂α. Once again in the extreme case of Kα = K
with α = 0, since K̂∗α ≤ K̂α for every bootstrapping sample, it follows that K̂α − K̂∗α,β/2 ≥
K̂α − K̂∗α,1−β/2 ≥ 0 and hence K̂α ≤ K̂α + (K̂α − K̂∗α,1−β/2) ≤ K̂α + (K̂α − K̂∗α,β/2), or

K̂α ≤ 2K̂α − K̂∗α,1−β/2 ≤ 2K̂α − K̂∗α,β/2, (12)

that is, the centered bootstrapping confidence interval excludes K̂α to the left of the interval.
In fact (12) is commonly observed with real data sets even when α > 0 is small. See
Example 8 below. Unlike (11), the fact that K̂α is outside of the centered bootstrapping
confidence interval in (12) only indicates inadequacy of the estimator K̂α but not that of the
interval itself. In fact the centered bootstrapping confidence interval,

[2K̂α − K̂∗α,1−β/2, 2K̂α − K̂∗α,β/2], (13)

represents a bias-adjustment in the right direction, that is, the bias in K̂α as an estimator of
Kα is partially offset by that in K̂∗α as an estimator of K̂α. It is to be noted that (12) suggests a
bias-adjusted alternative estimator to K̂α,

K̂]
α = 2K̂α − K̂∗α,1/2, (14)

where K̂∗α,1/2 is the median of bootstrapped estimates.
The 100× (1− β)% bootstrapping confidence interval, or confidence set since only

the integer values in the interval are relevant, in (13) provides a basic assessment of Kα’s
whereabouts. However its coverage does necessarily converge to the claimed value 1− β
as n increasing indefinitely, due to the above mentioned possible inconsistency of K̂α

and the consequential “at-most-one” over-estimation asymptotically. To take that into
consideration, a conservative adjustment may be adopted by extending the lower limit
of (13) by one, that is,

[2K̂α − K̂∗α,1−β/2 − 1, 2K̂α − K̂∗α,β/2]. (15)
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An advantage of (15) is that its asymptotic coverage is at least 1− β for general p↓, but
a disadvantage is that the limiting form of (15) necessarily contains two integer values
instead of one, which (13) could achieve when K̂α is consistent.

On the other hand, while (15) accommodates the issue of possible asymptotic over-
estimation (by at most one) by K̂α, in most practical cases, the more acute issue is still the
under-estimation of Kα by K̂α when n is not sufficiently large. The confidence set in (15)
generally requires n to be quite large for its coverage to be reasonably close to the claimed
coverage 1− β. To help accelerate the convergence of the actual coverage to the claimed
coverage, a more conservative adjustment may be adopted by extending the right limit
of (15) by one, that is,

[2K̂α − K̂∗α,1−β/2 − 1, 2K̂α − K̂∗α,β/2 + 1]. (16)

Advantages of (16) are that its asymptotic coverage is at least 1− β for general p↓ and that
its actual coverage converges to at least 1− β faster as n increases. However a disadvantage
is that the limiting form of (16) necessarily contains three integer values and no fewer.

The bootstrapping confidence intervals, described in (13), (15) and (16), may also be
utilized in testing hypothesis with different degrees of conservativeness. For example,
based on (13) and at the β level of significance, in testing H0 : Kα = kα versus Ha : Kα > kα,
Ha : Kα < kα or Ha : Kα 6= kα, kα is a pre-specified positive integer, one may choose to reject
H0 when

kα < 2K̂α − K̂∗α,1−β, (17)

kα > 2K̂α − K̂∗α,β, or (18)

kα /∈ [2K̂α − K̂∗α,1−β/2, 2K̂α − K̂∗α,β/2] (19)

respectively.
Based on (15) and at the β level of significance, in testing H0 : Kα = kα versus

Ha : Kα > kα, Ha : Kα < kα or Ha : Kα 6= kα, kα is a pre-specified positive integer, one may
choose to reject H0 when

kα < 2K̂α − K̂∗α,1−β − 1, (20)

kα > 2K̂α − K̂∗α,β, or (21)

kα /∈ [2K̂α − K̂∗α,1−β/2 − 1, 2K̂α − K̂∗α,β/2] (22)

respectively.
Based on (16) and at the β level of significance, in testing H0 : Kα = kα versus

Ha : Kα > kα, Ha : Kα < kα or Ha : Kα 6= kα, kα is a pre-specified positive integer, one may
choose to reject H0 when

kα < 2K̂α − K̂∗α,1−β − 1, (23)

kα > 2K̂α − K̂∗α,β + 1, or (24)

kα /∈ [2K̂α − K̂∗α,1−β/2 − 1, 2K̂α − K̂∗α,β/2 + 1] (25)

respectively.
Suppose there are two communities and it is of interest to estimate the difference

between the two α-trimmed richness indices,

Dα = K1,α − K2,α (26)

where K1,α and K2,α are α-trimmed richness indices of the two underlying communities,
respectively. The proposed estimator of Dα in (26) is

D̂]
α = K̂]

1,α − K̂]
2,α (27)
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where K̂]
1,α = 2K̂1,α − K̂∗1,α,1/2 and K̂]

2,α = 2K̂2,α − K̂∗2,α,1/2, where K̂1,α and K̂2,α are as in (7)
and K̂∗1,α,1/2 and K̂∗2,α,1/2 are respective bootstrapping medians from the two samples as
in (14).

In testing equality of generalized species richness of two communities, Dα = K1,α −
K2,α, one may first consider a bootstrapping 1− β confidence interval for Dα based on two
independent samples are size n1 and n2, respectively,

[2D̂α − D̂∗α,1−β/2, 2D̂α − D̂∗α,β/2] (28)

where D̂α = K̂1,α − K̂2,α,

[2D̂α − D̂∗α,1−β/2 − 1, 2D̂α − D̂∗α,β/2 + 1] (29)

where D̂∗α,β/2 and D̂∗α,1−β/2 are the 100× β/2 th and the 100× (1− β/2) th percentiles of
the bootstrapping estimates, each of which is based a sample of size n1 from p̂1,↓ and a
sample of size n2 from p̂2,↓, where, for j = 1 or j = 2, p̂j,↓ is the ordered relative frequencies
of letters in the sample of size nj from the j th community.

For, H0 : K1,α − K2,α = d0 versus H1 : K1,α − K2,α > d0, or H2 : K1,α − K2,α 6= d0, where
Kα,1 and Kα,2 are the respective generalized species richness of two communities and d0 is
a pre-fixed integer, approximate testing procedures may be devised based (28) or (29). For
example, based on (28), one may choose to reject H0 when

d0 < 2D̂α − D̂∗α,1−β, for H0 vs. H1, or (30)

d0 /∈ [2D̂α − D̂∗α,1−β/2, 2D̂α − D̂∗α,β/2], for H0 vs. H2. (31)

Similarly, based on (29), one may choose to reject H0 when

d0 < 2D̂α − D̂∗α,1−β − 1, for H0 vs. H1, or (32)

d0 /∈ [2D̂α − D̂∗α,1−β/2 − 1, 2D̂α − D̂∗α,β/2 + 1], for H0 vs. H2. (33)

To assess the reliability of the inferential procedures discussed above, several sim-
ulation studies are conducted. The studies are carried out under three different distri-
butions. The first distribution is the uniform distribution with K = 20 and pk = 0.05
for k = 1, · · · , 20. The second distribution is a triangular distribution with K = 20 and
pk = k/20 for k = 1, · · · , 20. The third distribution is the Poisson distribution with λ = 10
and pk = e−λλx/x!, noting that in this case K is infinite.

In Tables 1–3, the bias and the mean squared errors of K̂α of (7) and K̂]
α of (14) are

compared, at two levels of α, α = 0.01 and α = 0.05, for various sample sizes, n. Tables 1–3,
respectively, summarize the results under three different distributions, the uniform, the
triangular and the Poisson. Each simulation scenario is based on 5000 repeated samples.
Each sample is bootstrapped 1000 times. The bias is defined in such a way that, a positive
value indicates an under-estimation and a negative value indicates an over-estimation.
The variable T is the average of Turing’s formula, Tn = n1/n, where n1 is the number of
singletons in a sample, based on 5000 simulated samples. T helps to indicate the adequacy
of sample size. Turing’s formula, Tn, is sometimes called the sample coverage deficit and
1− Tn is the sample coverage (see [17]).
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Table 1. Simulation Results under Uniform Distribution, K = 20.

n T α = 0.01 K̂α Bias K̂α MSE K̂]
α Bias K̂]

α MSE α = 0.05 K̂α Bias K̂α MSE K̂]
α Bias K̂]

α MSE

10 0.63 Kα = 20 12.00 145.21 9.72 97.20 Kα = 19 11.00 122.20 8.72 78.76
20 0.38 Kα = 20 7.17 53.32 3.96 20.17 Kα = 19 7.17 53.32 3.97 20.21
30 0.22 Kα = 20 4.33 20.76 1.16 5.70 Kα = 19 4.33 20.76 1.17 5.71
40 0.14 Kα = 20 2.57 8.18 −0.26 3.25 Kα = 19 3.56 14.23 0.76 3.76
50 0.08 Kα = 20 1.53 3.46 −0.81 2.85 Kα = 19 2.48 7.25 0.17 2.13
60 0.05 Kα = 20 0.94 1.66 −0.92 2.32 Kα = 19 2.52 7.08 0.55 1.74
70 0.03 Kα = 20 0.55 0.77 −0.87 1.73 Kα = 19 1.79 3.87 0.06 1.40
80 0.02 Kα = 20 0.33 0.41 −0.73 1.07 Kα = 19 1.75 3.59 0.19 1.24
90 0.01 Kα = 20 0.19 0.22 −0.62 0.83 Kα = 19 1.33 2.18 −0.01 0.90
100 0.01 Kα = 20 0.61 0.71 −0.25 0.76 Kα = 19 1.37 2.28 0.15 0.89
110 0.00 Kα = 20 0.41 0.45 −0.35 0.91 Kα = 19 1.04 1.41 −0.09 0.82
120 0.00 Kα = 20 0.28 0.30 −0.49 0.95 Kα = 19 1.12 1.52 0.08 0.64

Table 2. Simulation Results under Triangular Distribution, K = 20.

n T α = 0.01 K̂α Bias K̂α MSE K̂]
α Bias K̂]

α MSE α = 0.05 K̂α Bias K̂α MSE K̂]
α Bias K̂]

α MSE

10 0.55 Kα = 19 11.45 132.23 9.39 91.09 Kα = 16 8.44 72.55 6.39 43.72
20 0.31 Kα = 19 7.34 55.85 4.66 26.22 Kα = 16 5.34 30.50 2.67 11.64
30 0.18 Kα = 19 5.01 27.24 2.42 10.23 Kα = 16 3.01 11.18 0.43 4.57
40 0.12 Kα = 19 3.55 14.51 1.22 5.24 Kα = 16 2.52 8.19 0.26 3.80
50 0.08 Kα = 19 2.61 8.51 0.57 3.52 Kα = 16 1.55 3.97 −0.43 3.24
60 0.06 Kα = 19 1.95 5.35 0.15 2.94 Kα = 16 1.64 3.92 −0.01 2.35
70 0.04 Kα = 19 1.48 3.52 −0.08 2.47 Kα = 16 1.04 2.19 −0.40 2.26
80 0.03 Kα = 19 1.14 2.49 −0.23 2.20 Kα = 16 1.13 2.27 −0.13 1.85
90 0.03 Kα = 19 0.84 1.76 −0.38 2.00 Kα = 16 0.69 1.37 −0.45 1.82
100 0.02 Kα = 19 1.55 3.33 0.50 1.89 Kα = 16 0.80 1.48 −0.20 1.53
110 0.02 Kα = 19 1.33 2.57 0.37 1.57 Kα = 16 0.48 0.96 −0.45 1.52
120 0.01 Kα = 19 1.15 2.04 0.29 1.33 Kα = 16 0.56 1.01 −0.30 1.34

Table 3. Simulation Results under Poisson Distribution, λ = 10.

n T α = 0.01 K̂α Bias K̂α MSE K̂]
α Bias K̂]

α MSE α = 0.05 K̂α Bias K̂α MSE K̂]
α Bias K̂]

α MSE

10 0.46 Kα = 16 9.10 84.00 7.38 57.25 Kα = 13 6.10 38.42 4.38 22.00
20 0.22 Kα = 16 6.01 37.97 4.05 20.26 Kα = 13 4.01 17.86 2.08 8.20
30 0.13 Kα = 16 4.39 21.17 2.59 10.48 Kα = 13 3.08 7.52 0.61 4.17
40 0.09 Kα = 16 3.36 13.16 1.76 6.65 Kα = 13 2.25 6.67 0.79 3.89
50 0.06 Kα = 16 2.64 8.70 1.16 4.62 Kα = 13 1.50 3.75 0.19 2.98
60 0.05 Kα = 16 2.08 6.06 0.69 3.68 Kα = 13 1.65 3.94 0.57 2.65
70 0.04 Kα = 16 1.62 4.32 0.29 3.21 Kα = 13 1.13 2.52 0.15 2.35
80 0.03 Kα = 16 1.26 3.21 0.01 2.88 Kα = 13 1.31 2.74 0.49 2.16
90 0.03 Kα = 16 0.94 2.54 −0.28 3.08 Kα = 13 0.94 1.86 0.16 1.89
100 0.03 Kα = 16 1.59 4.06 0.49 3.12 Kα = 13 1.07 2.02 0.39 1.83
110 0.02 Kα = 16 1.37 3.39 0.32 2.92 Kα = 13 0.82 1.54 0.19 1.69
120 0.02 Kα = 16 1.17 2.81 0.15 2.77 Kα = 13 0.95 1.68 0.38 1.65

It is quite clear that K̂]
α generally has a smaller simulated bias than K̂α. More specifically,

if one considers an absolute bias being less than one to be satisfactory, then K̂]
α gets there

faster, as n increases, than K̂α in all cases considered in the simulation studies.
To assess the performance of the confidence sets in (13), (15) and (16), their actual

coverage rates are evaluated by simulation studies with 1− β = 0.95 for various sample
sizes and distributions. For each scenario, the coverage rate is based on 5000 simulated sam-
ples and for each sample, the bootstrapping confidence set is based on 1000 bootstrapping
samples. The results are summarized in Tables 4–6.
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Table 4. Simulated Coverage of 95% Confidence Sets under Uniform Distribution, K = 20.

α = 0.01 α = 0.05 α = 0.10 α = 0.15

n T Of (13) Of (15) Of (16) Of (13) Of (15) Of (16) Of (13) Of (15) Of (16) Of (13) Of (15) Of (16)

10 0.63 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.38 0.3226 0.3226 0.5284 0.3224 0.3224 0.5060 0.3222 0.3222 0.4118 0.6332 0.6332 0.6774
30 0.22 0.7898 0.8056 0.9086 0.7874 0.8032 0.9010 0.5636 0.5642 0.7704 0.8084 0.8090 0.9128
40 0.14 0.9124 0.9422 0.9794 0.8522 0.8584 0.9420 0.6576 0.6576 0.8402 0.9534 0.9532 0.9732
50 0.08 0.8884 0.9862 0.9964 0.9588 0.9596 0.9964 0.7868 0.7922 0.9382 0.9622 0.9676 0.9958
60 0.05 0.9792 0.9934 0.9988 0.9302 0.9318 0.9858 0.8678 0.8682 0.9488 0.9910 0.9918 0.9998
70 0.03 0.9970 0.9970 0.9996 0.9512 0.9824 0.9986 0.8586 0.8586 0.9820 0.9984 0.9984 0.9986
80 0.02 0.9990 0.9990 1.0000 0.9770 0.9834 0.9954 0.9228 0.9228 0.9882 0.9992 0.9994 1.0000
90 0.01 0.9992 0.9992 1.0000 0.9360 0.9816 0.9984 0.9552 0.9554 0.9848 0.9988 0.9990 1.0000

100 0.01 0.9940 0.9982 1.0000 0.9284 0.9762 0.9992 0.9322 0.9328 0.9886 0.9990 0.9990 0.9998
110 0.00 0.9964 0.9966 1.0000 0.8912 0.9952 0.9998 0.9316 0.9384 0.9970 0.9998 0.9998 1.0000
120 0.00 0.9958 0.9958 1.0000 0.9148 0.9942 1.0000 0.9282 0.9322 0.9990 0.9994 1.0000 1.0000
130 0.00 0.9984 0.9984 0.9998 0.8952 0.9966 1.0000 0.9520 0.9596 0.9992 0.9984 1.0000 1.0000
140 0.00 0.9990 0.9990 1.0000 0.8918 0.9916 0.9994 0.9662 0.9782 0.9998 0.9992 1.0000 1.0000
150 0.00 0.9998 0.9998 1.0000 0.9594 0.9918 1.0000 0.9764 0.9874 0.9990 0.9968 1.0000 1.0000
200 0.00 0.9966 0.9966 1.0000 0.9886 0.9960 1.0000 0.8846 0.9414 1.0000 0.9916 1.0000 1.0000
250 0.00 0.9974 0.9974 1.0000 0.9996 0.9996 1.0000 0.8608 0.9750 0.9998 0.9642 1.0000 1.0000
300 0.00 0.9964 0.9964 1.0000 0.9992 0.9992 1.0000 0.9120 0.9948 1.0000 0.9374 1.0000 1.0000
350 0.00 0.9996 0.9996 1.0000 1.0000 1.0000 1.0000 0.9770 0.9982 1.0000 0.8744 1.0000 1.0000
400 0.00 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000 0.9962 1.0000 1.0000 0.8696 1.0000 1.0000
450 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9904 0.9916 1.0000 0.9216 1.0000 1.0000
500 0.00 1.0000 1.0000 1.0000 0.9938 0.9938 1.0000 0.9574 0.9574 1.0000 0.9466 1.0000 1.0000
1000 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 0.9988 1.0000 1.0000 1.0000 1.0000

Table 5. Simulated Coverage of 95% Confidence Sets under Triangular Distribution, K = 20.

α = 0.01 α = 0.05 α = 0.10 α = 0.15

n T Of (13) Of (15) Of (16) Of (13) Of (15) Of (16) Of (13) Of (15) Of (16) Of (13) Of (15) Of (16)

10 0.55 0.0000 0.0000 0.0000 0.0024 0.0024 0.0254 0.0262 0.0262 0.1856 0.1914 0.1914 0.1938
20 0.31 0.2 0.2370 0.3026 0.5408 0.5444 0.6492 0.5466 0.5648 0.7866 0.5262 0.5444 0.7420
30 0.18 0.6074 0.6120 0.7400 0.8138 0.8378 0.9240 0.7802 0.8034 0.8692 0.7190 0.7426 0.8940
40 0.12 0.7718 0.7798 0.9052 0.8192 0.8700 0.9344 0.8016 0.8552 0.9602 0.7966 0.8156 0.9548
50 0.08 0.8548 0.8828 0.9440 0.8546 0.9188 0.9516 0.8864 0.9304 0.9650 0.8824 0.9184 0.9584
60 0.06 0.8848 0.9078 0.9720 0.9086 0.9426 0.9742 0.9052 0.9386 0.9740 0.8716 0.8928 0.9686
70 0.04 0.9144 0.9436 0.9752 0.8948 0.9494 0.9790 0.8900 0.9352 0.9812 0.8994 0.9152 0.9840
80 0.03 0.9004 0.9528 0.9876 0.9080 0.9416 0.9866 0.9058 0.9548 0.9872 0.9000 0.9158 0.9900
90 0.03 0.8830 0.9634 0.9922 0.8908 0.9682 0.9884 0.9150 0.9742 0.9922 0.9378 0.9636 0.9920
100 0.02 0.8916 0.8932 0.9768 0.9102 0.9660 0.9930 0.9082 0.9784 0.9916 0.9408 0.9648 0.9920
110 0.02 0.9174 0.9200 0.9862 0.8852 0.9834 0.9918 0.8806 0.9824 0.9932 0.9446 0.9788 0.9950
120 0.01 0.9384 0.9434 0.9868 0.9056 0.9796 0.9954 0.8818 0.9820 0.9938 0.9390 0.9662 0.9916
130 0.01 0.9422 0.9492 0.9874 0.8602 0.9798 0.9922 0.8670 0.9788 0.9952 0.9144 0.9580 0.9956
140 0.01 0.9334 0.9472 0.9894 0.8854 0.9722 0.9946 0.8418 0.9702 0.9930 0.9062 0.9426 0.9958
150 0.01 0.9264 0.9506 0.9918 0.8362 0.9760 0.9946 0.8410 0.9752 0.9956 0.8966 0.9482 0.9966
200 0.00 0.9026 0.9088 0.9928 0.8620 0.9808 0.9988 0.8320 0.9858 0.9964 0.9152 0.9610 0.9996
250 0.00 0.9348 0.9620 0.9976 0.8162 0.9942 0.9984 0.8098 0.9954 0.9974 0.9318 0.9868 1.0000
300 0.00 0.9504 0.9570 0.9962 0.8314 0.9946 0.9986 0.7910 0.9966 0.9978 0.9404 0.9928 0.9992
350 0.00 0.9502 0.9778 0.9972 0.7822 0.9932 0.9974 0.7664 0.9938 0.9968 0.9242 0.9938 0.9994
400 0.00 0.9558 0.9626 0.9934 0.8012 0.9888 0.9990 0.7406 0.9914 0.9994 0.9394 0.9830 0.9986
450 0.00 0.9334 0.9544 0.9972 0.7588 0.9858 0.9992 0.7286 0.9904 0.9984 0.8994 0.9588 0.9998
500 0.00 0.9166 0.9256 0.9976 0.7716 0.9848 0.9998 0.7060 0.9878 0.9992 0.8914 0.9376 1.0000

1000 0.00 0.8572 0.8592 0.9998 0.7432 0.9968 1.0000 0.6166 0.9978 1.0000 0.9290 0.9534 1.0000
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Table 6. Simulated Coverage of 95% Confidence Sets under Poisson Distribution, λ = 10.

α = 0.01 α = 0.05 α = 0.10 α = 0.15

n T Of (13) Of (15) Of (16) Of (13) Of (15) Of (16) Of (13) Of (15) Of (16) Of (13) Of (15) Of (16)

10 0.46 0.0004 0.0004 0.0054 0.0736 0.0736 0.2998 0.3010 0.3010 0.3038 0.3224 0.3276 0.6372
20 0.22 0.2712 0.2714 0.3682 0.8644 0.8658 0.9306 0.6286 0.6542 0.8560 0.8608 0.8864 0.9588
30 0.13 0.5186 0.5214 0.6840 0.9002 0.9398 0.9716 0.7550 0.7904 0.8706 0.8994 0.9276 0.9666
40 0.09 0.6298 0.6400 0.8094 0.9632 0.9822 0.9872 0.7996 0.8166 0.9588 0.9648 0.9742 0.9954
50 0.06 0.7428 0.7534 0.8836 0.9446 0.9800 0.9816 0.8510 0.8774 0.9780 0.9640 0.9864 0.9966
60 0.05 0.8054 0.8242 0.9076 0.9718 0.9938 0.9944 0.8968 0.9206 0.9698 0.9858 0.9960 0.9984
70 0.04 0.8034 0.8500 0.9360 0.9320 0.9898 0.9902 0.8818 0.9206 0.9682 0.9742 0.9980 0.9992
80 0.03 0.8126 0.8768 0.9536 0.9720 0.9966 0.9966 0.8776 0.9082 0.9794 0.9874 0.9992 0.9996
90 0.03 0.7902 0.8840 0.9468 0.9486 0.9922 0.9922 0.8602 0.8904 0.9838 0.9772 0.9976 0.9994

100 0.03 0.7660 0.8052 0.9342 0.9732 0.9954 0.9954 0.8556 0.8830 0.9920 0.9868 0.9990 0.9998
110 0.02 0.7828 0.8342 0.9404 0.9588 0.9956 0.9956 0.8714 0.9040 0.9942 0.9826 0.9984 0.9998
120 0.02 0.7910 0.8592 0.9458 0.9736 0.9980 0.9980 0.8762 0.9022 0.9962 0.9892 0.9988 0.9998
130 0.02 0.7966 0.8876 0.9514 0.9622 0.9970 0.9970 0.8886 0.9142 0.9964 0.9838 0.9988 1.0000
140 0.02 0.7794 0.8966 0.9462 0.9730 0.9990 0.9990 0.9002 0.9296 0.9970 0.9880 0.9990 0.9998
150 0.02 0.7476 0.8894 0.9316 0.9672 0.9976 0.9976 0.9052 0.9316 0.9970 0.9854 0.9988 1.0000
200 0.01 0.8028 0.8870 0.9550 0.9800 0.9992 0.9992 0.9456 0.9696 0.9948 0.9920 1.0000 1.0000
250 0.01 0.7648 0.8948 0.9460 0.9734 0.9994 0.9994 0.9422 0.9720 0.9930 0.9930 1.0000 1.0000
300 0.01 0.8488 0.9178 0.9756 0.9780 0.9992 0.9992 0.9264 0.9546 0.9938 0.9974 1.0000 1.0000
350 0.01 0.8184 0.9294 0.9602 0.9650 0.9994 0.9994 0.8968 0.9242 0.9976 0.9962 1.0000 1.0000
400 0.01 0.8680 0.9486 0.9822 0.9794 0.9998 0.9998 0.8702 0.8944 0.9988 0.9972 1.0000 1.0000
450 0.00 0.8412 0.9542 0.9708 0.9752 0.9998 0.9998 0.8422 0.8618 0.9978 0.9982 1.0000 1.0000
500 0.00 0.8848 0.9656 0.9808 0.9776 1.0000 1.0000 0.8194 0.8382 0.9996 0.9994 1.0000 1.0000
1000 0.00 0.8656 0.9742 0.9890 0.9876 1.0000 1.0000 0.8578 0.8612 1.0000 1.0000 1.0000 1.0000

Let it be noted that, although the confidence set of (13) could perform well in some
cases (see Columns 3 and 6 in Table 4, and Columns 6 and 12 of Table 5), it has difficulty in
providing an appropriate coverage in many other cases (see Column 12 of Table 4, Columns
3, 6, 9 and 12 of Table 5, and Columns 3 and 9 of Table 6). The said difficulty is partially
caused by the inconsistency mentioned above in combinations of certain distributional
characteristics and the values of α. Similarly, the confidence set of (15) suffers from the
same difficulty though to a lesser degree. It could also perform well in some cases (see
Columns 4, 7, 10 and 13 in Table 4, Columns 7 and 10 of Table 5, and Columns 7 and 10
of Table 6), but it does not in many other cases (see Column 4 of Table 5, Columns 4 and
9 of Table 6). Since in practice the underlying distribution is not observable, it cannot be
determined a priori what values of α are appropriate and what are not. This fact essentially
disqualifies the confidence sets of (13) and (15) as general inferential procedures, but (16).
Additionally, to be noted is the fact that the confidence set of (16) performs well across all
cases in the simulation studies albeit more conservative. The confidence sets of (28) and
(29) have general better performances than their one-sample counterparts due to an offset
of bias between the two one-sample estimators.

Another point of interest pertains to the practically important question of how large a
sample should be in order for (16) to produce a reasonable coverage. Simulation results in
Tables 4–6 seem to indicate that the coverage is adequate when Turing’s formula, which
estimates the total probability associated with the letters of the alphabet not represented
in a given sample, takes on a value approximately at a level not much greater than α, that
is, T = n1/n < α where n1 is the number of species observed exactly once in the sample,
referred to as the rule of thumb below. (Interested readers may refer to Zhang (2017) for a
comprehensive introduction to Turing’s formula.)

In summary, all things considered, observing the rule of thumb,

1. (14) is the proposed estimator of Kα;
2. (16) is the proposed 100× (1− β)% confidence set for Kα;
3. (23)–(25) are the proposed approximate size-β tests of hypothesis involving Kα;
4. (29) is the proposed 100× (1− β)% confidence set for Dα = K1,α − K2,α; and
5. (32) and (33) are the proposed approximate size-β tests of hypothesis involving Dα.
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Example 8. Two tree samples of 1-ha plots (#6 and #18), respectively, indexed as samples 6 and
18, of tropical forest in the experimental forest of Paracou, French Guiana, described in [22], are
compared in terms of biodiversity. Respectively 643 and 481 trees with diameter at breast height over
10 cm were inventoried. The data is available in the entropart package for R. In these samples, 147
and 149 tree species from plots #6 and #18 are, respectively, observed, along with their frequencies.
In [23], the data are analyzed by using generalized Simpson’s indices and concluded that plot #18
is more diverse than plot #6. In the respective samples, Turing’s formula takes on the values of
T6 = 10.58% and T18 = 15.38%. Observing the rule of thumb, let the generalized species richness
be evaluated at α = 0.15. K̂]

6,0.15 = 76, K̂]
18,0.15 = 91 (as compared to the plug-ins K̂6,0.15 = 65

and K̂18,0.15 = 77), and therefore D̂ = K̂]
18,0.15 − K̂]

6,0.15 = 15. The proposed 95% confidence
sets for K6,0.15 and K18,0.15 are, respectively, [69, 82] and [84, 98]. The proposed one-sided and
two-sided 95% confidence sets for D0.15 are, respectively, [6, ∞) and [5, 26], both of which exclude
zero and therefore lead to a rejection of H0 : K6,0.15 = K18,0.15 with either Ha : K6,0.15 < K18,0.15 or
Ha : K6,0.15 6= K18,0.15, qualitatively supporting the findings of [23].

Let α vary from 0.01 to 0.99. K̂]
6,α and K̂]

18,α as functions of α by means of (14) give two curves
in Figure 2, which visually suggests that plot #18 is more diverse than plot #6 for a wide range
of α. D̂α = K̂]

18,α − K̂]
6,α as a function of α, along with the 95% point-wise confidence band by

means of (29), is given in Figure 3, where it is evident that, with reasonable statistical confidence,
Kα,18 > Kα,6 for α values in the range from 0.6 to 0.15, that is, for 1− α values from 0.4 to 0.85.
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Figure 2. Estimated Kα for Plots #6 and #18.
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Figure 3. Estimated Dα with 95% Confidence Band.
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4. Summary

This article proposes a generalized richness index, Kα of (3), or equivalently of (4) or
of (5), and an estimator, K̂]

α of (14). α ∈ [0, 0) is a user-chosen constant, and when α = 0,
Kα becomes the well-known original richness index, K. Kα may also be referred to as the
α-trimmed richness index. It is designed to remove or to alleviate several weaknesses of K.
First, K is only finitely defined for some distributions but not for all. On the other hand, Kα

is finitely defined for all distributions on a countable alphabet. Second, K does not take
the abundance {pk; k ≥ 1} into consideration, but Kα does. Third, K is ultra-sensitive to re-
distribution of an arbitrarily small mass, but Kα is not, as evidenced by Definitions 1 and 2,
Examples 1 and 4, and Proposition A2.

A conservative confidence interval based on bootstrapping is proposed in (16). This
confidence interval provides the basic support for inferences about Kα. A rule of thumb
to judge whether the sample is adequate in supporting the proposed methodology is also
proposed based on Turing’s formula: T = n1/n < α, where n1 is the number of singletons
in the sample of size n. The rule of thumb is illustrated by simulated results in Tables 4–6.
More specifically, in Table 4, the rule of thumb amounts to n ≥ 110 for α = 0.01, n ≥ 60
for α = 0.05, n ≥ 50 for α = 0.10 and n ≥ 40 for α = 0.15. The simulated coverages are all
near or above the target 95%. In Table 5, the rule of thumb amounts to n ≥ 150 for α = 0.01,
n ≥ 70 for α = 0.05, n ≥ 50 for α = 0.10 and n ≥ 40 for α = 0.15. The simulated coverages
are all above the target 95%. In Table 6, the rule of thumb amounts to n ≥ 450 for α = 0.01,
n ≥ 70 for α = 0.05, n ≥ 40 for α = 0.10 and n ≥ 30 for α = 0.15. The simulated coverages
are all above the target 95%.

The one-sample estimator of Kα in (14) for a single community is extended to the
two-sample estimator of Dα of (26), the difference of two α-trimmed richness indices of two
communities. The proposed estimator of Dα is D̂]

α as in (27). A proposed 100× (1− β)%
confidence interval for Dα is given in (29). This interval provides the basic support for
testing hypotheses regarding Dα, as specified in (32) and (33).

For the two-sample problem, the rule of thumb for the one-sample problem is modified
to be:

T1 = n1,1/n1 < α and T2 = n2,1/n2 < α

where n1 and n2 are the respective sample sizes of the two independent samples, and n1,1
and n2,1 are the respective numbers of singletons in the two independent samples.
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Appendix A

The claims that Kα satisfies Axiom A4 and that Kα is 100× α% robust (the claim of
Example 2) are established in this section.

For clarity of the proof, a definition and two lemmas are needed. The generalized
species richness Kα(p↓) as in (3), (4) or (5) is defined for an underlying p being a probability
distribution, that is, more specifically pk ≥ 0 for each k and ∑k≥1 pk = 1. For notation
convenience in the proofs of this section, let the definition of Kα(p↓) be extended to any
sequence of non-negative numbers, p = {pk; k ≥ 1} or p↓ = {p(k); k ≥ 1}, such that
∑k≥1 pk < ∞, which implies that p(k) → 0 as k→ ∞, specifically noting that ∑k≥1 pk may
not necessarily be one.
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Definition A1. For any sequence of non-negative values p = {pk; k ≥ 1}, such that ∑k≥1 pk < ∞,
and an α ∈ (0, ∑k≥1 pk), the generalized species richness is given by

Kα = Kα(p↓) = min

{
k :

∞

∑
i=k

p(i) < α

}
− 1. (A1)

It is clear that if p is a bonafide probability distribution, then Kα(p↓) given in (3), (4) or
(5) is identical to (A1) in Definition A1. In this section, the notion of Kα used is that of (A1).

Lemma A1. For any given sequence of non-negative values p = {pk; k ≥ 1}, let a mass of ε > 0
be taken away from pi for a specific index i, where ε ∈ (0, pi]. Let p∗i = pi− ε, let p∗ be the sequence
p but with p∗i in place of pi, and let p∗↓ = {p∗(k); k ≥ 1} be the re-arranged p∗ in a non-increasing
order. For any α ∈ (0, ∑k≥1 pk), Kα(p∗↓) ≤ Kα(p↓).

Proof. Without loss of generality, let it be assumed that the sequence p = {pk; k ≥ 1} is
non-increasingly arranged. Denote Kα(p↓) = kα and note that

∞

∑
k=kα

p(k) ≥ α and
∞

∑
k=kα+1

p(k) < α. (A2)

The lemma is established, respectively, in three exhaustive scenarios: (a) i < kα, (b) i = kα,
and i > kα.

In scenario (a), there are three exhaustive possible placements of p∗i in p∗↓ and they are

(a1): p∗i < pkα
, p∗↓ = {p1, · · · , p∗i , · · · , pkα

, · · · },
(a2): p∗i = pkα

, p∗↓ = {p1, · · · , p∗i , pkα
, · · · },

(a3): p∗i > pkα
, p∗↓ = {p1, · · · , pkα

, · · · , p∗i , · · · }.

In either scenario (a1) or scenario (a2), the right tail sub-sequence {pkα
, · · · } of p is preserved

in p∗↓, and therefore Kα(p∗↓) = Kα(p↓).
In scenario (a3), pkα

occupies the kα − 1 st position in p∗↓. It follows that

τ∗(kα) = ∑
k≥kα

p∗(k) = p∗i + ∑
k≥kα+1

pk. (A3)

Noting ∑k≥kα+1 pk < α by (A2), if τ∗(kα) ≥ α then Kα(p∗↓) = kα = Kα(p↓). If τ∗(kα) < α

then, again by (A2), Kα(p∗↓) = kα − 1 < Kα(p↓).
In scenario (b), (A3) still holds. Noting ∑k≥kα+1 pk < α, if τ∗(kα) ≥ α then Kα(p∗↓) =

kα = Kα(p↓). If τ∗(kα) < α then, since pkα−1 ≥ pkα
, Kα(p∗↓) = kα − 1 < Kα(p↓).

In scenario (c), it follows that pkα
occupies the kα th position in p∗↓ and that

τ∗(kα + 1) = ∑
k≥kα+1

p∗(k) = ∑
k≥kα+1

pk − (pi − p∗i ) < α. (A4)

If τ∗(kα) = ∑k≥kα
pk − (pi − p∗i ) ≥ α then Kα(p∗↓) = kα = Kα(p↓). If τ∗(kα) < α then

τ∗(kα − 1) = pkα−1 + τ∗(kα) = pkα−1 + ∑
k≥kα

pk − (pi − p∗i )

= ∑
k≥kα

pk + (pkα−1 − pi) + p∗i > ∑
k≥kα

pk ≥ α.

It follows that Kα(p∗↓) = kα − 1 < Kα(p↓).

The proof of Lemma A1 above actually establishes that Kα(p↓) − 1 ≤ Kα(p∗↓) ≤
Kα(p↓), which immediately gives the following corollary.
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Corollary A1. For any given sequence of non-negative values p = {pk; k ≥ 1}, let a mass of
ε > 0 be added to pi for a specific index i. Let p∗i = pi + ε, let p∗ be the sequence p but with p∗i in
place of pi, and let p∗↓ = {p∗(k); k ≥ 1} be the re-arranged p∗ in a non-increasing order. For any
α ∈ (0, ∑k≥1 pk), Kα(p↓) ≤ Kα(p∗↓) ≤ Kα(p↓) + 1.

Lemma A2. For any given sequence of non-negative values p = {pk; k ≥ 1} and a given
α ∈ (0, ∑k≥1 pk), let a mass of ε > 0 be added to either pi or pj, where i and j are two specific
indices such that pi > pj, resulting in p∗i = pi + ε and p∗j = pj + ε. Let p∗(i) be the sequence
p but with p∗i in place of pi. Let p∗(j) be the sequence p but with p∗j in place of pj. Let p∗↓(i)
and p∗↓(j) be the, respectively, re-arranged p∗(i) and p∗(j) in a non-increasing order. Then
Kα(p∗↓(i)) ≤ Kα(p∗↓(j)).

Proof. Without loss of generality, let it be assumed that the sequence p = {pk; k ≥ 1} is
non-increasingly arranged. Denote Kα(p) = kα and note that

∞

∑
i=kα

p(i) ≥ α and
∞

∑
i=kα+1

p(i) < α. (A5)

The lemma is established, respectively, in four exhaustive scenarios: (a) i < j ≤ kα,
(b) i < kα ≤ j, (c) i = kα < j, and (d) kα < i < j.

In scenario (a), the tail sequence {pkα
, · · · } of p is preserved in p∗↓(i) and p∗↓(j) after

adding a mass ε to pi or pj, respectively. It follows that Kα(p∗↓(i)) = Kα(p∗↓(j)) and hence
Kα(p∗↓(i)) ≤ Kα(p∗↓(j)) holds.

In scenario (b), the tail sequence {pkα
, · · · } of p is preserved in p∗↓(i) after ε is added

to pi and therefore Kα(p∗↓(i)) = kα. However, applying Corollary A1, it follows that
Kα(p∗↓(j)) ≥ Kα(p↓) = kα. Hence Kα(p∗↓(i)) ≤ Kα(p∗↓(j)) holds.

In scenario (c), p∗i = pi + ε occupies a position in p∗↓(i) with an index less or equal
to kα. This fact implies that the value at the kα th position in p∗↓(i) is a value greater or
equal to pkα

. By the definition of Kα in (A1), Kα(p∗↓(i)) = kα = Kα(p↓). However, applying
Corollary A1, Kα(p∗↓(j)) ≥ Kα(p↓) = kα. Hence Kα(p∗↓(i)) ≤ Kα(p∗↓(j)) holds.

In scenario (d), let the position occupied by p∗i = pi + ε in p∗↓(i) be denoted as s
and that by p∗j = pj + ε in p∗↓(j) as t. Let it be recognized that s ≤ t. The following
three exhaustive sub-scenarios need to be, respectively, considered: (d1) kα ≤ s ≤ t,
(d2) s < kα ≤ t, and (d3) s ≤ t ≤ kα

In scenario (d1), it follows that ∑k≥kα
p∗(k)(i) = ∑k≥kα

pk + ε > α + ε > α, and similarly
that ∑k≥kα

p∗(k)(j) = ∑k≥kα
pk + ε > α + ε > α. If ε is such that

∑
k≥kα+1

p∗(k)(i) = ∑
k≥kα+1

p(k) + ε ≥ α, (A6)

then Kα(p∗↓(i)) ≥ kα + 1 and therefore, by Corollary A1, Kα(p∗↓(i)) = kα + 1. On the other
hand, since pi > pj, (A6) implies

∑
k≥kα+1

p∗(k)(j) = ∑
k≥kα+1

p(k) + ε = ∑
k≥kα+1

p∗(k)(i) ≥ α,

which in turn implies that Kα(p∗↓(j)) ≥ kα + 1. By Corollary A1, Kα(p∗↓(j)) = kα + 1 and
therefore Kα(p∗↓(i)) = Kα(p∗↓(j)). Hence Kα(p∗↓(i)) ≤ Kα(p∗↓(j)) holds.

If

∑
k≥kα+1

p∗(k)(i) = ∑
k≥kα+1

p(k) + ε < α, (A7)
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then Kα(p∗↓(i)) ≤ kα and therefore, by Corollary A1, Kα(p∗↓(i)) = kα. On the other hand,
since pi > pj, (A7) implies

∑
k≥kα+1

p∗(k)(j) = ∑
k≥kα+1

p(k) + ε = ∑
k≥kα+1

p∗(k)(i) < α,

which in turn implies that Kα(p∗↓(j)) ≤ kα. By Corollary A1, Kα(p∗↓(j)) = kα and therefore
Kα(p∗↓(i)) = Kα(p∗↓(j)). Hence Kα(p∗↓(i)) ≤ Kα(p∗↓(j)) holds.

In scenario (d2), let it be noted first that

1. the value at the kα + 1 st position in p∗↓(i) is pkα
and the value at the kα th position in

p∗↓(j) is also pkα
; and

2. pi + ε > pkα
and therefore ε > pkα

− pi.

Consider the two tail sums of p∗↓(i) and p∗↓(j). First for i,

τ∗kα+1(i) = ∑
k≥kα+1

p∗(k)(i) = ∑
k≥kα

pk − pi,

τ∗kα+2(i) = ∑
k≥kα+2

p∗(k)(i) = ∑
k≥kα+1

pk − pi < α− pi < α; (A8)

and next for j,

τ∗kα
(j) = ∑

k≥kα

p∗(k)(j) = ∑
k≥kα

pk + ε > α + ε > α,

τ∗kα+1(j) = ∑
k≥kα+1

p∗(k)(j) = ∑
k≥kα+1

pk + ε > ∑
k≥kα+1

pk + pkα
− pi = ∑

k≥kα

pk − pi ≥ α. (A9)

If τ∗kα+1(i) ≥ α, then by (A8) Kα(p∗↓(i)) = kα + 1. On the other hand, by (A9),
Kα(p∗↓(j)) ≥ kα + 1. By Corollary A1, Kα(p∗↓(j)) = kα + 1, and hence Kα(p∗↓(j)) ≥ Kα(p∗↓(i))
holds.

If τ∗kα+1(i) < α, then, by Corollary A1, Kα(p∗↓(i)) = kα. Additionally, by Corollary A1,
Kα(p∗↓(j)) ≥ kα, and hence Kα(p∗↓(j)) ≥ Kα(p∗↓(i)) holds.

In scenario (d3), let it be noted first that both values at the kα + 1 st position in p∗↓(i)
and at the kα + 1 st position in p∗↓(j) ar, respectively, pkα

.
Consider the two tail sums of p∗↓(i) and p∗↓(j). First for i,

τ∗kα+1(i) = ∑
k≥kα+1

p∗(k)(i) = ∑
k≥kα

pk − pi,

τ∗kα+2(i) = ∑
k≥kα+2

p∗(k)(i) = ∑
k≥kα+1

pk − pi < α− pi < α; (A10)

and next for j,

τ∗kα+1(j) = ∑
k≥kα+1

p∗(k)(j) = ∑
k≥kα

pk − pj,

τ∗kα+2(j) = ∑
k≥kα+2

p∗(k)(j) = ∑
k≥kα+1

pk − pj < α− pj < α. (A11)

If τ∗kα+1(i) ≥ α, then by (A10) Kα(p∗↓(i)) = kα + 1. On the other hand, since pi > pj,
τ∗kα+1(i) ≥ α implies τ∗kα+1(j) ≥ α, it follows by (A11) that Kα(p∗↓(j)) = kα + 1. Therefore
Kα(p∗↓(j)) ≥ Kα(p∗↓(i)) holds.

If τ∗kα+1(i) < α, then by Corollary A1, Kα(p∗↓(i)) = kα. However τ∗kα+1(j) may take a
value less than α or greater or equal to α. In the first case, it is implied that Kα(p∗↓(j)) = kα,
that is, Kα(p∗↓(j)) ≥ Kα(p∗↓(i)) holds. Or in the second case, it is implied that Kα(p∗↓(j)) =
kα + 1, which in turn implies Kα(p∗↓(j)) ≥ Kα(p∗↓(i)) holds.
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At this point, the claim of the lemma is established for all scenarios and sub-scenarios.

Proposition A1. Let p = {pk; k ≥ 1} be a probability distribution on a countable alphabet and
let p↓ = {p(k); k ≥ 1} be a non-increasing arranged p. Suppose, for two particular indices i and j
such that i < j, a mass of ε > 0 is transferred from p(i) to p(j), subject to 0 < ε < p(i) − p(j). Let
the sequence after the transfer be denoted as p∗ and its non-increasingly re-arranged version as p∗↓.
Then for any α ∈ (0, 1), Kα(p↓) ≤ Kα(p∗↓).

Proof. Without loss of generality, let it be assumed that p = {pk; k ≥ 1} is non-increasingly
arranged. Since Kα(p↓) is symmetric with respect to i and j, it suffices to show that
Kα(p↓) ≤ Kα(p∗↓) for any transfer of ε mass for ε ∈ (0, (pi − pj)/2]. Toward that end,
consider the following sequence of non-negative values,

p−ε = {p1, · · · , pi−1, pi − ε, pi+1, · · · , pj−1, pj, pj+1, · · · }.

It is to be noted first that adding ε to pi − ε in p−ε gives p and second that adding ε to pj in
p−ε gives

p∗ = {p1, · · · , pi−1, pi − ε, pi+1, · · · , pj−1, pj + ε, pj+1, · · · }.

Since pi − ε ≥ pj, by Lemma A2, Kα(p↓) ≤ Kα(p∗↓).

Before stating and proving Proposition A2 below, a simple and trivial fact is summa-
rized in the following lemma for easy reference.

Lemma A3 (Stairway Carpeting). Let q = {qk; k ≥ 1} be a sequence of non-increasingly ordered
non-negative values such that (a) q1 > 0 and (b) ∑k≥1 qk = C > 0. Let ε > 0 be any positive
value. Then there exists a sequence of non-negative values ε = {εk; k ≥ 1} satisfying ∑k≥1 εk = ε,
such that, letting q∗ = {q∗k ; k ≥ 1} where q∗k = qk + εk,

1. q∗k ≥ q∗k+1 for each and every k ≥ 1, and
2. ∑k≥1 q∗k = C + ε.

Proof. Since (a) and (b), there exists an index value k0 such that qk0 > qk0+1 and hence
qk0 − qk0+1 > 0. Let M = M(q, ε) be an integer such that ε/M ≤ qk0 − qk0+1. Let εk = 0 for
k = 1, · · · , k0, εk = ε/M for k = k0 + 1, · · · , k0 + M, and εk = 0 for k ≥ k0 + M + 1. It can
be easily verified that the claim of the lemma holds.

Lemma A3 has the following two important implications that are relevant in the proof
of Proposition A2.

1. For any ordered non-negative sequence, there exists a way to distribute any additional
non-negative mass on top of the sequence and yet to preserve the non-increasing
order of the sequence. Any such existent way will be referred to as a way of Stairway
Carpeting.

2. A transfer of mass ε to q by a way of Stairway Carpeting may be viewed as a sequence
of M steps, in each of which a part of ε, ε/M, is transferred.

Proposition A2. The generalized species richness, Kα, is 100× α%-robust.

Proof. Consider any given probability distribution p = {pk; k ≥ 1}, which can be without
loss of generality assumed to be non-increasingly arranged, a given α ∈ (0, 1) and a given
ε ∈ (0, α). An ε-mass re-distribution of p is a combination of two steps: (a) an arbitrarily
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reduction of ε mass from p and (b) an arbitrarily add-back of the same ε mass. Let the
reduction, the add-back and their differences be represented by

ε1 = {ε1,k; k ≥ 1}, ε2 = {ε2,k; k ≥ 1} and δ = {δk; k ≥ 1}

where εi,k ≥ 0 and ∑k≥1 εi,k = ε for i = 1, 2, δk = ε2,k − ε1,k for each k and ∑k≥1 δk = 0. Let
the distribution after the re-distribution be denoted as

p∗ = {p∗k ; k ≥ 1} = {pk + δk; k ≥ 1}. (A12)

For any ε ∈ (0, α), it is desired to show that Kα(p∗) is bounded above by a constant only
depending on p, α and ε (but not on ε1 and ε2). Toward that end, let it first be noted that
kα−ε = Kα−ε(p) is a constant integer only depending on p, α and ε.

Several modifications are to be made to p∗. First let all δk < 0 be set to zero, that is, let
δ∗k = max{δk, 0} and write the modified p∗ as

p∗1 = {pk + δ∗k ; k ≥ 1} = {(p1 + δ∗1 ), · · · , (pkα−ε
+ δ∗kα−ε

), (pkα−ε+1 + δ∗kα−ε+1), · · · }. (A13)

By Corollary A1, it follows that
Kα(p∗) ≤ Kα(p∗1). (A14)

Let is be observed that there are only finitely many terms in p∗1 of (A13) that are greater
than or equal to pkα−ε

. Each of these terms corresponds to an index k. Let the maximum
of these indices be denoted as k0 (so that, for each k ≥ k0 + 1, pk + δ∗k < pkα−ε

and that
k0 ≥ kα−ε).

Second, let p∗1 be further modified in such a way that the first k0 terms are preserved
but the remainder terms, from k = k0 + 1 on, are re-arranged into a non-increasing order.
Denote the resulting sequence by

p∗2 = {(p1 + δ∗1 ), · · · , (pk0 + δ∗k0
), p∗∗k0+1, · · · }. (A15)

Since Kα is permutation invariant, it follows that

Kα(p∗) ≤ Kα(p∗1) = Kα(p∗2). (A16)

Next, for each k = 1, · · · , k0, collect δ∗k from pk + δ∗k and re-distribute the mass of
ε = δ∗k to the tail sequence of p∗2 , q = {p∗∗k0+1, p∗∗k0+2, · · · }, by means of a Stairway Carpeting
way described in Lemma A3. The resulting sequence would have the following form

p∗3 = {p∗∗∗k ; k ≥ 1} = {p1, · · · , pkα−ε
, pkα−ε+1, · · · , pk0 , p∗∗∗k0+1, · · · }. (A17)

By construction, p∗3 satisfies the following three properties:

1. the sub-sequence {p1, · · · , pk0} is non-increasingly ordered;
2. each term in the tail sequence {p∗∗∗k0+1, · · · } is less than pkα−ε

; and
3. the sum of all terms in p∗3 from k = kα−ε + 1 on is

∑
k≥kα−ε+1

p∗∗∗k = ∑
k≥kα−ε+1

pk + ∑
k≥1

δ∗k < (α− ε) + ∑
k≥1

δ∗k < α. (A18)

By (A18) and the definition of Kα,

Kα(p∗3) ≤ Kα−ε(p) = kα−ε. (A19)

Finally, let it be noted that the modification of (A15) into (A17) is a finite sequence of
steps each of which transfers a probability from a higher term to a lower term—the second
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implication of Lemma A2 mentioned above. Applying Corollary A1 as finitely many times
as needed, it follows that

Kα(p∗2) ≤ Kα(p∗3). (A20)

Combining (A16), (A19) and (A20) gives Kα(p∗) ≤ kα−ε < ∞.
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