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Abstract: In this work, we formulate the image in-painting as a matrix completion problem. Tradi-
tional matrix completion methods are generally based on linear models, assuming that the matrix is
low rank. When the original matrix is large scale and the observed elements are few, they will easily
lead to over-fitting and their performance will also decrease significantly. Recently, researchers have
tried to apply deep learning and nonlinear techniques to solve matrix completion. However, most of
the existing deep learning-based methods restore each column or row of the matrix independently,
which loses the global structure information of the matrix and therefore does not achieve the expected
results in the image in-painting. In this paper, we propose a deep matrix factorization completion
network (DMFCNet) for image in-painting by combining deep learning and a traditional matrix
completion model. The main idea of DMFCNet is to map iterative updates of variables from a
traditional matrix completion model into a fixed depth neural network. The potential relationships
between observed matrix data are learned in a trainable end-to-end manner, which leads to a high-
performance and easy-to-deploy nonlinear solution. Experimental results show that DMFCNet can
provide higher matrix completion accuracy than the state-of-the-art matrix completion methods in a
shorter running time.

Keywords: matrix completion; image inpainting; matrix factorization; deep learning; neural network

1. Introduction

Matrix completion (MC) [1–5] aims to recover a matrix with missing matrix elements
or incomplete data. It has been successfully applied to a wide range of signal processing
and image analysis tasks, including collaborative filtering [6,7], image in-painting [8–10],
image denoising [11,12], and image classification [13,14]. The MC methods assume that the
original matrix is low rank and the missing elements of the matrix can be estimated based
on rank minimization. It should be noted that the rank minimization problem is generally
non-convex and NP-hard [15]. A typical approach to address this issue is to establish a
convex approximation of the original non-convex objective function.

Existing approaches for solving the MC problem are mainly based on nuclear norm
minimization (NNM) and matrix factorization (MF). The NNM approach [16–18] aims to
minimize the sum of matrix singular values, which is a convex relaxation of the matrix
rank. The nuclear norm minimization can be solved by singular value thresholding (SVT)
algorithms [19], inexact increasing Lagrange multiplier (IALM) methods [16], and an
alternating direction method (ADM) [17,20]. One major disadvantage of the NNM approach
is that singular value decomposition (SVD) needs to be performed in each iteration of the
optimization process, which has very high computational complexity when the matrix
size is large. To avoid this problem, matrix factorization (MF), which does not need
SVD, has been proposed by researchers to solve the MC problem [6,21–23]. Assuming
that the rank of the original matrix is known, the MF method aims to decompose and
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approximate the matrix into a product of a thin matrix and a short matrix [21,24–26], and
then reconstruct the missing element using this low-rank representation. Low-rank matrix
fitting (LMaFit) [21] was one of the earliest MF methods. Although LMaFit is able to obtain
an exact solution, it is sensitive to the rank estimation and cannot be globally optimized
due to its non-convex formulation.

Both the NNM and the MF methods assume the low-rank property of the original
matrix. Their performance degrades significantly when this property does not hold any
more and the data are generated from a nonlinear latent variable model [10,27–29]. Recently,
encouraged by the remarkable success of deep learning in many computer vision and
machine learning tasks [30–33], researchers have explored the deep learning methods to
nonlinear MC problems [28–30]. For example, the autoencoder-based collaborative filtering
(AECF) approach [34] learns an autoencoder network to map the input matrix into a latent
space and then reconstructs the matrix by minimizing the reconstruction error. The deep
learning-based matrix complementation (DLMC) method [28] learns a stacked autoencoder
network with with a nonlinear latent variable model. One major disadvantage of these
deep learning-based methods is that they are unable to explore the global structure of
the matrix, which degrades their performance in matrix completion, especially in image
analysis where the global structure plays an important role in its restoration process.

In this paper, we propose a deep matrix factorization and completion network (DMFC-
Net) for matrix completion by coupling deep learning with traditional matrix completion
methods. Our main idea is to use a neural network to simulate the iterative update of vari-
ables in the traditional matrix factorization process and learn the underlying relationship
between input matrix data and the recovered output data after matrix completion in an
end-to-end manner. We apply the proposed method to image in-painting to demonstrate
its performance.

The main contributions of this paper can be summarized as follows.

(1) Compared with existing methods, our proposed method is able to address the non-
linear data model problem faced by the traditional MC methods. It is also able to
address the global structure problem in existing deep learning-based MC methods.

(2) The proposed method can be pre-trained to learn the global image structure and
underlying relationship between input matrix data with missing elements and the
recovered output data. Once successfully trained, the network does not need to
be optimized again in the subsequent image in-painting tasks, thereby providing a
high-performance and easy-to-deploy nonlinear matrix completion solution.

(3) To improve the performance of the proposed method, a new algorithm for pre-filling
the missing elements of the image is proposed. This new padding method performs
global analysis of the matrix data to predict the missing elements as their initial values,
which improves the performance of matrix completion and image in-painting.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
presents our approach of deep matrix factorization and completion for image in-painting.
Experimental results are presented in Section 4. Section 5 concludes the paper with a
discussion of future research work.

2. Related Work

In this section, we review existing work related to our proposed method. For ex-
ample, the mathematical models of the low-rank Hankel matrix factorization (LRHMF)
method [35] and the deep Hankel matrix factorization (DHMF) method [36] will be intro-
duced, respectively. The LRHMF method is a low-rank matrix factorization method that
avoids singular value decomposition to achieve fast signal reconstruction. The DHMF
method [36] inspired by LRHMF is a complex exponential signal recovery method based
on deep learning and Hankel matrix factorization. The method proposed in this paper for
image in-painting is inspired by them.

As said in [35], the rank of the Hankel matrix is equal to the number of exponentials in
x which is a vector of exponential functions. Thus, the low-rank Hankel matrix completion
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(LRHMC) problem can be solved by using the low-rank property of the Hankel matrix. Its
mathematical formula can be described as:

min
x
‖Rx‖∗ +

λ

2
‖y−Ux‖2

2. (1)

where x is the signal to be recovered from the undersampled data y, R is the operator
that converts the signal to the Hankel matrix Rx, U denotes the undersampling matrix,
and λ is the balance parameter. ‖ ·‖∗ is the nuclear norm of the matrix, which is used to
restrict the rank of the matrix. The second term is used to measure the consistency of the
data. However, it is very time-consuming to solve this problem because of its frequent
singular value decomposition (SVD). To avoid this problem, the LRHMF method uses
matrix factorization [37,38] instead of the nuclear norm minimization. Given any matrix,
its nuclear norm can be approximated as:

‖V‖∗ = min
P,Q

1
2
(‖P‖2

F + ‖Q‖
2
F), s.t.V = PQH . (2)

where P ∈ Rn1×r, Q ∈ Rn2×r, ‖ · ‖2
F denotes the square of the Frobenius norm of the matrix,

and the superscript H denotes the conjugate transpose. If we substitute Equation (2) to
optimization problem (1), then the optimization problem can be reformulated as:

min
x,P,Q

1
2
(
‖ P ‖2

F + ‖ Q ‖2
F
)
+ λ

2 ‖ y−Ux ‖2
2,

s.t.Rx = PQH .
(3)

Since the nuclear norm ofRx is replaced by the Frobenius norm of its matrix factor-
ization, it is no longer necessary to calculate the singular value decomposition. To solve
this problem effectively, the alternating direction multiplier method (ADMM) is adopted in
LRHMF [35], and its corresponding extended Lagrangian function is derived as:

L(x, P, Q, D) = 1
2 ‖ P ‖2

F + 1
2 ‖ Q ‖2

F + λ
2 ‖ y−Ux ‖2

2

+ < D,Rx− PQH > + γ
2

∥∥Rx− PQH
∥∥2

F.
(4)

where D denotes the increasing Lagrange multiplier, < ·, · > denotes the inner product
operator, and the λ > 0 and γ > 0 are the balanced parameters.

To solve the signal reconstruction problem, Huang et al. [36] gave the k-th iteration of
the solution of (3) by minimizing (4), as shown in (5). Based on this iterative formulation,
a deep Hankel matrix factorization network based on deep learning is designed for fast
reconstruction of the signal.

xk+1 = (λUTU + γR∗R)−1(λUTy + γR∗(Pk(Qk)H − Dk))

Pk+1 = γ(Rxk+1 + Dk)Qk(γ(Qk)HQk + I)−1

Qk+1 = γ(Rxk+1 + Dk)Pk+1(γ(Pk+1)H Pk+1 + I)−1

Dk+1 = Dk + τk(Rxk+1 − Pk+1(Qk+1)H)

(5)

3. The Proposed Method

In this section, we construct a deep matrix factorization completion network (DMFC-
Net) for matrix completion and image in-painting. We derive the mathematical model for
our DMFCNet method, discuss the network design, and then introduce two network struc-
tures based on different prediction methods for missing elements. Finally, we introduce the
loss functions and explain the network training process.
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3.1. Mathematical Model of the DMFCNet Method

The proposed DMFCNet is based on low-rank matrix factorization [35,36]. The opti-
mization objective function of our proposed model can be formulated as

min
X
‖X‖∗ +

λ

2
‖ Ψ� (Y− X) ‖2

F, (6)

where Y ∈ Rm×n is the observation matrix with missing elements whose initial values are
set to be a predefined constant. X ∈ Rm×n is the matrix that needs to be recovered from the
matrix Y, and λ is a regularization parameter. ‖ X‖∗ is the nuclear norm of the matrix X,
which is used to restrict the rank of X. ‖ Ψ� (Y− X) ‖2

F denotes the reconstruction error
of Y, where � is the Hadamard product. Ψ ∈ {0, 1}m×n is a mask indicating the positions
of missing data. If Y is missing data at position (i, j), the value of Ψij is 0; otherwise, it is 1.
We use matrix factorization instead of the traditional nuclear norm minimization, and the
proposed model can be formulated as follows:

min
X,U,V

1
2
(
‖ U ‖2

F + ‖ V ‖2
F
)
+ λ

2 ‖ Ψ� (Y− X) ‖2
F,

s.t. X = UVT ,
(7)

where U ∈ Rm×r and V ∈ Rn×r. The augmented Lagrangian function for (7) is given by

L(X, U, V, S) = 1
2 (‖ U ‖2

F + ‖ V ‖2
F) +

λ
2 ‖ Ψ� (Y− X) ‖2

F
+ < S, X−UVT > + η

2

∥∥X−UVT
∥∥2

F.
(8)

Here, η > 0 is the penalty parameter and S ∈ Rm×n is the Lagrangian multiplier
corresponding to the constraint X = UVT . Since it is difficult to solve for U, V, S and X
simultaneously in (8), following the idea of alternating direction method of multipliers
(ADMM), we minimize the Lagrangian function with respect to each block variable U, V,
S and X at a time while fixing the other blocks at their latest values. Thus, the proposed
optimization process becomes:

Uk+1 = arg min
U∈Rm×r

L(Xk, Uk, Vk, Sk),

Vk+1 = arg min
V∈Rn×r

L(Xk, Uk+1, Vk, Sk),

Sk+1 = Sk + µ(Xk −Uk+1(Vk+1)
T),

Xk+1 = arg min
X∈Rm×n

L(Xk, Uk+1, Vk+1, Sk+1),

(9)

where µ > 0 is the step size of the optimization process.
However, there are many limitations if solved directly by traditional algorithms, so

we propose to solve the above optimization problem using a deep learning approach. The
main idea is to update the variables using neural network modules. As shown in Figure 1,
we construct a deep neural network based on (9), which has three updating modules shown
in Figure 1b. A completed restoration module contains the U updating module and V
updating module for updating matrices U and V, and it contains the X updating module
for restoring the incomplete matrix.
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Figure 1. The structure of the DMFCNet network. (a) Network architecture. (b) Restoration Module.
(c) U and V updating modules.

3.1.1. U and V Updating Modules

In our proposed DMFCNet method, the input matrix is first processed by U and V
updating modules. According to the analysis in [36], U and V are updated as follows:{

U1 = η(X0 + S0)V0(ηV0
TV0 + I)

−1
,

V1 = η(X0 + S0)
TU1(ηU1

TU1 + I)
−1

.
(10)

Note that the variables (X0 + S0)V0 and V0 are included in the update formula of
U. So, we choose to add them to the input of the U updating module. In order to learn
the maximum convolutional features, U0 is also added as an input to the U updating
module. The auxiliary matrix variable S0 in (10) is initialized as a zero matrix; thus, it can
be removed in the U and V updating modules. Based on (10), for the U updating module,
we concatenate variables X0V0, V0 and U0 in the channel dimension as input and use a
convolutional neural network to update the variable. The updating of the V matrix follows
a similar procedure.

Once U1 is updated, we concatenate X0
TU1, U1 and V0 channel-wise to obtain V1.

Thus, the updating formulas for U and V matrices are:{
U1 = CU(X0V0, V0, U0),
V1 = CV(X0

TU1, U1, V0),
(11)

where C denotes the convolutional neural network.
We observe that the final matrix recovery performance is sensitive to the initialization

of U and V. To address this issue, we propose to perform the following SVD of X0 ∈ Rm×n

to initialize U and V:

X0 = UΣVT , Σ = diag({σ̃i}1≤i≤d). (12)

where Σ ∈ Rd×d is a diagonal matrix with σ̃1, . . . , σ̃d on the diagonal and zeros elsewhere,
d = min(m, n). σ̃i > 0 is the i-th singular value of matrix X0. U ∈ Rm×d and V ∈ Rn×d

are left and right singular vectors, respectively. Then, U0 ∈ Rm×r and V0 ∈ Rn×r are
initialized by

U0 = Ũ
√

Σ̃, V0 = Ṽ
√

Σ̃, (13)

where Ũ ∈ Rm×r are the first r columns of U, Ṽ ∈ Rn×r are the first r columns of V, and
Σ̃ ∈ Rr×r are the first r rows and first r columns of Σ. In this paper, we set m = n.
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In order to maintain the maximum amount of information during the matrix com-
pletion process, a dense convolutional structure is used in the network, and a residual
structure is added to improve the stability of the training process. The Mish function is
chosen as the activation function due to its smoothness at almost all points of the curve,
which allows more information to flow through the neural network. A batch normalization
operation (BN) layer is added between convolution layers to speed up the convergence.

3.1.2. X Updating Module

After obtaining U1 and V1 using the U and V updating modules, the Lagrange multi-
plier S1 can be updated using following formula:

S1 = µ(X0 −U1V1
T) (14)

Then, they will be fed into the X updating module, and X̂1 will be obtained by the
following equation.

X̂1 = U1V1
T − S1. (15)

To improve the reconstruction performance, we further process X̂1 by an autoencoder
network. As shown in Figure 1b, the network contains four convolution layers, a batch
normalization module, and the last activation layer with the tanh function. For image
in-painting applications, to enhance the smoothness of the recovered image, we incorporate
the following weighted averaging operation into the network

X1 = (1−Ψ)� X̃1 +
Ψ� X̃1 + γΨ� X0

1 + γ
. (16)

where X0 is the initial matrix and γ is a weighting parameter. When a pixel value is missing
at a point in the image, the output of the network is assigned directly to the value at the
corresponding location. Otherwise, a weighted average between the output of the network
and the pixel value of the corresponding location of the input image are used to obtain the
final reconstructed pixel value of that location.

3.2. Pre-Filling

Note that the initialization of U and V in the network is obtained from the original
incomplete matrix using SVD, so the missing entries in the matrix need to be filled with
predefined constants before the singular value decomposition. However, the network
is extremely sensitive to the pre-filled constants and will directly affect the in-painting
performance if not filled properly.

To reduce the effect of filling random constants, we first obtain X0 by replacing the
missing values of the observation matrix with predefined constants such as 255. Then, the
singular value decomposition operation is performed on X0 to obtain U0 and V0 and input
them into the restoration module for preliminary restoration to obtain X1, and the output
matrix Xnew can be calculated by:

Xnew = (1−Ψ)� X1 + Ψ� X0. (17)

This step is the preliminary inference of the missing values by the restoration module.
The predicted values are filled to the missing positions of the observation matrix, and
then, the filled Xnew is used as the input to the second restoration module. Since U0 and
V0 in the second restoration module are obtained by the singular value decomposition of
the new X0, which can largely eliminate the negative effects of using random constant
filling, better restoration results can be obtained by the second restoration module. The
following Algorithm 1 summarizes the DMFCNet-1 algorithm for network-based pre-
filling operations.
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Algorithm 1 DMFCNet-1

Require: XΩ: original incomplete image matrix; Ω: the position of the observed entries;
non-negative parameters r, µ and λ.

Ensure: the restored matrix Xnew.
1: Init: X0 ∈ Rm×n: The matrix using constant 255 to replace missing values of XΩ;

Ψ ∈ {0, 1}m×n : Ψij =

{
1, i f (i, j) ∈ Ω
0, i f (i, j) /∈ Ω ;

2: for i = 1:2 do
3: Compute U0 ∈ Rm×r and V0 ∈ Rn×r from X0 using (12) and (13);
4: U1 ← CU(X0V0, V0, U0);
5: V1 ← CV(X0

TU1, U1, V0);
6: X̂1 ← U1V1

T − µ(X0 −U1V1
T);

7: X̃1 ← AutoEncoder(X̂1);
8: X1 ← (1−Ψ)� X̃1 +

Ψ�X̃1+λΨ�X0
1+λ ;

9: Xnew ← (1−Ψ)� X1 + Ψ� X0;
10: X0 ← Xnew;
11: end for
12: return Xnew;

However, a pre-filling-based neural network requires a singular value decomposition,
which will take a relatively long time. To improve the running time, according to the
structural characteristics of the image, a new pre-filling algorithm, called Nearest Neighbor
Mean Filling (NNMF), is presented. It takes the data observed near the location of the
missing value as a reference to infer the missing value.

It is assumed that we need to fill the data at the location (i, j) of the missing values.
Let Vlij be the value of the first non-missing position traversed from position (i, j) to the
left, Vrij be the value of the first non-missing position traversed from position (i, j) to the
right, and similarly, let Vtij be the value of the first non-missing position traversed from
position (i, j) to the top and Vbij be the value of the first non-missing position traversed
from position (i, j) to the bottom. Then, the formula for filling the data Vij at the location
(i, j) of the missing value is as follows.

Vij =
(Vlij + Vrij + Vtij + Vbij)

4
. (18)

It is a very time-consuming operation to traverse the location of each missing value
and then find the four values in turn. In this paper, we design a calculation procedure
as shown in Figure 2, which can efficiently calculate the fill values at the locations of all
missing data by dynamic programming. As shown in Figure 2, the missing values at the
edges are first filled in a clockwise direction; then, four matrices are generated in four
directions, and finally, the four generated matrices are summed to find the mean value to
obtain the filled matrix.
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Figure 2. Schematic diagram of the operation of the NNMF algorithm.

Algorithm 2 summarizes the DMFCNet-2 algorithm based on NNMF for pre-filling
operation. The matrix obtained from the pre-filling operation of the observation matrix
using the NNMF algorithm is used as the input of the restoration module. Based on the two
pre-filling methods, the network framework of the DMFCNet-1 algorithm and DMFCNet-2
algorithm proposed in this paper is shown in Figure 1a. During training, only the weighting
parameters in the convolutional networks CU and CV and the autoencoder are optimized.

Algorithm 2 DMFCNet-2

Require: XΩ: original incomplete image matrix; Ω: the position of the observed entries;
non-negative parameters r, µ and λ.

Ensure: the restored matrix Xnew.
1: Init: X0 ∈ Rm×n: The matrix obtained by pre-filling XΩ using NNMF algorithm;

Ψ ∈ {0, 1}m×n : Ψij =

{
1, i f (i, j) ∈ Ω
0, i f (i, j) /∈ Ω ;

2: Compute U0 ∈ Rm×r and V0 ∈ Rn×r from X0 using (12) and (13);
3: U1 ← CU(X0V0, V0, U0);
4: V1 ← CV(X0

TU1, U1, V0);
5: X̂1 ← U1V1

T − µ(X0 −U1V1
T);

6: X̃1 ← AutoEncoder(X̂1);
7: X1 ← (1−Ψ)� X̃1 +

Ψ�X̃1+λΨ�X0
1+λ ;

8: Xnew ← (1−Ψ)� X1 + Ψ� X0;
9: return Xnew;

3.3. Loss Function

The general convolutional neural network, whose network interior is equivalent to a
black box for people, can only be globally optimized by constraining the final output of
the network to the whole network weights. In contrast, each variable in the interpretable
network built based on the iterative model in this paper is of practical significance. So, in
addition to restricting the final output X1 of the restoration module in the loss function, this
paper also restricts the intermediate variables in the module, which can make its training
more stable and efficient. Frobenius parametrization is used to restrict the variables in the
network, from which the loss function of a recovery module can be derived as follows:

L(Θ) = 1
B

B
∑

b=1
((‖Xb(Θ)−Yb‖2

F) + α(
∥∥X̂b(Θ)−Yb

∥∥2
F)

+β(
∥∥∥Ub(Θ)Vb(Θ)T −Yb

∥∥∥2

F
)).

(19)

where Θ is the network parameter of the restoration module, B is the number of samples
input to the network, and α and β are the regular term coefficients. Xb denotes the output
X1 of the b-th sample in the restoration module and X̂b is the input X̂1 of the b-th sample of
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the autoencoder in the X updating module. Ub and Vb are the U1 and V1 of the b-th sample
output, and Yb is the complete image corresponding to the b-th sample.

3.4. Training

According to the diversity of the VOC dataset [39,40], this dataset is selected as the
training sample to adapt to the recovery task of more complex images. Firstly, the image is
converted into a grayscale image of size 256 × 256, and then, some random pixel values in
the image are replaced by 255.

The hyperparameters in training are set as follows. The first 50 singular values are
taken when initializing the U and V matrices. Adam is chosen as the optimizer for training
the network, and the learning rate is set to 1× 10−3, which is reduced to 1× 10−4 after
stabilization and set to 1× 10−5 for global fine-tuning. µ is set to 1× 10−3 and γ is set to 10
in the X updating module. The loss function canonical term coefficients α and β are set to
0.1 and 0.01, respectively. The autoencoder in the X updating module contains a total of
three hidden layers with the dimensions (H

2 , W
2 , 32), (H

4 , W
4 , 64) and (H

2 , W
2 , 32).

To make it more targeted for the recovery of images with missing elements, two
models are trained for each of the DMFCNet-1 and DMFCNet-2 networks. The first model
uses a dataset containing images with a 30% to 50% missing rate, so this model is mainly
used for recovering images with a 50% missing rate and below. The second model uses
a dataset containing images with a 50% to 70% missing rate, and this model is used to
recover images with a 50% to 70% missing rate.

Specifically, DMFCNet-1 is trained with one restoration module as the training unit.
The first restoration module is trained, and the weights of the first restoration module
are frozen after the training is completed. Then, the second restoration module is added
and trained, and the weights of the first repair module are unfrozen for global fine-tuning
when the training of the second restoration module is completed. Figure 3 shows the loss
convergence during the training period of the two models and the reconstruction results of
the test data.
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Figure 3. The loss convergence of the network and the reconstruction results. (a) Loss convergence of
the training. (b) Loss convergence of the test set. (c) PSNR values of the reconstructed images in the
test set. (d) SSIM values of the reconstructed images in the test set.
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4. Experiments

In this section, we first compare the two versions of the DMFCNet model proposed in
this paper in image in-painting tasks, and then, we compare them with six popular matrix
completion methods. These methods are matrix factorization (MF) by LmaFit [21], nuclear
norm minimization (NNM) by IALM [16], truncated nuclear norm minimization (TNNM)
by ADMM [8], DLMC method-based deep learning [28], NC-MC method [41], and LNOP
method by ADMM [42]. The peak signal-to-noise ratio (PSNR) [43] and structural similarity
(SSIM) [44] were used in the experiments to evaluate the quality of the restored images.

4.1. Datasets

In this part, we discuss how to select the dataset for training the model. The method
proposed requires pre-training the network model parameters, which requires a large
number of datasets for training. We hope that the proposed algorithm is not only limited
to simple low-rank images but includes both low-rank images and more complex images.
Therefore, two datasets are chosen to train the model and test the effect of different datasets
on the image restoration performance. The first dataset is the CelebFaces Attributes Dataset
(CelebA) [45], which is a large-scale face attribute dataset with over 200,000 celebrity
images. These images contain some degree of pose variation but remain relatively simple
and homogeneous images overall. The second dataset is the VOC dataset [39,40], which has
a more diverse set of images, including simple low-rank images as well as complex images.

Two datasets are used to train the DMFCNet-2 model, where the images of the datasets
are converted to grayscale images of size 256 × 256, and 30% of random pixel information
will be discarded. The test results of the model on complex images obtained by training
with different datasets are shown in Figure 4. It can be seen from Figure 4 that the training
loss when training the network using the CelebA dataset is smaller than that when training
the network using the VOC dataset because of its relative simplicity. However, the loss and
reconstruction performance of the network trained with the VOC dataset outperformed the
network trained with the CelebA dataset when tested on complex images. Therefore, to
improve the image restoration performance, we recommend using a more targeted dataset.
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Figure 4. Test results of the model on complex images obtained by training with different datasets.
(a) Average PSNR values of recovered images (b) Average SSIM values of recovered images.

4.2. Experimental Settings

To make the best performance of six methods for comparison, the hyperparameters
of each method were chosen as follows. In MF, since automatic estimation often leads
to poor performance in image restoration problems, the fixed number of ranks is chosen
for different missing rates, with the rank set to 30 for restoring images containing 20% to
30% missing rates, 20 for restoring images containing 40% to 50% missing rates, and 10
for restoring images containing 60% to 70% missing rates and text masks. In TNNM, the
parameter r is uniformly set to 10. In DLMC, the weight decay penalty is set to 0.01, the
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network contains three hidden layers, and the number of hidden cells is set to [100 50 100].
p is set to 0.7 in LNOP. Other parameters follow the settings in the original paper.

4.3. Image In-Painting

At first, DMFCNet-1 and DMFCNet-2 are compared, which includes the preliminary
restoration results (pre-filling results) and the final restoration results. Figures 5 and 6
show the restoration results of the two models restoring images containing 40% and 60%
missing rates. As shown in Figures 5e and 6e, the image pre-filled with NNMF can achieve
relatively good results in the relatively smooth areas of the image, but it produces more
obvious vertical stripes in the areas with large variations in pixel values. Figures 5f and 6f
show that the vertical stripes of the restored image using the DMFCNet-2 model have
disappeared a lot, and the overall image is smoother, but there are still some spots left
by the pre-filling of the image with NNMF. The DMFCNet-1 model uses the restoration
module for the preliminary restoration, as shown in Figures 5b and 6b. As can be seen,
although there is no vertical stripe, the image has some white spots and is rougher overall.
Figures 5c and 6c show the final restoration result of DMFCNet-1.

(a) (b) (c)

(d) (e) (f)

Figure 5. DMFCNet-1 and DMFCNet-2 restore image containing 40% missing rate. (a) Original
image. (b) Preliminary restoration result of DMFCNet-1. (c) Final restoration result of DMFCNet-1.
(d) Partially missing image. (e) Preliminary restoration result of DMFCNet-2. (f) Final restoration
result of DMFCNet-2.

It can be seen that after the second restoration module, the image was restored more
carefully based on the preliminary restoration. The white spots in the image basically
disappear, but the overall image is a bit rougher than the restored result of DMFCNet-2. In
addition, Table 1 shows the recovery of the two methods at different missing rates, which
contains a performance comparison of the preliminary restoration ability of the two models.
It can be seen from Table 1 that the DMFCNet-2 model with pre-filling using NNMF is
better at a low missing rate, but the preliminary restoration of DMFCNet-1 at a high missing
rate gives stronger results than that of pre-filling using NNMF. However, the recovery of
DMFCNet-2 is better than that of DMFCNet-1 because the images obtained by NNMF are
smoother overall.
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(a) (b) (c)

(d) (e) (f)

Figure 6. DMFCNet-1 and DMFCNet-2 restore image containing 60% missing rate. (a) Original
image. (b) Preliminary restoration result of DMFCNet-1. (c) Final restoration result of DMFCNet-1.
(d) Partially missing image. (e) Preliminary restoration result of DMFCNet-2. (f) Final restoration
result of DMFCNet-2.

Table 1. Restoration results of two methods of restoration containing different missing rates, each
method contains preliminary restoration results (left) and final restoration results (right).

Missing Rate Images NO.
PSNR/SSIM

DMFCNet-1 DMFCNet-2

30%

1 29.89/0.904 33.29/0.956 31.11/0.952 34.68/0.971

2 27.63/0.915 30.59/0.958 28.08/0.953 31.94/0.974

3 30.80/0.908 33.44/0.959 32.21/0.963 35.29/0.973

4 30.10/0.902 32.56/0.946 31.92/0.946 33.70/0.960

5 32.52/0.875 36.47/0.956 35.59/0.968 38.32/0.976

Average 30.19/0.901 33.27/0.955 31.78/0.956 34.78/0.971

50%

1 27.46/0.847 30.04/0.914 27.24/0.879 30.30/0.929

2 23.98/0.863 27.23/0.929 23.24/0.856 27.74/0.939

3 27.97/0.852 30.19/0.921 27.77/0.896 31.00/0.938

4 27.56/0.831 29.73/0.898 28.18/0.873 30.04/0.908

5 29.85/0.804 33.54/0.919 31.58/0.923 34.39/0.947

Average 27.37/0.840 30.14/0.916 27.60/0.885 30.69/0.932
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Table 1. Cont.

Missing Rate Images NO.
PSNR/SSIM

DMFCNet-1 DMFCNet-2

70%

1 24.92/0.763 26.23/0.834 23.79/0.729 26.12/0.829

2 21.65/0.781 23.43/0.860 19.12/0.665 22.29/0.810

3 25.02/0.770 26.62/0.861 23.94/0.744 26.66/0.853

4 24.93/0.721 26.47/0.801 24.95/0.739 26.62/0.808

5 27.70/0.746 29.82/0.859 28.14/0.832 31.47/0.884

Average 24.84/0.756 26.51/0.843 23.99/0.742 26.63/0.837

The next step is to compare the proposed methods with other methods of matrix
completion. Five images as shown in Figure 7 are selected for the comparison experiments.
Two masks are considered in the experiments: the first one is a random pixel mask, where
20% to 70% of the pixels in the image are removed randomly. The second one is a text mask
containing English words. Although the DMFCNet-1 model and DMFCNet-2 model are
not trained to restore images that contain text masks, the DMFCNet-2 network is used to
compare with other methods in the tests containing text masks because of the characteristics
of NNMF.

(a) Lena (b) Butterfly (c) Peppers (d) Couple (e) Bridge

Figure 7. Five grayscale images of 256 × 256 size for comparison experiments, numbered 1–5 from
left to right.

Figures 8–10 show the original images, images containing random pixel masks, and
examples of restored images obtained by each of the six methods. Here, 30%, 50% and 70%
of the pixels in the original image are removed randomly, respectively. From the images,
it can be visually seen that the images obtained by restoration through the MF method
are rougher than those obtained by other methods, and DMFCNet-1 and DMFCNet-2
have the best restoration results. We also conducted more comprehensive tests on other
images, and the experimental results are shown in Table 2. Table 2 shows the PSNR values
and SSIM values of the images obtained from the recovery of five images containing a
20% to 70% missing rate by six methods, respectively. Figure 11 illustrates the average
recovery performance for five images with different missing rates using the eight methods.
Figure 12 shows the execution time of the eight methods to recover grayscale images of
size 256 × 256 containing different missing rates. Meanwhile, Table 3 shows the average
running times of the eight methods for recovering images of different sizes containing
different missing rates.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Image recovery containing a 30% random pixel mask. (a) Complete image of
size 256 × 256. (b) Partially missing image (10.52 dB/0.127). (c) Restored result by MF
in 0.099 s (27.42 dB/0.822/0.099 s). (d) Restored result by NNM (29.37 dB/0.873/5.488 s).
(e) Restored result by TNNM (29.676 dB/0.883/2.669 s). (f) Restored result by DLMC (29.354
dB/0.867/15.181 s). (g) Restored result by NC-MC (29.69 dB/0.893/5.399 s). (h) Restored result
by LNOP (29.816 dB/0.881/2.391 s). (i) Restored result by DMFCNet-1 (33.29 dB/0.956/0.388 s).
(j) Restored result by DMFCNet-2 (34.68 dB/0.971/0.345 s).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Image recovery containing a 50% random pixel mask. (a) Complete image of
size 256 × 256. (b) Partially missing image (8.29 dB/0.076). (c) Restored result by MF
(25.69 dB/0.784/0.072 s). (d) Restored result by NNM (26.82 dB/0.805/4.297 s). (e) Restored re-
sult by TNNM (27.264 dB/0.820/3.094 s). (f) Restored result by DLMC (27.08 dB/0.812/17.956 s).
(g) Restored result by NC-MC (27.63 dB/0.837/3.473 s). (h) Restored result by LNOP
(27.29 dB/0.816/2.105 s). (i) Restored result by DMFCNet-1 (29.73 dB/0.898/0.403 s). (j) Restored
result by DMFCNet-2 (30.04 dB/0.908/0.346 s).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Image recovery containing a 70% random pixel mask. (a) Complete image of
size 256 × 256. (b) Partially missing image (4.61 dB/0.024). (c) Restored result by MF
(24.86 dB/0.614/0.034 s). (d) Restored result by NNM (25.78 dB/0.683/4.836 s). (e) Restored re-
sult by TNNM (26.126 dB/0.664/8.630 s). (f) Restored result by DLMC (27.057 dB/0.719/19.767 s).
(g) Restored result by NC-MC (26.09 dB/0.663/2.266 s). (h) Restored result by LNOP
(26.53 dB/0.68/1.808 s). (i) Restored result by DMFCNet-1 (29.82 dB/0.859/0.449 s). (j) Restored
result by DMFCNet-2 (31.47 dB/0.884/0.339 s).
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Figure 11. The average restoration performance of the eight methods for five images with different
missing rates. The PSNR and SSIM values of the recovered images are shown on the (a) and
(b), respectively.
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Table 2. PSNR and SSIM values of the five images recovered by eight methods containing 20% to 70% missing rate, respectively. The best results are highlighted
in bold.

Missing Rate Images NO.
PSNR/SSIM

MF [21] NNM [16] TNNM [8] DLMC [28] NC-MC [41] LNOP [42] DMFCNet-1 DMFCNet-2

20%

1 29.72/0.890 32.06/0.929 32.30/0.935 31.22/0.913 32.05/0.939 32.55/0.934 35.60/0.972 37.57/0.984

2 26.10/0.831 29.24/0.896 29.60/0.904 29.09/0.888 29.85/0.912 30.12/0.906 33.35/0.972 35.03/0.985

3 30.90/0.901 33.26/0.939 33.54/0.943 32.70/0.933 33.37/0.948 33.92/0.945 35.77/0.973 37.69/0.984

4 31.99/0.938 33.39/0.951 33.63/0.954 32.26/0.938 33.73/0.959 33.81/0.955 34.97/0.969 36.20/0.978

5 35.71/0.939 37.31/0.959 37.71/0.961 36.92/0.955 37.55/0.967 37.87/0.962 39.04/0.972 41.08/0.986

Average 30.88/0.900 33.05/0.935 33.36/0.940 32.44/0.926 33.31/0.945 33.65/0.940 35.75/0.972 37.51/0.983

30%

1 27.42/0.822 29.37/0.873 29.68/0.883 29.35/0.867 29.69/0.893 29.82/0.881 33.29/0.956 34.68/0.971

2 23.91/0.762 25.80/0.916 26.14/0.827 26.46/0.825 26.70/0.842 26.54/0.827 30.59/0.958 31.94/0.974

3 28.63/0.845 30.29/0.885 30.68/0.894 30.35/0.891 30.88/0.909 31.02/0.896 33.44/0.959 35.29/0.973

4 29.54/0.895 30.72/0.913 31.07/0.919 30.34/0.903 31.31/0.927 31.15/0.920 32.56/0.946 33.70/0.960

5 33.32/0.904 34.48/0.931 34.87/0.932 34.68/0.931 35.03/0.944 35.05/0.934 36.47/0.956 38.32/0.976

Average 28.56/0.846 30.13/0.904 30.49/0.891 30.24/0.883 30.72/0.903 30.72/0.892 33.27/0.955 34.78/0.971

40%

1 25.84/0.771 27.13/0.804 27.43/0.818 27.40/0.799 27.70/0.836 27.56/0.812 31.00/0.932 32.10/0.952

2 21.04/0.655 23.16/0.718 23.44/0.732 23.93/0.730 23.96/0.740 23.87/0.732 28.68/0.937 29.17/0.953

3 26.17/0.777 27.65/0.816 28.07/0.828 28.36/0.839 28.56/0.854 28.38/0.829 31.60/0.939 32.50/0.956

4 27.36/0.842 28.69/0.865 29.04/0.874 28.79/0.863 29.42/0.889 29.14/0.874 30.57/0.916 31.81/0.940

5 30.72/0.852 32.07/0.889 32.51/0.893 33.02/0.900 32.80/0.911 32.63/0.895 34.23/0.930 36.12/0.962

Average 26.23/0.779 27.74/0.818 28.10/0.830 28.30/0.826 28.49/0.846 28.32/0.828 31.21/0.931 32.34/0.953

50%

1 24.01/0.685 25.07/0.717 25.37/0.731 25.10/0.703 25.54/0.746 25.42/0.722 30.04/0.914 30.30/0.929

2 19.65/0.588 20.95/0.626 21.27/0.635 21.75/0.639 21.56/0.634 21.57/0.632 27.23/0.929 27.74/0.939

3 24.60/0.713 25.40/0.733 25.96/0.757 26.42/0.772 26.50/0.790 26.12/0.751 30.19/0.921 31.00/0.938

4 25.69/0.784 26.82/0.805 27.26/0.819 27.08/0.812 27.63/0.837 27.29/0.816 29.73/0.898 30.04/0.908

5 29.26/0.798 29.92/0.839 30.54/0.842 31.19/0.858 31.06/0.867 30.60/0.844 33.54/0.919 34.39/0.947

Average 24.64/0.714 25.63/0.744 26.08/0.757 26.31/0.757 26.46/0.775 26.20/0.753 30.14/0.916 30.69/0.932
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Table 2. Cont.

Missing Rate Images NO.
PSNR/SSIM

MF [21] NNM [16] TNNM [8] DLMC [28] NC-MC [41] LNOP [42] DMFCNet-1 DMFCNet-2

60%

1 22.27/0.618 23.21/0.624 23.50/0.642 23.31/0.623 23.53/0.643 23.52/0.631 28.17/0.889 28.27/0.893

2 16.75/0.468 18.81/0.518 19.04/0.527 19.36/0.530 18.39/0.481 19.28/0.524 25.48/0.907 25.34/0.901

3 21.99/0.607 23.49/0.641 24.11/0.666 24.43/0.684 24.34/0.673 24.22/0.654 28.94/0.904 29.05/0.907

4 24.04/0.704 24.94/0.722 25.33/0.739 25.37/0.735 25.55/0.754 25.41/0.736 28.23/0.862 28.45/0.868

5 26.44/0.692 28.15/0.770 28.71/0.869 29.54/0.810 29.17/0.796 28.83/0.773 32.08/0.901 32.88/0.924

Average 22.30/0.618 23.72/0.655 24.14/0.689 24.40/0.676 24.20/0.669 24.25/0.724 28.58/0.893 28.80/0.900

70%

1 21.04/0.520 21.41/0.515 21.82/0.532 21.50/0.494 21.17/0.476 21.85/0.518 26.23/0.834 26.12/0.829

2 15.50/0.384 16.77/0.404 16.84/0.405 17.04/0.406 15.10/0.312 17.25/0.412 23.43/0.860 22.29/0.810

3 20.80/0.520 21.32/0.515 21.99/0.539 22.19/0.549 21.17/0.481 22.09/0.531 26.62/0.861 26.66/0.853

4 22.59/0.617 23.16/0.623 23.38/0.636 23.50/0.642 23.12/0.620 23.57/0.634 26.47/0.801 26.62/0.808

5 24.86/0.614 25.78/0.683 26.12/0.664 27.06/0.719 26.09/0.663 26.53/0.680 29.82/0.859 31.47/0.884

Average 21.00/0.531 21.69/0.548 22.03/0.555 22.26/0.562 21.33/0.510 22.26/0.555 26.51/0.843 26.63/0.837
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Table 3. Average running time (in seconds) for eight methods to restore images containing different
missing rates and different sizes.

Image Size Missing Rate MF NNM TNNM DLMC NC-MC LNOP DMFCNet-1 DMFCNet-2

256 × 256

30% 0.095 4.905 2.974 16.129 5.651 2.384 0.390 0.341

50% 0.096 4.340 3.455 17.429 3.507 2.165 0.420 0.339

70% 0.130 3.534 6.816 18.644 2.260 1.649 0.436 0.329

512 × 512

30% 0.288 23.380 12.416 59.581 48.207 9.120 1.763 1.019

50% 0.199 18.998 17.128 69.528 23.970 8.302 1.661 1.015

70% 0.116 16.193 18.801 78.087 12.122 7.415 1.769 1.050
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Figure 12. Execution times of eight methods to recover grayscale images of size 256 × 256 containing
different missing rates. (a) Lena. (b) Butterfly. (c) Bridge.

The graphical data show that MF(LMaFit) takes the shortest time, which is followed
by the methods proposed in this paper. Due to the superiority of deep learning, using the
trained network model for image restoration can significantly reduce the time required
for the restoration task; even if the missing rate increases gradually, it does not increase
the time required for restoration. In contrast, the deep learning-based DLMC method
takes the longest time because it needs to optimize the network weights, and its running
time growth rate is the largest among all methods when the image size increases. From
the overall graphical data, it can be seen that DMFCNet-1 and DMFCNet-2 can achieve
better recovery performance than competing methods in the shortest time, both for images
containing small and large missing rates. Especially when the missing rate is large, the
recovery performance of other methods decreases faster, but the proposed methods can
still achieve satisfactory results.

Figure 13 shows the examples of the images containing text masks and grid masks
and the recovered images obtained by the seven methods. Table 4 shows the restoration
results of the seven methods on the five images containing text masks and grid masks. The
data in Table 4 show that the proposed DMFCNet-2 network, even though it is not trained
to recover in the case of text-masked and grid-masked images, still performs well due to
the characteristics of NNMF.
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Table 4. Restoration results of seven methods on five images containing text mask and grid mask.

Mask Type Images NO.
PSNR/SSIM

MF NNM TNNM DLMC NC-MC LNOP DMFCNet-2

Text Mask

1 30.33/0.936 32.37/0.950 32.52/0.952 31.64/0.942 32.42/0.953 32.65/0.953 37.13/0.985

2 24.80/0.891 28.74/0.926 28.79/0.929 28.47/0.920 29.25/0.932 29.57/0.934 34.63/0.984

3 30.27/0.930 31.97/0.947 32.49/0.956 32.27/0.948 32.75/0.958 32.57/0.955 35.17/0.985

4 33.18/0.957 35.16/0.968 35.69/0.971 34.35/0.960 35.54/0.972 35.65/0.971 37.44/0.983

5 34.30/0.949 37.54/0.975 38.31/0.975 37.96/0.974 38.70/0.979 38.45/0.977 40.82/0.990

Average 30.58/0.933 33.16/0.953 33.56/0.957 32.94/0.949 33.73/0.959 33.78/0.958 37.04/0.985

Grid Mask

1 29.19/0.899 32.95/0.942 32.96/0.944 33.22/0.928 32.62/0.943 33.20/0.943 37.11/0.983

2 23.22/0.812 29.30/0.914 29.52/0.918 28.92/0.902 29.75/0.917 30.11/0.919 34.34/0.986

3 28.41/0.882 33.17/0.946 33.57/0.951 32.44/0.940 33.41/0.954 33.89/0.951 37.67/0.986

4 31.01/0.933 34.39/0.962 34.59/0.964 33.39/0.952 34.71/0.966 34.72/0.964 36.75/0.980

5 33.14/0.918 37.45/0.966 37.88/0.967 36.46/0.958 37.78/0.972 38.01/0.968 41.16/0.988

Average 28.99/0.889 33.45/0.946 33.70/0.949 32.89/0.936 33.65/0.950 33.99/0.949 37.41/0.985

(a) (b) (c) (d) (e) ( f ) (g) (h)

Figure 13. Image recovery with text mask and grid mask. (a) Images with masks. (b) Restored results
by MF. (c) Restored results by NNM. (d) Restored results by TNNM. (e) Restored results by DLMC.
(f) Restored results by NC-MC. (g) Restored results by LNOP. (h) Restored results by DMFCNet-2.

5. Conclusions

In this work, a new end-to-end neural network structure for image restoration called
DMFCNet is proposed in this paper by combining deep learning with traditional matrix
complementation algorithms. Experimental results on data containing random masks and
other masks show that DMFCNet performs optimally in image restoration compared to the
currently popular methods, and it remains stable even when it contains high missing rates.

Although the methods have good performance, there is still room for further improve-
ment. For example, when restoring images containing a high missing rate, the restoration
result of DMFCNet-1 contains white spots and the restoration result of DMFCNet-2 con-



Entropy 2022, 24, 1500 20 of 21

tains vertical stripes. Therefore, how to combine these two restoration results to obtain
better restoration results is a problem that needs to be investigated in the future. In addition,
the adjustment of hyperparameters in this method is also one of the important elements
of the next work. A variety of other experiments will be carried out in the future in order
to apply the methods of this paper to a wider range of experiments, such as larger image
sizes (e.g., 512 × 512 pixels) or missing data due to other factors (e.g., image processing
or transmission).
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