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Abstract: Blaum–Roth Codes are binary maximum distance separable (MDS) array codes over
the binary quotient ring F2[x]/(Mp(x)), where Mp(x) = 1 + x + · · · + xp−1, and p is a prime
number. Two existing all-erasure decoding methods for Blaum–Roth codes are the syndrome-based
decoding method and the interpolation-based decoding method. In this paper, we propose a modified
syndrome-based decoding method and a modified interpolation-based decoding method that have
lower decoding complexity than the syndrome-based decoding method and the interpolation-based
decoding method, respectively. Moreover, we present a fast decoding method for Blaum–Roth codes
based on the LU decomposition of the Vandermonde matrix that has a lower decoding complexity
than the two modified decoding methods for most of the parameters.

Keywords: distributed storage; Blaum–Roth codes; all-erasure decoding; decoding complexity

1. Introduction

Redundancy is necessary in storage systems in order to provide high data reliability
in case of disk failures [1]. Replication and erasure codes are two main ways of including
redundancy. The idea of replication is that the data in one disk are copied to multiple disks.
The storage system replaces damaged disks with their copies when some disks are erased.
It is fast to repair the erased disks but requires a lot of storage space. In contrast, erasure
codes provide higher data reliability with a small storage cost.

Maximum distance separable (MDS) codes [2] are typical erasure codes that have
optimal tradeoff between storage cost and data reliability, i.e., they can achieve the minimum
storage cost given a level of data reliability. Binary MDS codes are special MDS codes that
have lower computational complexity in the encoding/decoding procedures, since only
XORs and cyclic-shift operations are involved. Some existing constructions of binary MDS
codes are EVENODD codes [3,4], RDP codes [5], and X-codes [6,7], which can correct any
two-column (we use “column" and “disk" interchangeably in this paper) erasures. RTP
codes [8], Star codes [9,10], and extended EVENODD codes [11–14] can correct any three-
column erasures. With the rapid increase in the data scale in storage systems [15], we need
to design binary MDS codes that can correct any number of erasures as well as efficient
encoding/decoding methods. Graftage codes [16] can achieve various tradeoffs between
storage and repair bandwidth, while we focus on efficient decoding methods of binary
MDS codes. Blaum–Roth codes [17] are this type of code, which are designed over the ring
Rp = F2[x]/(Mp(x)), where Mp(x) = 1 + x + · · ·+ xp−1, and p is a prime number.

When some columns are erased, the syndrome-based decoding method [17] and
the interpolation-based decoding method [18] have been proposed to recover the erased
columns. In the decoding methods [17,18], there are three basic operations over the ringRp:
(i) addition, (ii) multiplication of a power of x and a polynomial, and (iii) division of factor
1 + xb with 1 ≤ b ≤ p− 1. It is shown in the decoding methods [17,18] that we can first take
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the operations (i) and (ii) modulo 1 + xp and then take the results of modulo Mp(x), while
operation (iii) in the decoding methods [17,18] is directly taken as modulo Mp(x).

In this paper, we show that we can also compute operation (iii) as modulo 1 + xp,
which has lower computational complexity than modulo Mp(x). We propose modified
decoding methods for the two existing decoding methods [17,18] that have a lower decoding
complexity than the original decoding methods by computing operation (iii) as modulo 1+ xp

instead of modulo Mp(x). The reason our modified decoding methods have much lower
decoding complexity than the decoding methods [17,18] is twofold. First, all the operations
in our decoding methods are taken as modulo 1+ xp, while the existing decoding methods
execute the divisions as modulo Mp(x). Second, we propose new algorithms in the decoding
procedure to reduce the number of operations. Please refer to Section 3 for our two modified
decoding methods. Moreover, the efficient LU decoding method [19] proposed for extended
EVENODD codes decoding can also be employed to recover the erased columns of Blaum–
Roth codes. We show that the LU decoding method has lower decoding complexity than
the two modified decoding methods for most of the parameters. We define the decoding
complexity as the total number of XORs required to recover the erased columns.

2. Blaum–Roth Codes

In this section, we first review the construction of Blaum–Roth codes [17] and then
show the efficient operations over the ring F2[x]/(1 + xp). Finally, we present an algorithm
to compute multiple multiplications, which have two nonzero terms over F2[x]/(1 + xp)
with lower complexity.

2.1. Construction of Blaum–Roth Codes [17]

The codeword of Blaum–Roth codes [17] is a (p − 1) × n array [ci,j]
p−2,n−1
i=0,j=0 that is

encoded from the (p − 1)k information bits, where ci,j ∈ F2 and n ≤ p. We can view
any k columns of the (p − 1) × n array as information columns that store the (p − 1)k
information bits and the other r = n− k columns as parity columns that store the (p− 1)r
parity bits. For j = 0, 1, . . . , n− 1, we represent the p− 1 bits in column j by a polynomial
cj(x) = ∑

p−2
i=0 ci,jxi. The (p− 1)× n array of Blaum–Roth codes is defined as(

c0(x) c1(x) · · · cn−1(x)
)
·HT

r×n ≡ 0 (mod Mp(x)),

where Hr×n is the r× n parity-check matrix

Hr×n =


1 1 1 · · · 1
1 x x2 · · · xn−1

...
...

...
. . .

...
1 x(r−1) x(r−1)2 · · · x(r−1)(n−1)

,

and 0 is the all-zero row of length r. We denote the Blaum–Roth codes defined above as
C(p, n, r). When p ≥ n and p is a prime number, we can always retrieve all the information
bits from any k out of the n polynomials [17], i.e., C(p, n, r) are MDS codes.

If we let cp−1,j = 0 for all j = 0, 1, . . . , n− 1, then C(p, n, r) can be equivalently defined
as the following p · r linear constraints. (The subscripts are taken as modulo p unless
otherwise specified.)

n−1

∑
j=0

c〈m−`·j〉p ,j = 0,

where 0 ≤ m ≤ p− 1 and 0 ≤ ` ≤ r− 1.
Suppose that the λ columns {ei}λ−1

i=0 are erased, where λ ≥ 2 and 0 ≤ e0 < · · · <
eλ−1 < n. Let the δ = n− λ surviving columns be {hj}δ−1

j=0 , where 0 ≤ h0 < · · · < hδ−1 < n

and {ei}λ−1
i=0 ∪ {hj}δ−1

j=0 = {0, 1, . . . , n− 1}. We have
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(
ce0(x) ce1(x) · · · ceλ−1(x)

)
·VT

λ×λ = S, (1)

over the ringRp, where Vλ×λ is the λ× λ square

Vλ×λ =

 1 1 1 ··· 1
xe0 xe1 xe2 ··· xeλ−1

...
...

...
. . .

...
x(λ−1)e0 x(λ−1)e1 x(λ−1)e2 ··· x(λ−1)eλ−1

,

and S =
(
S0(x) S1(x) · · · Sλ−1(x)

)
, where the λ syndrome polynomials are

S`(x) =
δ−1

∑
j=0

x`·hj chj
(x) for 0 ≤ ` ≤ λ− 1. (2)

In this paper, we present three efficient decoding methods to solve the linear systems
in Equation (1) over the ring F2[x]/(1 + xp).

2.2. Efficient Operations over F2[x]/(1 + xp)

It is more efficient to compute the multiplication of a power of x and division of the
factor 1 + xb over the ring F2[x]/(1 + xp) rather than over the ringRp: (i) Let a(x) ∈ Rp,
and the multiplication xi · a(x) over the ringRp in [17] (Equation (19)) takes p− 1 XORs,
while the multiplication xi · a(x) over the ring F2[x]/(1 + xp) takes no XORs [20]. (ii)
Let g(x), f (x) ∈ F2[x]/(1 + xp), where d is a positive integer, which is coprime with p.
Consider the equation

(1 + xd)g(x) ≡ f (x) (mod 1 + xp), (3)

where f (x) has an even number of nonzero terms. Given such f (x) and d, we can compute
g(x) by Lemma 1.

Lemma 1. [Lemma 8] in [21] The coefficients of g(x) in Equation (3) are given by

gp−1 = 0, gp−d−1 = fp−1, gd−1 = fd−1,

gp−(`+1)d−1 = gp−`d−1 + fp−`d−1 for ` = 1, 2, . . . , p− 3.

By Lemma 1, computing the division f (x)
1+xd takes p − 3 XORs, but we are not sure

whether g(x) has an even number of nonzero terms or not. If we want to guarantee that
g(x) has an even number of nonzero terms, we should use Lemma 2 to compute the
division f (x)

1+xd .

Lemma 2. [Lemma 13] in [20] The coefficients of g(x) in Equation (3) are given by

g0 = f2d + f4d + · · ·+ f(p−1)d,

g`d = g(`−1)d + f`d for ` = 1, 2, . . . , p− 1.

By Lemma 2, the division f (x)
1+xd takes 3p−5

2 XORs, and g(x) has an even number

of nonzero terms. However, computing the division f (x)
1+xd in [Corollary 2] in [17] takes

2(p− 1) XORs over the ring Rp, which is strictly larger than the decoding methods in
Lemmas 1 and 2. It is shown in [Theorem 5] in [19] that we can always solve the equations
in Equation (1) over the ring F2[x]/(1+ xp) of which all the solutions are congruent to each
other after modulo Mp(x). Therefore, we can first solve the equations in Equation (1) over
the ring F2[x]/(1 + xp) and then obtain the unique solution by taking modulo Mp(x) to
reduce the computational complexity.
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2.3. Multiple Multiplications over F2[x]/(1 + xp)

Note that in our modified syndrome-based decoding method and the modified
interpolation-based decoding method, we need to compute multiple polynomial mul-
tiplications, where each polynomial has two nonzero terms. Suppose that we want to
compute the following m multiplications

L(xτ) =
m−1

∏
i=0

(xτ − xξi ) (mod 1 + xp), (4)

where m is a positive integer, 0 ≤ τ ≤ p− 1 such that τ /∈ {ξ0, ξ1, . . . , ξm−1}, and 0 ≤ ξ0 <
· · · < ξm−1 < n.

We can derive from Equation (4) that

L(xτ) = xπ ·
m−1

∏
i=0

(1 + xdi ) (mod 1 + xp), (5)

where π = ∑m−1
i=0 min(τ, ξi) modulo p and di = |τ − ξi| for i = 0, 1, . . . , m− 1.

Algorithm 1 presents a method to simplify the multiplications in Equation (4). In
Algorithm 1, we use Γ` to denote the number of the polynomial 1 + x` in the multiplication
L(xτ). Note that we only need to count the number of 1 + x` for 1 ≤ ` ≤ p−1

2 , because
the equation 1 + x` ≡ x` · (1 + xp−`) modulo 1 + xp holds for p−1

2 < ` < n. If Γ` > 1,

then we have (1 + x`)Γ` = (1 + x`)Γ`−2b Γ`
2 c · (1 + x2`)b

Γ`
2 c. Therefore, we can always

merge Γ` multiplications (1 + x`)Γ` into Γ` − b Γ`
2 cmultiplications and the computational

complexity can be reduced with Algorithm 1. When Algorithm 1 is executed, all elements
of count-array Γ should be zero or one, and the length η of the final L(xτ) is between 1
and m.

Algorithm 1: Simplify the multiple multiplications.

Data: L(xτ) = ∏m−1
i=0 (xτ − xξi )

1 π ← ∑m−1
i=0 min(τ, ξi) (mod p);

2 count-array Γ[ p−1
2 ] = {Γ1, Γ2, . . . , Γ p−1

2
} ← {0};

3 for i← 0 to m− 1 do // Hash.
4 di ← |τ − ξi| mod p;
5 if di ≤

p−1
2 then Γdi

← Γdi
+ 1;

6 else // Use 1 + xdi ≡ xdi · (1 + xp−di )
7 π ← (π + di) mod p;
8 Γp−di

← Γp−di
+ 1;

9 ω ← 0;
10 while ω 6= p−1

2 do
11 for `← 1 to p−1

2 do // Merge Multiplications (1 + x`)Γ`

12 if Γ` ≤ 1 then Continue;
13 if 2` ≤ p−1

2 then Γ2` ← Γ2` + b Γ`
2 c;

14 else // Use 1 + x2` ≡ x2` · (1 + xp−2`)

15 π ← (π + 2b Γ`
2 c`) mod p;

16 Γp−2` ← Γp−2` + b Γ`
2 c;

17 Γ` ← Γ` − 2b Γ`
2 c;

18 ω ← the amount of elements no greater than one in count-array Γ;

19 {ξi}
η−1
i=0 ← the subscript of one in count-array Γ, i.e., Γξi = 1;

20 return xπ ·∏η−1
i=0 (1 + xξi );
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3. Decoding Algorithm

In this section, we present two decoding methods over the ring F2[x]/(1 + xp) by
modifying two existing decoding methods [17,18] that can reduce the decoding complexity.

Recall that the λ erased columns are λ columns {ei}λ−1
i=0 , and the δ = n− λ surviving

columns are δ columns {hj}δ−1
j=0 .

3.1. Modified Syndrome-Based Method

We define the function of the indeterminate z

Gi(z) =
λ−1

∏
s=0, 6=i

(1− xes z) =
λ−1

∑
`=0

Gi,`(x)z`,

and the syndrome function S(z) = ∑r−1
`=0 S`(x)z`, where 0 ≤ i ≤ λ− 1 and S`(x) is given in

Equation (2). We can obtain in [Equation (18)] in [17] that

λ−1

∏
s=0, 6=i

(xei − xes)cei (x) ≡
λ−1

∑
`=0

Gi,λ−1−`(x)S`(x)

≡ σi(x) (mod Mp(x)).

Therefore, the σi(x) can be regarded as the coefficient of zλ−1 of the polynomial
Gi(z)S(z). Then, the erased column cei (x) is given by σi(x)

∏λ−1
s=0, 6=i(xei−xes )

, where 0 ≤ i ≤ λ− 1.

Note that the terms of set {S`(x)z`}r−1
`=λ are not involved in computing the coefficient

of zλ−1 of the polynomial Gi(z)S(z). Thus, we can just consider the first λ terms (the λ
coefficients of degrees less than λ) of S(z) when computing these coefficients, but all the
r terms of S(z) are calculated in [Step 1] in [17]. This is one essential way our modified
syndrome-based decoding method obtains a lower decoding complexity than the original
method in [17].

Moreover, the syndrome polynomials S`(x) satisfy

S0(1) = S1(1) = · · · = Sλ−1(1), (6)

i.e., the λ syndrome polynomials S`(x) either all have an even number of nonzero terms, or
they all have an odd number of nonzero terms, from the definition of Equation (2).

Let G(z) = (1− xei z)Gi(z) and Q(z) = G(z)S(z). Then, we have

Q(z) = (1− xei z)
λ−1

∏
s=0, 6=i

(1− xes z)S(z)

=
λ−1

∏
s=0

(1− xes z)S(z) =
r+λ−1

∑
`=0

Q`(x)z`. (7)

Thus, Q(z) is independent of the erasure index i, and we only need to compute
Q(z) once in the decoding procedure. Recall that σi(x) is the coefficient of zλ−1 of the
polynomial Gi(z)S(z); then, the σi(x) is also the coefficient of zλ−1 of the polynomial

Q(z)
(1−xei z) =

(1−xei z)Gi(z)S(z)
(1−xei z) for all 0 ≤ i ≤ λ− 1. Suppose that

Q(z)
(1− xei z)

= f i
0(x) + f i

1(x)z + · · ·+ f i
λ−1(x)zλ−1 + · · · ,

we can derive the recurrence formula

f i
`(x) =

{
Q0(x), ` = 0;
xei · f i

`−1(x) + Q`(x), ` > 0;
(8)
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where 0 ≤ i ≤ λ− 1. Notice that σi(x) = f i
λ−1(x) holds. Similar to S(z), we only compute

the first λ terms (the λ coefficients of degrees less than λ) of Q(z), since the other coefficients
of Q(z) are not needed, but all the r + λ terms of Q(z) are calculated in [Step 2] in [17].
This is another way our modified syndrome-based decoding method obtains a lower
decoding complexity than the original method in [17]. Algorithm 2 shows our modified
syndrome-based decoding method over the ring F2[x]/(1 + xp).

The following Lemma shows that we can always compute the divisions in steps 11–12
of Algorithm 2 by Lemmas 1 and 2 when λ ≥ 2.

Lemma 3. In steps 11–12 of Algorithm 2, the σi(x) has an even number of nonzero terms for all
0 ≤ i ≤ λ− 1, and we can employ Lemmas 1 and 2 to compute the divisions.

Proof. From Equation (8) and steps 7–10 of Algorithm 2, we obtain

σi(x) = x(λ−1)ei Q0(x) + x(λ−2)ei Q1(x) + · · ·+ Qλ−1(x),

where 0 ≤ i ≤ λ− 1. If the number of polynomials in the set {Qj(x)}λ−1
j=0 , which has an

odd number of nonzero terms, is an even number, then the σi(x) has an even number of
nonzero terms for 0 ≤ i ≤ λ− 1. In the following, we will show this is true. According to
Equation (6) and step 3 of Algorithm 2, Q0(1) = · · · = Qλ−1(1) holds.

Firstly, we consider Q0(1) = · · · = Qλ−1(1) = 1. We denote the λ polynomials
{Qj(x)}λ−1

j=0 with ε = 0, 1, . . . , λ as {Qε
j(x)}λ−1

j=0 . Let Q0
j (x) be the initial Qj(x) for 0 ≤ j ≤

λ− 1.
To prove that the number of polynomials with an odd number of nonzero terms in the

set {Qε
j(x)}λ−1

j=0 is even, it is equivalent to prove that ∑λ−1
j=0 Qε

j(1) = 0.

Algorithm 2: Modified syndrome-based decoding method.

Input: The λ erased columns {ei}λ−1
i=0 and the δ = n− λ surviving columns

{hj}δ−1
j=0 .

1 for `← 0 to λ− 1 do // Use Equation (2) and subscript ` means slope.
2 S`(x)← ∑δ−1

j=0 x`·hj chj
(x);

3 Q(z) = ∑λ−1
`=0 Q`(x)z` ← S(z) = ∑λ−1

`=0 S`(x)z`;
4 for s← 0 to λ− 1 do // Use Equation (7).
5 for `← λ− 1 down to 1 do // Calculate Q`(x) by backward additions.

6 Q`(x)← xes ·Q`−1(x) + Q`(x);

7 for i← 0 to λ− 1 do // Use Equation (8).
8 σi(x)← Q0(x);
9 for `← 1 to λ− 1 do

10 σi(x)← xei · σi(x) + Q`(x);

11 for i← 0 to λ− 1 do // Apply Algorithm 1.
12 cei (x)← σi(x)

∏λ−1
s=0, 6=i(xei−xes )

;

Output: The erased columns {cei (x)}λ−1
i=0 .

According to Equation (7) and steps 4–6 of Algorithm 2, we have

Qε
j(1) =

{
Qε−1

j (1), j = 0;

Qε−1
j−1(1) + Qε−1

j (1), 1 ≤ j ≤ λ− 1;
(9)
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where ε = 1, 2, . . . , λ. The Q1
j (1) = 0 holds for all j ≥ 1. We can obtain by induction

Qε
j(1) = Qε−1

j−1(1) + Qε−1
j (1) = 0 for all j ≥ ε ≥ 1. (10)

Note that ∑λ−1
j=0 Q2

j (1) = 0; we can suppose that there are an even number of polyno-

mials in the set {Qε
j(x)}λ−1

j=0 , which has an odd number of nonzero terms, when ε = y ≥ 2,

i.e., ∑λ−1
j=0 Qy

j (1) = 0 first. We have ∑λ−1
j=0 Qy+1

j (1); so,

λ−1

∑
j=0

Qy+1
j (1) = Qy

0(1) +
λ−1

∑
j=1

(
Qy

j−1(1) + Qy
j (1)

)
=

λ−1

∑
j=0

Qy
j (1) +

λ−2

∑
j=0

Qy
j (1)

= Qy
λ−1(1) = 0. (11)

Equation (11) comes from Equation (10) with j = λ − 1. Therefore, there are an
even number of polynomials in the set {Qy+1

j (x)}λ−1
j=0 , which has an odd number of

nonzero terms.
Secondly, when Q0(1) = · · · = Qλ−1(1) = 0, the argument is similar. This completes

the proof.

According to Lemma 3, we can use Lemmas 1 and 2 to compute the divisions in step 12.
The number of divisions required in step 12 is recorded as Li, which ranges from 1 to λ− 1
for i = 0, 1, . . . , λ− 1. So, we can obtain cei (x) in step 12 by recursively computing the
division Li times, while the number of nonzero terms of the polynomial resulting from the
first Li − 1 divisions is even. Therefore, we can execute these divisions by Lemma 2 and
execute the last division by Lemma 1. The computational complexity TD in steps 11–12 of
Algorithm 2 is

TD =
λ−1

∑
i=0

(
(Li − 1)

3p− 5
2

+ p− 3
)
, (12)

where λ(p− 3) ≤ TD ≤ λ(λ− 2) 3p−5
2 + λ(p− 3).

In steps 11-12 of Algorithm 2, we take the λ(λ − 1) division without Algorithm 1,
in which λ divisions are executed by Lemma 1 and λ(λ− 2) divisions are executed by
Lemma 2; however, the number of the divisions can be reduced with Algorithm 1. In
Table 1, we show the average number of divisions in steps 11–12 of Algorithm 2 executed
by Lemma 1 and Lemma 2 with Algorithm 1 for (p, n) ∈ {(5, 5), (7, 7)}.

Table 1. The average number of XORs involved in steps 11–12 of Algorithm 2.

p, n λ
Without Algorithm 1 Apply Algorithm 1

Improvement(%)
Lemma 2 Lemma 1 XORs Lemma 2 Lemma 1 XORs

(5, 5)
2 0 2 4 0 2 4 0%
3 3 3 21 2 3 16 23.81%
4 8 4 48 0 4 8 83.33%

(7, 7)

2 0 2 8 0 2 8 0%
3 3 3 36 2.4 3 31.2 13.33%
4 8 4 80 4.4 4 51.2 36%
5 15 5 140 1 5 28 80%
6 24 6 216 6 6 72 66.67%

We specify the computational complexity of Algorithm 2 as follows:

• Steps 1–2 take λ(δ− 1)p = λ(n− λ− 1)p XORs.
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• Steps 3–6 take λ(λ− 1)p XORs.
• Steps 7–10 take λ(λ− 1)p XORs.
• Steps 11–12 take TD XORs by Equation (12).

Then, the computational complexity TAlg 2 of Algorithm 2 is

TAlg 2 = λ(n + λ− 3)p + TD, (13)

where

pλ2+
(
(n− 2)p− 3

)
λ ≤ TAlg 2 ≤

5(p− 1)
2

λ2+
(
(n− 5)p + 2

)
λ.

Recall that the computational complexity of the decoding method in [17] is

7p− 4
2

λ2 − 7p− 2
2

λ + r(n− 1)p.

which is strictly larger than TAlg 2.
Table 2 evaluates the computational complexity of the decoding method in [17] and

Algorithm 2 for some parameters. The results in Table 2 demonstrate that Algorithm 2 has
much lower decoding complexity, compared with the original decoding method in [17].
For example, Algorithm 2 has 40.60% less decoding complexity than the decoding method
in [17] when (p, n, r) = (7, 7, 4), λ = 3.

Table 2. Decoding complexity of method in [17] and Algorithm 2.

p, n, r λ XORs in [17] XORs of TAlg 2 Improvement(%)

(5, 5, 3) 2 89 44 50.56%
3 150 91 39.33%

(7, 7, 4)
2 211 92 56.40%
3 300 178.2 40.60%
4 434 275.2 36.59%

The reason why Algorithm 2 has lower decoding complexity than the decoding
method in [17] can be summarized as the following three points.

Firstly, we only consider the first λ terms (the λ coefficients of degrees less than λ)
for both S(z) and Q(z) in computing the coefficients of zλ−1, while all r terms of S(z) and
all r + λ terms of Q(z) are calculated in the decoding method in [17], where r ≥ λ.

Secondly, all the divisions in Algorithm 2 are executed over the ring F2[x]/(1 + xp)

by Lemmas 1 and 2, which takes p− 3 XORs and 3p−5
2 XORs for each division, respectively.

In addition, the division in [17] is executed over the ringRp, which takes 2(p− 1) XORs [17]
(Corollary 2).

Thirdly, we apply Algorithm 1 to steps 11–12 of Algorithm 2, which can significantly
reduce the number of divisions, thus reducing the number of XORs required.

3.2. Modified Interpolation-Based Decoding Method

According to the decoding method in [18], we can recover the erased column cei (x)
with 0 ≤ i ≤ λ− 1 by

cei (x) =
δ−1

∑
j=0

chj
(x)

fi(xhj)

fi(xei )
(mod Mp(x)), (14)

where fi(y) = ∏λ−1
s=0, 6=i(y− xes) and f (y) = ∏λ−1

s=0 (y− xes). Let

aj(x) = chj
(x) · f (xhj) =

λ−1

∏
s=0

(xhj − xes) · chj
(x) (mod Mp(x)), (15)
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where 0 ≤ j ≤ δ− 1. Then, aj(x) has an even number of nonzero terms, and we only need
to compute once for aj(x) in the decoding procedure, since aj(x) is independent of the
erasure index i. Let

bi(x) =
δ−1

∑
j=0

aj(x)

xhj − xei
(mod Mp(x)), (16)

cei (x) =
bi(x)
fi(xei )

=
bi(x)

∏λ−1
s=0, 6=i(xei − xes)

(mod Mp(x)), (17)

where 0 ≤ i ≤ λ− 1, and Mp(x) = 1 + x + · · ·+ xp−1. Algorithm 3 shows our modified
interpolation-based method over the ring F2[x]/(1 + xp).

After using Algorithm 1, the number of polynomial multiplications in step 2 ranges
from 1 to λ. Thus, the computational complexity TM in steps 1–2 of Algorithm 3 is

(n− λ)p ≤ TM ≤ (n− λ)λp. (18)

Algorithm 3: Modified interpolation-based method.

Input: The λ erased columns {ei}λ−1
i=0 and the δ = n− λ surviving columns

{hj}δ−1
j=0 .

1 for j← 0 to δ− 1 do // Use Equation (15) and apply Algorithm 1
2 aj(x)← f (xhj) · chj

(x) = ∏λ−1
s=0 (xhj − xes) · chj

(x);

3 for i← 0 to λ− 1 do // Use Equation (16)

4 bi(x)← ∑δ−1
j=0

aj(x)

xhj−xei
;

5 for i← 0 to λ− 1 do // Use Equation (17) and apply Algorithm 1
6 cei (x)← bi(x)

fi(xei )
= bi(x)

∏λ−1
s=0, 6=i(xei−xes )

;

Output: The erased columns {cei (x)}λ−1
i=0 .

In steps 1–2, we need to take λ multiplications without Algorithm 1, which takes
(n− λ)λp XORs; however, with Algorithm 1, the number of multiplications involved in
steps 1–2 can be reduced. In Table 3, we show the average number of XORs involved in
steps 1–2 of Algorithm 3 with Algorithm 1 for (p, n) ∈ {(5, 5), (7, 7)}. The results in Table 3
show that we can reduce the number of XORs with Algorithm 1, especially for a large value
of λ.

Table 3. The average number of XORs involved in steps 1–2 of Algorithm 3.

p, n λ
Without Algorithm 1 Apply Algorithm 1

Improvement(%)
Multiplication XORs Multiplication XORs

(5, 5)
2 6 30 5 25 16.67%
3 6 30 2 10 66.67%
4 4 20 2 10 50%

(7, 7)

2 10 70 9 63 10%
3 12 84 8.4 58.8 30%
4 12 84 3.6 25.2 70%
5 10 70 4 28 60%
6 6 42 3 21 50%

Only steps 4 and 6 of Algorithm 3 are needed to compute the division. We should
employ Lemma 2 to execute the divisions in steps 3–4 in Algorithm 3, since bi(x) in step 6
of Algorithm 3 should have an even number of nonzero terms. Notice that steps 5–6 of
Algorithm 3 are exactly the same as steps 11–12 of Algorithm 2.
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We specify the computational complexity of Algorithm 3 as follows:

• Steps 1–2 require TM XORs by Equation (18).
• Steps 3–4 need λ(δ − 1) additions and λδ divisions by Lemma 2, which require

λ(n− λ− 1)p + λ(n− λ) 3p−5
2 XORs in total.

• Steps 5–6 require TD XORs by Equation (12).

Then, the computational complexity of Algorithm 3 is

TAlg 3 = TM + λ(n− λ− 1)p + λ(n− λ)
3p− 5

2
+ TD, (19)

where

−5(p− 1)
2

λ2 + (
5n− 2

2
p− 5

2
n− 3)λ + np ≤ TAlg 3 ≤ −2pλ2 + (

7n− 6
2

p− 5
2

n + 2)λ.

Recall that the computational complexity of the decoding method in [18] is

(−2p + 1)λ2+
(
4(n− 1)p− 3n + 4

)
λ + n(p− 1),

which is larger than that of our Algorithm 3.
Table 4 evaluates the computational complexity of the decoding method in [18] and

Algorithm 3 for some parameters. The results in Table 4 demonstrate that our Algorithm 3
had much lower decoding complexity, compared with the original decoding method in [18].
For example, Algorithm 3 had a 34.13% lower decoding complexity than the decoding
method in [18], when (p, n, r) = (7, 7, 4), λ = 3.

Table 4. Decoding complexities of the decoding method in [18] and our Algorithm 3.

p, n, r λ XORs in [18] XORs of TAlg 3 Improvement(%)

(5, 5, 3) 2 122 79 35.25%
3 146 71 51.37%

(7, 7, 4)
2 292 207 29.11%
3 378 249 34.13%
4 438 228.4 47.85%

The reason why Algorithm 3 has a lower decoding complexity than that of the decod-
ing method in [18] is summarized as follows.

Firstly, all the divisions in Algorithm 3 were executed over the ring F2[x]/(1 + xp)
by Lemmas 1 and 2, which used p − 3 XORs and (3p − 5)/2 XORs for each division,
respectively. The division in the decoding method in [18] was executed over the ringRp,
which used 2(p− 1) XORs.

Secondly, we applied our Algorithm 1 to steps 1–2 and steps 5–6, which significantly
reduced the number of multiplications, thus reducing the number of XORs required.

4. LU Decomposition-Based Method

The LU factorization of a matrix [22] is to express the matrix as a product of a lower
triangular matrix L and an upper triangular matrix U. According to the LU factorization
of the Vandermonde matrix [23], we can express a Vandermonde matrix as a product of
several lower triangular matrices and several upper triangular matrices. Therefore, we
can solve the Vandermonde linear equations by first solving the linear equations with
the encoding matrices that are the upper triangular matrices and then solving the linear
equations with the encoding matrices that are the lower triangular matrices.

Suppose that the λ erased columns are λ columns {ei}λ−1
i=0 and the δ = n− λ surviving

columns are {hj}δ−1
j=0 . Algorithm 4 shows our LU decomposition-based method over the

ring F2[x]/(1 + xp).
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According to [Theorem 8] in [19], Equation (1) can be factorized into(
ce0(x) ce1(x) · · · ceλ−1(x)

)
· (L(1)

λ L(2)
λ · · · L

(λ−1)
λ ) · (U(λ−1)

λ U(λ−2)
λ · · ·U(1)

λ ) = S, (20)

over the ringRp, where U(θ)
λ is the upper triangle matrix

U(θ)
λ =



Iλ−θ−1 0

ine0

1 xe0 0 · · · 0 0
0 1 xe1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 xeθ−1

0 0 0 · · · 0 1


, (21)

and L(θ)
λ is the lower triangle matrix

L(θ)
λ =



Iλ−θ−1 0

ine0

1 0 · · · 0 0
1 xeλ−θ + xeλ−θ−1 · · · 0 0
...

...
. . .

...
...

0 0 · · · xeλ−2 + xeλ−θ−1 0
0 0 · · · 1 xeλ−1 + xeλ−θ−1


, (22)

for θ = 1, 2, . . . , λ− 1.

Algorithm 4: LU decomposition-based method.

Input: The λ erased columns {ei}λ−1
i=0 and the δ = n− λ surviving columns

{hj}δ−1
j=0 .

1 for `← 0 to λ− 1 do // use Equation (2) and the subscript ` means
slope.

2 S`(x)← ∑δ−1
j=0 x`·hj chj

(x);

3
(
ce0(x) ce1(x) · · · ceλ−1(x)

)
←
(
S0(x) S1(x) · · · Sλ−1(x)

)
;

// Eliminate λ− 1 upper triangular matrices U(1)
λ , U(2)

λ , . . . , U(λ−1)
λ .

4 for θ ← 1 to λ− 1 do
// Eliminate upper triangular matrix U(θ)

λ by forward additions.
5 for i← λ− θ to λ− 1 do
6 cei (x)← cei (x) + xeθ+i−λ · cei−1(x);

// Eliminate λ− 1 lower triangular matrix L(λ−1)
λ , L(λ−2)

λ , . . . , L(1)
λ .

7 for θ ← λ− 1 down to 1 do
// Eliminate lower triangular matrix L(θ)

λ by backward additions.

8 Solve ceλ−1(x) from ceλ−1(x) =
ceλ−1 (x)

xeλ−1+xeλ−θ−1 by Lemma 2 and Lemma 1(only
when θ = 1);

9 for i← λ− 2 down to λ− θ do

10 Solve cei (x) from cei (x) =
cei (x)−cei+1 (x)

xei+xeλ−θ−1 by Lemma 2 and Lemma 1(only
when i = λ− θ);

11 ceλ−θ−1(x)← ceλ−θ−1(x)− ceλ−θ
(x);

Output: The erased columns {cei (x)}λ−1
i=0 .

We specify the computational complexity of Algorithm 4 as follows:

• Steps 1–2 require λ(δ− 1)p = λ(n− λ− 1)p XORs.
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• Steps 3–11 require λ(λ− 1)p + (λ− 1)(p− 3) + (λ− 1)(λ− 2)(3p− 5)/4 XORs at
most, according to [Theorem 10] in [19].

Then, the computational complexity of Algorithm 4 is

TAlg 4 =
3p− 5

4
λ2 +

(4n− 13)p + 3
4

λ +
p + 1

2
. (23)

5. Comparison and Conclusions

Table 5 evaluates the decoding complexity of Algorithm 2–4 for some parameters.
The results of Table 5 demonstrate that Algorithm 2 performs better than Algorithm 3 if
λ ≤ n

2 ; otherwise, if λ > n
2 , then Algorithm 3 has less decoding complexity. Algorithm 4

has less decoding complexity than both Algorithms 2 and 3, when λ is small. However,
when λ is large, Algorithm 3 is more efficient than Algorithm 4. For example, compared
with Algorithm 2–4 have 21.98% and 40.66% less decoding complexity, respectively, when
(p, n, r) = (5, 5, 4), λ = 3.

Table 5. Decoding complexities of the proposed three decoding methods.

p, n, r λ
total XORs TAlg 2−TAlg 3

TAlg 2

TAlg 2−TAlg 4
TAlg 2TAlg 2 TAlg 3 TAlg 4

(5, 5, 4)
2 44 79 32 −79.55% 27.27%
3 91 71 54 21.98% 40.66%
4 128 38 81 70.31% 36.72%

(7, 7, 6)

2 92 207 74 −125% 19.57%
3 178.2 249 121 −39.73% 32.10%
4 275.2 228.4 176 17.01% 36.05%
5 343 171 239 50.15% 30.32%
6 492 141 310 71.34% 36.99%

In this paper, we presented three efficient decoding methods for the erasures of
Blaum–Roth codes that all have lower decoding complexity than the existing decoding
methods. The efficient implementation of the proposed decoding methods in practical
storage systems is one of our future works.
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