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Abstract: The purpose of our research is to extend the formal representation of the human mind
to the concept of the complex q-rung orthopair fuzzy hypersoft set (Cq-ROFHSS), a more general
hybrid theory. A great deal of imprecision and ambiguity can be captured by it, which is common in
human interpretations. It provides a multiparameterized mathematical tool for the order-based fuzzy
modeling of contradictory two-dimensional data, which provides a more effective way of expressing
time-period problems as well as two-dimensional information within a dataset. Thus, the proposed
theory combines the parametric structure of complex q-rung orthopair fuzzy sets and hypersoft sets.
Through the use of the parameter q, the framework captures information beyond the limited space
of complex intuitionistic fuzzy hypersoft sets and complex Pythagorean fuzzy hypersoft sets. By
establishing basic set-theoretic operations, we demonstrate some of the fundamental properties of
the model. To expand the mathematical toolbox in this field, Einstein and other basic operations
will be introduced to complex q-rung orthopair fuzzy hypersoft values. The relationship between
it and existing methods demonstrates its exceptional flexibility. The Einstein aggregation operator,
score function, and accuracy function are used to develop two multi-attribute decision-making
algorithms, which prioritize based on the score function and accuracy function to ideal schemes
under Cq-ROFHSS, which captures subtle differences in periodically inconsistent data sets. The
feasibility of the approach will be demonstrated through a case study of selected distributed control
systems. The rationality of these strategies has been confirmed by comparison with mainstream
technologies. Additionally, we demonstrate that these results are compatible with explicit histograms
and Spearman correlation analyses. The strengths of each approach are analyzed in a comparative
manner. The proposed model is then examined and compared with other theories, demonstrating its
strength, validity, and flexibility.

Keywords: complex q-rung orthopair fuzzy hypersoft set (Cq-ROFHSS); multi-attribute decision
making; Einstein aggregation operator

1. Introduction

In decision science, multi-attribute decision making (MADM) seeks to determine
the best choice under different sets of attributes. There is a growing emphasis on multi-
attribute decision-making in decision science, systems engineering, and management
science. In addition to its applications in economics, management, engineering, and the
military, its theories and methods are widely employed for investment decisions, factory
site selection, college evaluation, project bidding, ranking of industrial sector development,
and comprehensive economic benefits evaluation. Experts or teams of experts evaluate
each alternative according to a variety of attributes, and the results can be expressed in
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clear numbers or in linguistic terms. In today’s challenging environment, uncertainty plays
an important role in almost every decision-making process. Analyses must take uncertainty
into account in order to be accurate. According to classical set theory (CST), there are only
two possible outcomes for an item: either it belongs to a set, or it does not. An item’s
characteristic function can be either 0 or 1. Several factors contribute to the failure of CST,
including age, intelligence, and height.

As a solution to this problem, Zadeh [1] proposed the concept of Fuzzy Sets (FS).
In order to solve complex problems involving uncertainty and ambiguity, the degree of
membership (Mem) is assigned to the closed interval [0, 1] rather than {0, 1}. As a result,
Atanasove’s intuitionistic fuzzy set (IFS) has been demonstrated to be a useful tool for
describing uncertainty in MADM [2]. There are two parameters, Mem and NMem, the sum
of which is less than or equal to 1, and it is more general than fuzzy sets (FS). Researchers
have developed and used some theories to explain this phenomenon, including interval-
valued IFSs [3] and linguistic interval-valued IFSs [4]. The above theory indicates that the
sum of an individual’s Mem and NMem cannot exceed one. Research has been conducted
on MADM problems in the context of FSs and IFSs, which can only be used to address
decision makers’ uncertainty and ambiguity. It is important to note, however, that when
complex datasets are used, uncertainty and ambiguity often accompany periodic changes
in the dataset.

With the advancement of technology over the years, it has become apparent that these
and similar methods are inherently limited, and cannot handle information that changes
over time, such as medical diagnosis, biometrics, etc. In light of the above surveys, it can be
concluded that all of the above studies are based on pairs of real numbers. Ramot et al. [5]
proposed the concept of complex fuzzy sets (CFS), which extend the range of Mem beyond
the set of real numbers to the unit disk of the complex plane. For solving MADM problems
involving uncertain and complex information, Alkouri and Salleh [6] proposed Complex
Intuitive Fuzzy Sets (CIFS). Complex Mem and complex NMem degrees characterize the
CIFSs, where the sum of the real and imaginary parts is less than or equal to one. The
prevalence of CIFSs is greater than that of CFSs. There are times when CIFSs can solve
problems that CFSs cannot. It extends the range of Mem and NMem levels from real to
complex numbers by utilizing a unit disk. In contrast to IFSs, CIFSs have the capability
of handling two-dimensional information, which prevents information loss. Kumar and
Bajaj [7] used distance metrics and entropy to develop complex intuitionistic fuzzy soft
sets. A series of correlation coefficients and aggregation operators based on CIFS has been
proposed by Garg and Rani [8]. CIFSs have been used by Rani and Garg [9] to develop a
distance metric and a power aggregation operator.

Originally developed by Yager [10], a Pythagorean fuzzy set (PFS) extends the intu-
itionistic fuzzy set theory. As PFSs are characterized by Mem and NMem, it provides a
more comprehensive and detailed description of the intuitionistic fuzzy features of the
data. PFSs assign each element a degree of Mem and a degree of NMem, whose sum of
squares cannot exceed 1. In realistic MADM problems, simulating uncertainty with PFSs is
clearly superior to simulating uncertainty with IFSs. Ullah et al. [11] have developed a new
framework for describing uncertain or unreliable information, the Complex PFS (CPFS).
The CPFS has a complex-valued Mem and a complex-valued NMem, thereby allowing
it to describe the complex fuzzy characteristics of the data in a more comprehensive and
meticulous manner. In CPFSs, each element is assigned a complex-valued Mem degree
and a complex-valued NMem degree whose sum of squares is one. According to CPFSs,
the sum of the squares of the real (and imaginary) parts of the complex non-membership
degree cannot exceed [0, 1].

In some real decision-making processes, the sum of the squares of the Mem and NMem
of alternatives that satisfy the criteria provided by the decision maker may be greater than
1, but their sum of q-power may be equal to or less than one. As such, Yager [12] proposed
a q-rung orthopair fuzzy set (q-ROFS), which is characterized by Mem and NMem degrees
meeting the condition that the q-power of Mem and NMem degrees cannot exceed 1. In
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practical decision-making problems involving uncertain and unpredictable information,
the q-ROFS is more effective and general than existing methods. In the case of q = 1 and
q = 2, the q-ROFS reduces to an IFS and a PFS, respectively. Thus, IFSs and PFSs can be
considered special cases of the q-ROFS. A fuzzy Bonferroni average operator based on
q-rung orthopairs has been developed by Liu [13] and applied to MAGDM. Wei et al. [14]
have proposed a fuzzy heronian mean operator based on q-rung orthopairs. According to
Liu and Wang [15,16], several fuzzy aggregation operators have been proposed for q-rung
orthopairs. The power Maclaurin symmetric mean is also developed to aggregate the
interrelationships between q-ROFNs. In [17], a q-rung orthopair linguistic heronian mean
operator (HM) was proposed and applied to MADM. The concept of IVq-ROFS and the
IVq-ROF multiple average operators was introduced by Joshi et al. [18]. Liu et al. [19]
have developed a theory of complex q-rung orthopair fuzzy sets (Cq-ROFS). The Cq-ROFS
proposes that the sum of the q-th power of the real (and imaginary) part of the complex
Mem degree and the q-th power of the complex NMem degree does not exceed the unit
interval. Cq-ROFS is a more general format compared to CIFSs and CPFSs. A Cq-ROFS
provides a useful tool for capturing the ambiguity and periodicity in human evaluation
semantics in real-world decision theory. Based on aggregation operators, AHP, and TOPSIS,
Garg et al. [20] proposed a complex interval q-rung fuzzy set (CIVq-ROFS). Accordingly,
Ali [21] proposed complex interval-valued q-rung orthopair fuzzy hamy mean operators
and their application to decision-making strategies. In contrast to Cq-ROFS, CIVq-ROFS
has a broader generalization than Cq-ROFS. All of these methods are widely used in many
fields. However, a major common limitation of these theories is that they are not suitable
for parametric descriptions. To overcome this complexity, Molodtsov [22] proposed the
pioneering concept of Soft Sets (SS), a general mathematical parameterization tool for
dealing with indeterminate, ambiguous, and indeterminate components, where certain
specific parameters are evaluated. The ideas of the soft set theory are further combined
with other fuzzy mathematical structures to develop new models, such as Fuzzy Soft Sets
(FSSs) [23], Intuitionistic Fuzzy Soft Sets [24], Pythagorean Fuzzy Soft Sets [25,26], and
q-Rung orthopair fuzzy soft sets (q-ROFSSs) [27]. Taken together, they provide a rich and
diverse environment for the fuzzy modeling of parametric non-crisp data.

The existing studies, however, do not provide sufficient information regarding Mem
and NMem values. However, these theories are not able to handle inconsistencies and
imprecise data in general. There is a tendency for popular theories to fail to address
this type of problem when an attribute is composed of a number of subattributes. By
replacing the single-parameter function f with a multiparameter (sub-attribute) function,
Smarandache [28] developed the concept of SSs to hypersoft sets (HSS). Samarandache
argues that the established HSS is capable of handling indeterminate objects in comparison
with the established SS. A number of unexpected results have been achieved in recent years
as a result of the HSS theory and its extensions. Zulqarnain et al. [29] therefore proposed the
intuitionistic fuzzy hypersoft set IFHSS, a generalized version of IFSS. Using the developed
correlation coefficient, they developed the TOPSIS method for solving the MADM problem.
The authors then proposed a robust aggregator operator for intuitionistic fuzzy Hypersoft
sets [30] and applied it to the selection of suppliers. Zulqarnain et al. [31] perform the basic
operations as well as their appropriate details under the Pythagorean Fuzzy Hypersoft Set
(PFHS). In the context of PFHS sets, they introduce the concepts of demand and possibility
operators in their definition of logical operators. Reference [32] describes the use of soft
class and its analogous hypersoft mapping in the diagnosis of various diseases, including
brain tumors, hepatitis, and HIV, and suggests appropriate treatments and future warnings.
According to Ihsan et al. [33], the Hypersoft expert set has been applied to the enterprise
decision-making recruitment process. In the presence of unpredictable factors, Wang
et al. [34] proposed a fuzzy interactive Einstein dynamic membership function to measure
the quality of expressive service. In order to recommend drugs for allergic diseases, Saeed
et al. [35] proposed a Pythagorean fuzzy hypersoft map structure. Zulqarnain [36] proposed
basic operations based on Pythagorean fuzzy hypersoft sets and correlation coefficients.
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Khan [37] proposed the q-rung hypersoft set (q-ROFHSS) and described its basic operations.
Musa and Asaad [38] defined logical operators for bipolar hypersoft sets. The concepts of
complex fuzzy hypersoft sets (CFHSS) were introduced by Rahman [39], a decision system
based on its decision aggregation operation was developed and applied to decision-making,
and the basic theory of interval-valued fuzzy hypersoft sets was studied. Using fuzzy sets
and hypersoft sets with complex plane features, the model establishes a hybrid framework.
It is possible to extend the features of the fuzzy hypersoft set to the unit circle in a complex
plane, making this structure more flexible and useful.

We extend the concept of CFHSS to Cq-ROFHSS in order to address the above prob-
lems in a comprehensive manner. In addition, the set’s properties are examined. Based on
the proposed Cq-ROFHSS, the sum of the q-powers of the real (imaginary) part of the Mem
and the NMem degree must be less than or equal to 1. Through the ensemble, uncertainty
and ambiguity are taken into account simultaneously in complex numbers. Moreover, a
central component of the multi-criteria decision problem is the aggregation of satisfaction
with individual criteria in order to obtain a measure of satisfaction with all criteria. This
process of aggregation must be guided by the interrelationship between individual crite-
ria and criteria organizations. The increasing complexity of practical decision problems
may necessitate the modeling of these numerous types of relationships when selecting
aggregation operators [40,41].

This study should investigate the following theories based on the following arguments
and evidence:

(i) As a result of complex q-ROFS theory, both the uncertainty and periodicity of the
source data can be effectively modeled. When the membership function values are
extended to the unit circle, a wide range of membership function values is possible.
Even though it is an effective tool for parametric descriptions, it has some limitations.
Since its inception, the proposed theory has been superior to the Complex q-ROFS
model due to its ability to address the parametric ambiguity of two-dimensional
fuzzy data.

(ii) Q-ROFS contains information about Mem and NMem, but lacks information about
complex Mem and complex NMem, therefore relaxing the scope of the Q-ROFS
model. In various practical applications, attributes should be further subdivided into
sub-attribute values in order to facilitate a better understanding.

(iii) An HSS model replaces a single-parameter function with a multiparameter function
(sub-attribute); however, it cannot handle other sources of uncertainty. The periodicity
of information can be adequately accounted for by a model we developed. For the
parametric modeling of periodic and ambiguous data, our proposed Cq-ROFHSS
theory provides a more general and constructive framework.

(iv) Although CIFHSSs and CPFHSSs have a strong capability to deal with parameter
ambiguity in two-dimensional problems, their boundary scope is constrained by some
strict restrictions. We are able to capture the inaccuracies arising from parameterized
uncertain environments by developing a model that relaxes them. We are able to
capture the inaccuracies that are present in some parametric uncertain environments
while simultaneously relaxing them.

(v) The q-ROFHSS model provides an efficient mathematical structure for resolving un-
certainties in parametric datasets as well as uncertainties in linear datasets. However,
it is limited to a single dimension. We generalize the q-ROFHSS model by using
periodic fuzzy interpretations containing inconsistent information.

Combined with the previous point, these two advantages demonstrate the
concept’s generalizability.

The purpose of this paper is to propose a complex q-rung orthopair fuzzy hypersoft
set (Cq-ROFHSS) in order to address these issues. Due to the combination of both the
complex q-rung orthopair fuzzy set and the outstanding mathematical theory of HSS,
the method provides the best of both worlds. The mathematical framework proposed
allows the parametric design of periodic and fuzzy data in order to solve multi-attribute
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decision-making problems. Using the Cq-ROFHSS model, it can express a large number
of fuzzy multi-attribute evaluations in two dimensions. Through an adjustable parameter
q, it is a robust generalization of CIFHSSs and CPFHSSs. The proposed model is briefly
compared with existing competing methods in order to illustrate its remarkable flexibility.
In the following section, we describe the Einstein operator of the Cq-ROFHSS as well as a
few other elementary algebraic operations. Using the optimal selection and application of
distributed control systems, we develop two advanced decision-making algorithms and
demonstrate their effectiveness. A clear histogram and Spearman correlation analysis are
used to verify the reliability and functionality of the proposed strategy.

The following are a few of the most important contributions of this paper:

(i) The purpose of this article is to systematically extend the literature in order to intro-
duce the multi-skill, most generalized mixed model Cq-ROFHSS. A two-dimensional
multi-parameter inconsistent data set can be correctly modeled with this method
using an ordination-based fuzzy model.

(ii) For the purpose of demonstrating the applicability issues of the proposed method, we
compare the method proposed in this paper with existing methods for the example of
early warning opinion system selection. Based on empirical data obtained from dis-
tributed control systems, the rationality and responsibility of the proposed technology
have been confirmed.

(iii) We present a brief analysis of the MADM method, including the development of a
MADM method for Cq-ROFHSSs based on the Einstein aggregation operator and the
proposed score function measure. This study examines the sensitivity of the variables
involved in the Einstein aggregation operator as well as their impact on the decision
results. In this study, we compare and analyze the existing MADM techniques using
the IFHWA, IFHWG, PFSWA, PFSWG, and Cq-ROFWA, Cq-ROFWG operators. Thus,
it is demonstrated that the strategy proposed in this paper is feasible and that its
results are compatible.

(iv) As demonstrated in this article, the MADM methodologies exhibit flexibility, capabil-
ity, and prominence beyond contemporary decision-making methods.

In accordance with this, the remainder of the paper is organized as follows: Section 2
briefly introduces some key concepts and terminology prior to the discussion of the goal
theory. In Section 3, we present the framework for the proposed Cq-ROFHSS model, as well
as basic set-theoretic operations. Additionally, Einstein and other algebraic algorithms are
described for the Cq-ROFHSS. Through the application of the proposed operator, Section 4
presents two decision-making algorithms for the development of Cq-ROFHSSs and illus-
trates their applicability through the selection of financial evaluations for construction firms.
Furthermore, Section 5 discusses MADM methods, including the proposed MADM method
of the Einstein aggregation operator and its feasibility. In this paper, we investigate the im-
pact of the variables involved in the Einstein aggregation operator on the decision-making
process as well as their sensitivity. The advantages and disadvantages of the Cq-ROFHSS
theory over other contemporary decision-making models are then discussed by conducting
a comparative study with existing MADM techniques based on IFHWA, IFHWG, PFSWA,
PFSWG, Cq-ROFWA, and Cq-ROFWG. In Section 6, the article’s conclusion is summarized,
and some future research areas are suggested.

As shown in Figure 1, this research article makes a significant contribution to the field.
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2. Preliminaries

In this section, we provide some definitions that will aid in understanding the remain-
der of the article. We present some basic definitions of the soft set, hypersoft set, complex
q-rung orthopair fuzzy set, and complex q-rung orthopair hypersoft fuzzy set, and some
operations on them that are well known in the literature.

Definition 1 (see [22]). Let X be the universal set and let Ã be the set of parameters under
consideration. Let P(X) denote the power set of X and Ã ⊆ Ξ. A pair

(
Ђ, Ã

)
is called a soft set

(SS) over X, and its mapping is given as

Ђ : Ã→ P(X). (1)

A soft set may be represented by the set of ordered pairs as
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(
Ђ, Ã

)
=

{
(ã, Ђ(ã))|Ђ(ã) ∈ P(X) : ã ∈ Ξ,

Ђ(ã) = ∅ i f ã /∈ Ã

}
(2)

In other words, the soft set is a parameterized family of subsets of the universe X.

Definition 2 (see [28]). Let X be the universal set and P(X) be the power set of X. Con-
sider ш1, ш2, . . . , шn for n ≥ 1 and let n be well-defined attributes, whose corresponding at-
tributive values are, respectively, the set Ш1, Ш2, . . . , Шn with Шi ∩Шj = ∅, for i 6= j and
i, j ∈ {1, 2, . . . , n}. Assume Ш1 ×Ш2 × . . .×Шn = Ě = {ě1h, ě2m, . . . , ěnl} is a collection of
sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, 1 ≤ l ≤ γ, and α, β, γ ∈ N. Then, the pair

(
Ђ, Ě

)
is said to be a hypersoft set over X, where Ђ is the mapping such that

Ђ : Ě→ P(X) (3)

where P(X) represents the collection of all subsets of X. A pair
(
Ђ, Ě

)
can be expressed as(

Ђ, Ě
)
=
{
(ě, Ђ(ě))|ě ∈ Ě, Ђ(ě) ∈ P(X)

}
(4)

Definition 3 (see [19]). A complex q-rung orthopair fuzzy set (Cq-ROFS) Q on a finite universal
set X is given by:

Q =
{
x,ϕ′Q(x), ψ

′
Q(x)

∣∣x ∈ X
}

, (5)

where ϕ′Q(x) = ϕQ(x)e
i2π(ЭϕQ(x)) and ψ′Q(x) = ψQ(x)e

i2π(ЭψQ(x)) represent the complex-valued
membership and complex-valued non-membership degrees, with conditions: 0 ≤ ϕq

Q(x) +ψ
q
Q(x) ≤ 1,

0 ≤ Эq
ϕQ(x) +Эq

ψQ(x) ≤ 1, and q ≥ 1. The complex q-rung orthopair fuzzy number (Cq-ROFN)

is denoted by: Q =
(
ϕQ(x)e

i2π(ЭϕQ(x)),ψQ(x)e
i2π(ЭψQ(x))

)
.

When q = 1, then Q is a complex intuition hesitant fuzzy number (CIHFN), and when
q = 2, then Q is a complex Pythagorean hesitant fuzzy number (CPHFN).

The following Figure 2 shows the comparison of the restrictions of CIFSs and CPFSs.
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Remark 1. The hesitancy degree is denoted and defined by

θQ =
(

1−ϕq
Q(x)−ψ

q
Q(x)

) 1
q ei2π(1−Эq

ϕQ(x)−Эq
ψQ(x))

1
q

.

Similar to the operations of CIFSs and CPFSs, now we will propose the basic operations
like the inclusion, complement, and equality of Cq-ROFSs.

Remark 2. Every CIF and CPFS can be considered as a Cq-ROFS but not conversely.
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Definition 4. For two Cq-ROFNs, Q1 =
(
ϕ1(x)e

i2π(Эϕ1(x)
),ψ1(x)e

i2π(Эψ1(x)
)
)

and

Q2 =
(
ϕ2(x)e

i2π(Эϕ2(x)
), ψ2(x)e

i2π(Эψ2(x)
)
)

, then

(1) Q1 ⊆ Q2 if ϕ1(x) ≤ ϕ2(x), ψ2(x) ≤ ψ1(x) and Эϕ1(x) ≤ Эϕ2(x), Эψ2(x) ≤ Эψ1(x).
(2) Q1 = Q2 if ϕ1(x) = ϕ2(x), ψ2(x) = ψ1(x) and Эϕ1(x) = Эϕ2(x), Эψ2(x) = Эψ1(x).

(3) Qc
1 =

(
ψ1(x)e

i2π(Эψ1(x)
) ,ϕ1(x)e

i2π(Эϕ1(x)
)
)

.

Definition 5. Let X be the universal set and P(X) be the power set of X. Consider
жi = {ж1, ж2, . . . , жn} for n ≥ 1 to be a set of attributes and set Жi as a set of correspond-
ing sub-attributes of жi, respectively, with Жi ∩Жj = ∅, for i 6= j and i, j ∈ {1, 2, . . . , n}.

Assume Ж1 ×Ж2 × . . .×Жn =
^
D =

{^
d 1m,

^
d 2n, . . . ,

^
d nl

}
is a collection of sub-attributes,

where 1 ≤ m ≤ α, 1 ≤ n ≤ β, 1 ≤ l ≤ γ, and α, β, γ ∈ N. Then, the pair
(
Q,

^
D

)
is said to be

complex q-rung orthopair fuzzy hypersoft set (Cq-ROFHSS) over l, where

Q :
^
D→ P(X) ,

Q

(
^
D

)
→ {x ,

..
ϕQ(d)(x),

..
ψQ(d)(x), x ∈ X}

where
..
ϕQ(d)(x) = ϕQ(d)(x)e

i2πЭϕQ(d)(x) is the complex-valued membership, and
..
ψQ(d)(x) = ψQ(d)(x)e

i2πЭψQ(d)(x) is the complex-valued non-membership degrees such that
Q : X→ [0, 1] , 0 ≤ ϕq

q(d)(x) +ψ
q
q(d)(x) ≤ 1, and 0 ≤ Эq

ϕq(d)(x) +Эq
ψq(d)

(x) ≤ 1 (q ≥ 1).

For the sake of simplicity, we write that a complex q-rung orthopair fuzzy hypersoft
number (Cq-ROFHSN) can be expressed as

A
Qrt = Qx

^
D

=

(
ϕQ(dt)(xr)e

i2πЭϕQ(dt)
(xr) ,ψQ(dt)(xr)e

i2πЭψQ(dt)
(xr)

)
=
(
ϕrtei2πЭϕrt ,ψrte

i2πЭψrt

)
(6)

Remark 3. If 0 ≤ ϕq
Q(d)

(x) +ψ
q
Q(d)

(x) ≤ 1 and 0 ≤ Эq
ϕQ(d)

(x) +Эq
ψQ(d)

(x) ≤ 1 (q ≥ 1) are
held, then all parameters of a set of attributes have no further sub-attribute. Then, Cq-ROFHSS was
reduced to Cq-ROFSS.

Ranking the alternatives scoring function of A
Qrt is defined in the following:

Ş(AQrt) =
1
4

((
1 +ϕq

rt −ψ
q
rt

)
+
(

1 +Эq
ϕrt −Эq

ψrt

))
, Ş(AQrt) ∈ [0, 1]. (7)

However, sometimes, the scoring function is unable to compute the two Cq-ROFHSNs.
In such cases it can be difficult to decide which value is most suitable.

An accuracy function has been introduced to overcome such difficulties:
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
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
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Remark 3. If 
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( )
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( )0 1q q φ ψЭ +Э

Q d Q d
x x ( )1q   are held, then 

all parameters of a set of attributes have no further sub-attribute. Then, Cq-ROFHSS was reduced 

to Cq-ROFSS. 

Ranking the alternatives scoring function of rtQ
A  is defined in the following: 

( ) ( ) ( )( )1
1 1

4

q q q q

rt = + − + + −φ ψφ ψ Э Э
Q rt rtrt rtAŞ , ( )  0,1rt 

Q
AŞ . (7) 

However, sometimes, the scoring function is unable to compute the two Cq-ROF-

HSNs. In such cases it can be difficult to decide which value is most suitable.  

An accuracy function has been introduced to overcome such difficulties: 

( ) ( ) ( )( )1

2

q q q q

rt = + +φ ψφ ψ + Э Э
Q rt rtrt rtAĦ , ( )  0,1rt 

Q
AĦ .  (8) 

Thus, to compare two Cq-ROFHSNs, the subsequent ranking and comparison laws 

are classified as follows: 

(1) If ( ) ( )rt rt
Q Q

A MŞ Ş , then rt rt
Q Q

A M ; 

( ) ( ) ( )( )

( ) ( ) ( )( )( ) ( )
2 2 2 2

, ,
i i i i

rt e e e e
   

= =
φ ψ φ ψ
Э Э Э Э

φ ψ φ ψ
x xr rQ d Q dt t rt rt

Q t t

x

r r rt rtQ d Q dD
A =Q x x  (6) 

(8)

Thus, to compare two Cq-ROFHSNs, the subsequent ranking and comparison laws
are classified as follows:

(1) If Ş(AQrt) > Ş(MQrt), then A
Qrt > M

Qrt;

(2) If Ş(AQrt) = Ş(MQrt), then

if
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  + − −   
   
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   =  
 +   

+ − −  
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 
 

ψ ψ

φ φ
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Э Э
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ψ ψ

11 12

11 12

11 1211 12

Q Q
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1
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2
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1
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q q

q q q

e e


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Э Э
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, then A
Qrt > M

Qrt;

if
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Definition 6. Let A
Q11 =

(
ϕ11ei2πЭϕ11 ,ψ11ei2πЭψ11

)
, and A

Q12 =
(
ϕ12ei2πЭϕ12 ,ψ12ei2πЭψ12

)
be two Cq-ROFHSNs over X. Then, some basic operations may be defined as follows:

(1) A
Q11 ⊆ A

Q12, if ϕ11 ≤ ϕ12, Эϕ11 ≤ Эϕ12 , ψ11 ≥ ψ12, and Эψ11 ≥ Эψ12 .

(2) A
Q11 = A

Q12, if ϕ11 = ϕ12, Эϕ11 = Эϕ12 , ψ11 = ψ12, Эψ11 = Эψ12 .

(3) Ac
Q11 =

(
ψ11ei2πЭψ11 ,ϕ11ei2πЭϕ11

)
.

3. Weighted Aggregation Operators for Cq-ROFHSNs
3.1. Einstein Operations for Cq-ROFHSNs

In the fuzzy set theory, t-norm and t-conorm are used to represent fuzzy intersection
and fuzzy union. Numerous t-norms and t-conorms have been proposed in the literature,
including those derived from algebra, Einstein, Hamacher, Dombi, and Frank, among
others. By setting certain fixed values, t-norms (ς) and t-conorms (ς∗) generated by Einstein
can generate algebraic and Einstein-type t-norms and t-conorms.

Definition 7 (see [42]). Einstein product ⊗ is a t-norm and Einstein sum ⊕ is a t-conorm,
respectively, given as

ς(a, b) = a⊗ b =
ab

1 + (1− a)(1− b)
; (9)

ς∗(a, b) = a⊕ b =
a + b

1 + ab
. (10)

Next, we examine Einstein’s operational laws for Cq-ROFHSNs, which are described
in the following manner.

Definition 8. For any two Cq-ROFHSNs, A
Q11 =

(
ϕ11ei2πЭϕ11 ,ψ11ei2πЭψ11

)
and

A
Q12 =

(
ϕ12ei2πЭϕ12 ,ψ12ei2πЭψ12

)
with η > 0.

1. A
Q11 ⊕A

Q12 =

( ϕ
q
11+ϕ

q
12

1+ϕq
11ϕ

q
12

) 1
q

e
i2π(

Эq
ϕ11

+Эq
ϕ12

1+Эq
ϕ11

Эq
ϕ12

)

1
q

,

(
ψ11ψ12

(1+(1−ψq
11)(1−ψq

12))
1
q

)
e

i2π(
Эψ11

Эψ12

(1+(1−Эq
ψ11

)(1−Эq
ψ12

))
1
q
)


2. A
Q11 ⊗A

Q12 =


(

ϕ11ϕ12

(1+(1−ϕq
11)(1−ϕq

12))
1
q

)
e

i2π(
Эϕ11 Эϕ12

(1+(1−Эq
ϕ11

)(1−Эq
ϕ12

))
1
q
)

,
(
ψ

q
11+ψ

q
12

1+ψq
11ψ

q
12

) 1
q

e
i2π(

Эq
ψ11

+Эq
ψ12

1+Эq
ψ11

Эq
ψ12

)

1
q


3.

ηA
Q11 =




(

1 +ϕ
q
11

)η
−
(

1−ϕq
11

)η(
1 +ϕ

q
11

)η
+
(

1−ϕq
11

)η


1
q

e

i2π(
(1+Эq

ϕ11
)
η
−(1−Эq

ϕ11
)
η

(1+Эq
ϕ11

)
η
+(1−Эq

ϕ11
)
η )

1
q

,

 2
1
q ψη

11((
2−ψq

11

)η
+
(
ψ

q
11

)η) 1
q

e

i2π(
2

1
q Эη
ψ11

((2−Эq
ψ11

)
η
+(Эq

ψ11
)
η
)

1
q

)



4.

A
η

Q11 =



 2
1
q ϕη

11((
2−ϕq

11

)η
+
(
ϕ

q
11

)η) 1
q

e

i2π(
2

1
q Эη
ϕ11

((2−Эq
ϕ11

)
η
+(Эq

ϕ11
)
η
)

1
q

)

,


(

1 +ψ
q
11

)η
−
(

1−ψq
11

)η(
1 +ψ

q
11

)η
+
(

1−ψq
11

)η


1
q

e

i2π(
(1+Эq

ψ11
)
η
−(1−Эq

ψ11
)
η

(1+Эq
ψ11

)
η
+(1−Эq

ψ11
)
η )

1
q


Theorem 1. For any two Cq-ROFHSNs A
Q11 =

(
ϕ11ei2πЭϕ11 ,ψ11ei2πЭψ11

)
and

A
Q12 =

(
ϕ12ei2πЭϕ12 ,ψ12ei2πЭψ12

)
with any η, η1, η2 > 0.

1. A
Q11 ⊗A

Q12 = A
Q12 ⊗A

Q11;
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2. A
Q11 ⊕A

Q12 = A
Q12 ⊕A

Q11;

3. A
η

Q11 ⊗A
η

Q12 =
(
A

Q11 ⊗A
Q12
)η ;

4. ηA
Q11 ⊕ ηA

Q12 = η
(
A

Q11 ⊕A
Q12
)
;

5. A
η1
Q11 ⊗A

η2
Q11 = A

η1+η2
Q11 ;

6. η1AQ11 ⊕ η2AQ11 = (η1 + η2)AQ11;

According to the operational laws in Definition 7, we present the Cq-ROFHSEWA
and Cq-ROFHSEWG operators in this section. These operators are then defined in order
to compensate for their shortcomings in aggregating Cq-ROFHSNs. In other words, Ein-
stein weighted averaging tends to group arguments primarily, whereas Einstein weighted
geometric tends to group personal arguments primarily.

3.2. Aggregation Operator for Weighted Averaging of Cq-ROFHSNs

Based on the operational laws in Definition 7, the Cq-ROFHSEWA operator is defined
to aggregate Cq-ROFHSNs information.

Definition 9. Let A
Qrt = Qx

^
D

=

(
ϕQ(dt)(xr)e

i2πЭϕQ(dt)
(xr) ,ψQ(dt)(xr)e

i2πЭψQ(dt)
(xr)
)

=(
ϕrtei2πЭϕrt ,ψrte

i2πЭψrt

)
be a Cq-ROFHSN, Řr and Ťt, represent the weights of experts and

attributes, respectively, under the following circumstances Řr > 0,
m
∑

r=1
Řr = 1, Ťt > 0, and

n
∑

t=1
Ťt = 1. Then, the complex q-rung orthopair fuzzy hypersoft Einstein weighted averaging

(Cq-ROFHSEWA) operator is defined as follows:

Cq− ROFHSEWA
(
A

Q11,A
Q12, . . . ,A

Qrt
)
= ⊕n

t=1Ťt

(
⊕m

r=1ŘrAQrt

)
Theorem 2. Let A

Qrt = Qx
^
D

=

(
ϕQ(dt)(xr)e

i2πЭϕQ(dt)
(xr) ,ψQ(dt)(xr)e

i2πЭψQ(dt)
(xr)
)

=
(
ϕrtei2πЭϕrt ,ψrte

i2πЭψrt

)
(r = 1, 2, . . . , m, t = 1, 2, . . . , n) be a group of Cq-ROFHSNs with

the weights of experts and attributes Řr and Ťt for Řr > 0,
m
∑

r=1
Řr = 1, Ťt > 0, and

n
∑

t=1
Ťt = 1.

Then, the aggregated result of the Cq-ROFHSEWA operator is still Cq-ROFHSN, which is obtained
by the equation:

Cq− ROFHSEWA
(
A

Q11,A
Q12, . . . ,A

Qrt
)
= ⊕n

t=1Ťt

(
⊕m

r=1ŘrAQrt

)
.

=




∏n

t=1

(
∏m

r=1

(
1 +ϕq

rt

)Řr
)Ťt

−∏n
t=1

(
∏m

r=1

(
1−ϕq

rt

)Řr
)Ťt

∏n
t=1

(
∏m

r=1

(
1 +ϕq

rt

)Řr
)Ťt

+ ∏n
t=1

(
∏m

r=1

(
1−ϕq

rt

)Řr
)Ťt


1
q

e
i2π(

∏n
t=1 (∏m

r=1 (1+Эq
ϕrt )

Řr
)
Ťt
−∏n

t=1 (∏m
r=1 (1−Эq

ϕrt )
Řr

)
Ťt

∏n
t=1 (∏m

r=1 (1+Эq
ϕrt )

Řr
)
Ťt

+∏n
t=1 (∏m

r=1 (1−Эq
ϕrt )

Řr
)
Ťt
)

1
q

,

2
1
q ∏n

t=1

(
∏m

r=1(ψrt)
Řr
)Ťt

∏n
t=1

(
∏m

r=1

(
2−ψq

rt

)Řr
)Ťt

+ ∏n
t=1

(
∏m

r=1

(
ψ

q
rt

)Řr
)Ťt

 1
q

e

i2π(
2

1
q ∏n

t=1 (∏m
r=1 (Эψrt

)Řr )
Ťt

(∏n
t=1 (∏m

r=1 (2−Эq
ψrt

)
Řr

)
Ťt

+∏n
t=1 (∏m

r=1 (Эq
ψrt

)
Řr

)
Ťt

)

1
q
)



(11)

The proof of Theorem 2 is presented in the “Appendix A”.
Now, we state some basic properties of the proposed Cq-ROFHSEWA operator in the

following Theorem.
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Theorem 3. The Cq-ROFHSEWA operator implies these properties:

(1) (Idempotency) If all A
Qrt (r = 1, 2, . . . , m, t = 1, 2, . . . , n) are equal, i.e., A

Qrt = A
Q

for all
r and t, then Cq− ROFHSEWA

(
A

Q11,A
Q12, . . . ,A

Qrt
)
= A

Q
.

(2) (Boundedness) Let A
Qrt (r = 1, 2, . . . , m, t = 1, 2, . . . , n) be a collection of Cq-ROFHSNs, and let

A−
Q
=
(

minϕrtei2πminЭϕrt ,maxψrte
i2πmaxЭψrt

)
,A+

Q
=
(

maxϕrtei2πmaxЭϕrt ,minψrte
i2πminЭψrt

)
,

thenA−
Q
⊆ Cq−ROFHSEWA

(
A

Q11,A
Q12, . . . ,A

Qrt
)
⊆ A+

Q
.

(3) (Monotonicity)LetA
Qrt (r = 1, 2, . . . ,m, t = 1, 2, . . . ,n)and

..
A

Qrt (r = 1, 2, . . . ,m, t = 1, 2, . . . ,n)

be two sets of Cq-ROFHSNs, if A
Qrt ⊆

..
A

Qrt for all r and t, then Cq − ROFHSEWA(
A

Q11,A
Q12, . . . ,A

Qrt
)
⊆ Cq− ROFHSEWA

( ..
A

Q11,
..
A

Q12, . . . ,
..
A

Qrt

)
.

Further, we give a complex q-rung orthopair fuzzy hypersoft Einstein weighted
geometric averaging (Cq-ROFHSEWG) operator below:

3.3. Geometric Aggregator of Cq-ROFHSNs with Weighted Geometric Averaging

In this section, geometric aggregation operators based on Einstein operations are
discussed. We propose a complex q-rung orthopair fuzzy hypersoft Einstein weighted
geometric average (Cq-ROFHSEWG) operator based on the Einstein operation proposed
in Definition 7. The proposed Cq-ROFHSEWG operator is validated using the induc-
tion method. Additionally, the Cq-ROFHSEWG operator is examined in terms of some
other properties.

Definition 10. Consider A
Qrt = Qx

^
D

=

(
ϕQ(dt)(xr)e

i2πЭϕQ(dt)
(xr) ,ψQ(dt)(xr)e

i2πЭψQ(dt)
(xr)
)

=
(
ϕrtei2πЭϕrt ,ψrte

i2πЭψrt

)
as a collection of Cq-ROFHSNs. Therefore, the Cq-ROFHSEWG

operator is a map ∆n →∆, as shown in the following diagram
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The proof of Theorem 2 is presented in the “Appendix A”. 

Now, we state some basic properties of the proposed Cq-ROFHSEWA operator in 

the following Theorem. 

Theorem 3. The Cq-ROFHSEWA operator implies these properties: 

(1) (Idempotency) If all rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n are equal, i.e., rt =Q Q

A A
 
for all 

r and t , then ( )11 12 ,.. ,, . rtCq ROFHSEWA− =
Q Q Q Q

A A A A . 

(2) (Boundedness) Let rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n  be a collection of Cq-ROFHSNs, and 

let ( )2 min 2 max
min ,maxrt rt

i i

rt rt

 − = φ ψЭ Э
φ e ψ e

Q
A , ( )2 max 2 min

max ,minrt rt
i i

rt rt

 + = φ ψЭ Э
φ e ψ e

Q
A , 

then ( )11 12, ,..., rtCq ROFHSEWA− + − 
Q Q Q Q Q

A A A A A . 

(3) (Monotonicity) Let rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n and 

rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n  

be two sets of Cq-ROFHSNs, if 
rt rt

Q Q
A A  for all r  and t , then

( ) ( )11 12 11 12,..., ., , , ..,rt rtCq ROFHSEWA Cq ROFHSEWA−  −
Q Q Q Q Q Q

A A A A A A .  

Further, we give a complex q-rung orthopair fuzzy hypersoft Einstein weighted geometric 

averaging (Cq-ROFHSEWG) operator below: 

3.3. Geometric Aggregator of Cq-ROFHSNs with Weighted Geometric Averaging  

In this section, geometric aggregation operators based on Einstein operations are dis-

cussed. We propose a complex q-rung orthopair fuzzy hypersoft Einstein weighted geo-

metric average (Cq-ROFHSEWG) operator based on the Einstein operation proposed in 

Definition 7. The proposed Cq-ROFHSEWG operator is validated using the induction 

method. Additionally, the Cq-ROFHSEWG operator is examined in terms of some other 

properties.  

Definition 10. Consider 
( ) ( ) ( )( )

( ) ( ) ( )( )( ) ( )r rt t rt rt

t t

2 2 2 2

rt r r rt rt, ,
i i i i

e e e e
   

= =
φ ψ φ ψ
Э Э Э Э

φ ψ φ ψ
x xQ d Q d

Q

x

Q d Q dD
A =Q x x  

as a collection of Cq-ROFHSNs. Therefore, the Cq-ROFHSEWG operator is a map ∆n →∆, as 

shown in the following diagram 

 ( ) ( )
tŤŘ

11 12 t rt, ,..., m nCq ROFHSEWG− =   r

ΐ=r 1 ѓ=1Q Q Q Q
A A A A   

where Řr and Ťt represent the weights of experts and attributes, respectively, under the following

circumstances Řr > 0,
m
∑

r=1
Řr = 1, Ťt > 0, and

n
∑

t=1
Ťt = 1.

Theorem 4. Let A
Qrt = Qx

^
D

=

(
ϕQ(dt)(xr)e

i2πЭϕQ(dt)
(xr) ,ψQ(dt)(xr)e

i2πЭψQ(dt)
(xr)
)

=
(
ϕrtei2πЭϕrt ,ψrte

i2πЭψrt

)
(r = 1, 2, . . . , m, t = 1, 2, . . . , n) be a group of Cq-ROFHSNs with

the weights of experts and attributes Řr and Ťt for Řr > 0,
m
∑

r=1
Řr = 1, Ťt > 0, and

n
∑

t=1
Ťt = 1.

Then, the aggregated result of the Cq-ROFHSEWG operator is still Cq-ROFHSN, which is obtained
by the equation:
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Proof of Theorem 4. Similarly to Theorem 2, Theorem 4 can easily be proved, which is 

omitted here.  

Now, we state some basic properties of the proposed Cq-ROFHSEWG operator in 

the following Theorem. 

Theorem 5. The Cq-ROFHSEWG operator implies these properties: 

(1) (Idempotency) If all rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n are equal, i.e., rt =Q Q

A A
 
for all 

r and t , then ( )11 12 ,.. ,, . rtCq ROFHSEWG− =
Q Q Q Q

A A A A . 

(2) (Boundedness) Let rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n  be a collection of Cq-ROFHSNs, and 

let ( )2 min 2 max
min ,maxrt rt

i i

rt rt

 − = φ ψЭ Э
φ e ψ e

Q
A , 

( )2 max 2 min
max ,minrt rt

i i

rt rt

 + = φ ψЭ Э
φ e ψ e

Q
A , then 

( )11 12, ,..., rtCq ROFHSEWG− + − 
Q Q Q Q Q

A A A A A . 

(Monotonicity) Let rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n and 

rtQ
A ( )r = 1,2,...,m,t = 1,2,...,n  be 

two sets of Cq-ROFHSNs; if 
rt rt

Q Q
A A  for all r  and t , then

( ) ( )11 12 11 12,..., ., , , ..,rt rtCq ROFHSEWG Cq ROFHSEWG−  −
Q Q Q Q Q Q
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Proof of Theorem 5. This can be proved analogously.  

4. An Approach to Multi-Attribute Decision Making under Cq-ROFHSS Environments 

=
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t=1

(
∏m

r=1

(
1−ψq

rt

)Řr
)Ťt

∏n
t=1

(
∏m

r=1

(
1 +ψq

rt

)Řr
)Ťt

+ ∏n
t=1

(
∏m

r=1

(
1−ψq

rt

)Řr
)Ťt


1
q

e

i2π(
∏n

t=1 (∏m
r=1 (1+Эq

ψrt
)
Řr

)
Ťt
−∏n

t=1 (∏m
r=1 (1−Эq

ψrt
)
Řr

)
Ťt

∏n
t=1 (∏m

r=1 (1+Эq
ψrt

)
Řr

)
Ťt

+∏n
t=1 (∏m

r=1 (1−Эq
ψrt

)
Řr

)
Ťt
)

1
q



(12)
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Proof of Theorem 4. Similarly to Theorem 2, Theorem 4 can easily be proved, which is
omitted here.

Now, we state some basic properties of the proposed Cq-ROFHSEWG operator in the
following Theorem.

Theorem 5. The Cq-ROFHSEWG operator implies these properties:

(1) (Idempotency) If all A
Qrt (r = 1, 2, . . . , m, t = 1, 2, . . . , n) are equal, i.e., A

Qrt = A
Q

for all
r and t, then Cq− ROFHSEWG

(
A

Q11,A
Q12, . . . ,A

Qrt
)
= A

Q
.

(2) (Boundedness) Let A
Qrt (r = 1, 2, . . . , m, t = 1, 2, . . . , n) be a collection of Cq-ROFHSNs,

and let A−
Q

=
(

minϕrtei2πminЭϕrt , maxψrte
i2πmaxЭψrt

)
,

A+
Q

=
(

maxϕrtei2πmaxЭϕrt , minψrte
i2πminЭψrt

)
, then A−

Q
⊆ Cq − ROFHSEWG(

A
Q11,A

Q12, . . . ,A
Qrt
)
⊆ A+

Q
.

(3) (Monotonicity)LetA
Qrt (r = 1, 2, . . . ,m, t = 1, 2, . . . ,n)and

..
A

Qrt (r = 1, 2, . . . ,m, t = 1, 2, . . . ,n)

be two sets of Cq-ROFHSNs; if A
Qrt ⊆

..
A

Qrt for all r and t, then Cq − ROFHSEWG(
A

Q11,A
Q12, . . . ,A

Qrt
)
⊆ Cq− ROFHSEWG

( ..
A

Q11,
..
A

Q12, . . . ,
..
A

Qrt

)
.

Proof of Theorem 5. This can be proved analogously.

4. An Approach to Multi-Attribute Decision Making under Cq-ROFHSS Environments
4.1. Proposed Approach to Solve the MADM Problem

We present an application based on a complex q-rung orthopair fuzzy Einstein opera-
tor to solve the MADM problem in this section. Consider

{
Y(ς)

∣∣∣ς = 1, 2, . . . , z
}

to be a set
of s alternatives and U = {u1, u2, . . . , un} to be a set of n experts. The weights of experts are

given as C = {C1,C2, . . . ,Cn} and Ci > 0,
n
∑

i=1
Ci = 1. Let V = {V1,V2, . . . ,Vm} be a set of

attributes with their corresponding multi sub-attributes such as Ṽ = {V1τ ,V2τ , . . . ,Vmτ}

for all τ ∈ {1, 2, . . . , t} with weights ε = {ε1τ , ε2τ , . . . , εmτ}, such as ετ > 0,
t

∑
τ=1

ετ = 1.

The components in the collection of sub-attributes are multi-valued; for the sake of ac-

cessibility, the components of Ṽ can be stated as
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 
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φ ψЭ Э
φ ψ

Q
A =  

where ( ) ( ) ( ) ( )
rt rtrt rt, ,

   
 φ ψ0 φ ψ Э Э, 1 and ( ) ( ) ( ) ( )

rt rtrt rt
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   φ ψ ,0 φ ψ 1,0 Э +Э 1+  for all r, t .  

The normalization of the decision matrix is required. By adding criteria such as cost 

to the decision matrix, we standardize the decision matrix when there are different types 

of criteria or attributes, such as cost and benefit. The usual complex q-rung orthopair 

fuzzy hypersoft decision matrix is obtained. It assesses the resulting matrix A using two 

types of attributes, namely a benefit attribute and a cost attribute. The 
( )( )rt

n



Q
A  normal-

ization formula may be used to standardize the performance rating matrix 
( )( )rt

n



Q
A  into 

a normalized matrix 
( )( )rt
ˆ

n



Q
A  if all the attributes in the MADM are of the same type, 

whereas if all the attributes are of the same type, a normalization formula may be used. 

Now, by utilizing the proposed weighted aggregation operators, we develop an algorithm 

to solve the MADM under Cq-ROFHS environment which is given in Algorithm 1. 

Following is an algorithm based on Cq-ROFHSSs for selecting the most appropriate 

option (see Algorithm 1). 

Algorithm 1: Selection of a suitable object using Cq-ROFHSS 

Input: 

(i) 
 ( ) , ,...,1 2Y z  = , a universal set of n alternatives, { , ,..., }1 2u u u=U n  to be a set of n  experts,

 

(ii) 
A Cq-ROFHSS 

( )( )rt
n



Q
A , where a complex q-rung orthopair fuzzy hypersoft decision matrix is provided by

( )( ) ( )
( )

( )
( )

rt rt
2 2

rt rt rt,
i i

n
e e

 
   



 
 
 

φ ψЭ Э
φ ψ

Q
A =  in a tabular format,

 

(iii) 
The weights of experts and attributes Ř r  and 

tŤ  
for

 
Ř 0r , 

1

r

r

Ř 1
m

=

= , 
tŤ 0 , and 

t

t 1

Ť 1
n

=

= .
  

Output: The object having maximum final score value will be the decision object. 

begin 

1. for  =1 to z do 

2.     for r = 1 to m do 

3.        for t = 1 to n do 

4. Aggregate the Cq-ROFHSN for each alternative  ( ) , ,...,1 2Y z  =  by using the Cq-ROFHSEWA operator, 

. The team of ex-
perts U = {u1, u2, . . . , un} appraise the alternatives

{
Y(ς)

∣∣∣ς = 1, 2, . . . , z
}

under the pre-

ferred sub-attributes of the considered parameters
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The normalization of the decision matrix is required. By adding criteria such as cost
to the decision matrix, we standardize the decision matrix when there are different types
of criteria or attributes, such as cost and benefit. The usual complex q-rung orthopair
fuzzy hypersoft decision matrix is obtained. It assesses the resulting matrix A using

two types of attributes, namely a benefit attribute and a cost attribute. The
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The normalization of the decision matrix is required. By adding criteria such as cost 

to the decision matrix, we standardize the decision matrix when there are different types 

of criteria or attributes, such as cost and benefit. The usual complex q-rung orthopair 

fuzzy hypersoft decision matrix is obtained. It assesses the resulting matrix A using two 

types of attributes, namely a benefit attribute and a cost attribute. The 
( )( )rt
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Now, by utilizing the proposed weighted aggregation operators, we develop an algorithm 

to solve the MADM under Cq-ROFHS environment which is given in Algorithm 1. 

Following is an algorithm based on Cq-ROFHSSs for selecting the most appropriate 

option (see Algorithm 1). 

Algorithm 1: Selection of a suitable object using Cq-ROFHSS 

Input: 

(i) 
 ( ) , ,...,1 2Y z  = , a universal set of n alternatives, { , ,..., }1 2u u u=U n  to be a set of n  experts,

 

(ii) 
A Cq-ROFHSS 
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(iii) 
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r
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=
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Output: The object having maximum final score value will be the decision object. 

begin 

1. for  =1 to z do 

2.     for r = 1 to m do 

3.        for t = 1 to n do 

4. Aggregate the Cq-ROFHSN for each alternative  ( ) , ,...,1 2Y z  =  by using the Cq-ROFHSEWA operator, 

into a normalized matrix
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Output: The object having maximum final score value will be the decision object. 

begin 

1. for  =1 to z do 

2.     for r = 1 to m do 

3.        for t = 1 to n do 

4. Aggregate the Cq-ROFHSN for each alternative  ( ) , ,...,1 2Y z  =  by using the Cq-ROFHSEWA operator, 

if all the attributes in the MADM are of the same type,
whereas if all the attributes are of the same type, a normalization formula may be used.
Now, by utilizing the proposed weighted aggregation operators, we develop an algorithm
to solve the MADM under Cq-ROFHS environment which is given in Algorithm 1.

Following is an algorithm based on Cq-ROFHSSs for selecting the most appropriate
option (see Algorithm 1).



Entropy 2022, 24, 1494 13 of 30

Algorithm 1: Selection of a suitable object using Cq-ROFHSS

Input:

(i)
{

Y(ς)
∣∣∣ς = 1, 2, . . . , z

}
, a universal set of n alternatives, U = {u1, u2, . . . , un} to be a set of n experts,

(ii) A Cq-ROFHSS
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Output: The object having maximum final score value will be the decision object. 
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Output: The object having maximum final score value will be the decision object. 

begin 
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or by a utilizing Cq-ROFHSEWG operator.
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Řr

)

Ťt
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)Ťt

∏n
t=1

(
∏m

r=1

(
1 +

(
ψ
(ς)
rt

)q)Řr
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Ťt
+∏n

t=1 (∏m
r=1 (1−(Э(ς)

ψrt
)
q
)
Řr
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5. end for
6. end for
7. for ς = 1 to z do

8. Determine the score functions Ş
(
Â
(ς)

Qrt

)
of every alternative

{
Y(ς)

}
via Equation (7);

9. end for
10. for ς = 1 to z do

11. Calculate final scores for each object by max
{

Ş
(
Â
(ς)

Qrt

)}
;

12. end for

end

A flowchart of the proposed algorithm is presented in Figure 3.
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4.2. Numerical Example

The Distributed Control System (DCS) is a multi-level computer system composed
of a process control level and a process monitoring level with a communication network
as the link, which integrates 4C technologies such as computer, communication and con-
trol, etc. [43,44]. Its basic idea is centralized management and decentralized control. The
composition of the Distributed Control System is presented in Figure 4.

As the economy continues to develop, the level of automation technology in chemical
enterprises is gradually rising and the scale of production is expanding. In the chemical
industry, the input and use requirements of raw materials usually require very strict control
of conditions due to special production conditions. DCS is an automation system controlled
by a computer. With the emergence of DCS, major chemical enterprises have applied
the system in the production process, the system can not only improve the quality of
chemical production products but also the accuracy of the production process control, and
also the use of a unified management form to monitor and manage the chemical process,
more chemical enterprises to reduce production costs [45–47]. In the actual production
process of chemical enterprises, the integration of the system also increases the market
competitiveness for enterprises. The application of the DCS automatic control system in
the chemical industry not only improves the interests of chemical enterprises to a certain
extent but also promotes the development of the chemical industry.
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Example 4. In order to better manage production, a chemical company wishes to purchase an
independent and controllable DCS. There are five different types of DCSs available. It is the
responsibility of an expert team hired by the department to evaluate these five sets of DCSs in order
to select a system that offers the highest comprehensive performance. There are five different types
of DCSs Y =

{
Y(1), Y(2), Y(3), Y(4), Y(5)

}
available for selection. In order to select a system with

the highest comprehensive performance from these five types of DCSs, a group of experts hired by
the department evaluates these five types of DCSs. To evaluate the alternatives, we consider a set
of attributes F = { f1, f2, f3, f4} given as f1 = Stability; f2 = Real-time; f3 = Anti-jamming; f4 =
Applicability of special function blocks. Let the corresponding sub-attribute be given as:

Stability = f1 =
{ f11 = Controller processing cycle and its stability,
f12 = Controller switching stability,
f13 = Network switching stability}

;

Real-time = f2 =
{ f21 = switch acquisition real − time,
f22 = analog acquisition real − time,
f23 = network transmission real − time}

;

Anti-jamming = f3 = { f31 = Anti− jamming};
Applicability = f4 = { f41 = Applicability}.

Let F′ = f1 × f2 × f3 × f4 be a set of sub-attributes
F′ = f1 × f2 × f3 × f4= {c11, c12, c13} × {c21, c22, c23} × {c31} × {c41}

=

{
{ f11, f21, f31, f41} × { f11, f22, f31, f41} × { f11, f23, f31, f41} × { f12, f21, f31, f41} × { f12, f22, f31, f41}
×{ f12, f23, f31, f41} × { f13, f21, f31, f41} × { f13, f22, f31, f41} × { f13, f23, f31, f41}

}
,

where F′ =
{ .

f 1,
.
f 2,

.
f 3,

.
f 4,

.
f 5,

.
f 6,

.
f 7,

.
f 8,

.
f 9

}
is a set of all multi sub-attributes with weights

(0. 09, 0. 07, 0. 13, 0. 1, 0. 06, 0. 12, 0. 06, 0. 19, 0. 18)′.
Let {u1, u2, u3} be a set of three experts with weights (0. 19, 0. 5, 0. 31)′ to judge the opti-

mum alternative.

A DCS is also available which is based not only on the overall average rating of an
alternative, but also on the most recent reviews. Due to the fact that the average is built on
expert reviews over time, it may not always reflect the views of current experts. The most
recent reviews regarding the latest version are more likely to reflect current opinions.

A selection should be chosen based on the overall rating and the most recent ver-
sion of the alternative. In terms of amplitude and phase, this can be represented using
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Cq-ROFHSNs expressions. Specialists then provide their preferences in the form of Cq-
ROFHSNs. As an example, if the average satisfaction level of expert u1 with regard to
attribute

.
f 1 in alternative Y(1) is 0.36, and the current satisfaction level is 0.74, the Mem can

be expressed as 0.36ei2π0.74. The NMem, however, indicates the level of dissatisfaction.
For each alternative, DMs will evaluate the ratings in the form of Cq-ROFHSNs under

each of the multiple sub-attributes. In order to find the most suitable alternative, the
following method has been developed.
Step 1. In Tables 1–3, experts summarize their priorities and scores in the form of Cq-
ROFHSNs.
Step 2. There is no need to normalize since all attributes are of the same type.
Step 3. Assuming q = 1, integrate the attribute information of each distributed control
system using the the Cq-ROFHSEWA or Cq-ROFHSEWG operator to obtain the compre-
hensive attribute information for each distributed control system. The results can be found
in Tables 4 and 5.
Step 4. Using the Cq-ROFHSEWA operator, compute the corresponding score function
values for each distributed control system:

Ş(1) = 0.1860, Ş(2) = 0.2175, Ş(3) = 0.1622, Ş(4) = 0.2229, and Ş(5) = 0.2476,

Or calculate the similarity of each alternative from the Cq-ROFHSEWG operator:

Ş(1) = 0.7806, Ş(2) = 0.8170, Ş(3) = 0.7831, Ş(4) = 0.8210, or Ş(5)= 0.8412.

Step 5. Based on the score function value, rank the advantages and disadvantages of the
five Distributed Control Systems. In general, the higher the score function value, the better
the comprehensive conditions of the corresponding Distributed Control System. According
to the Cq-ROFHSEWA operator or the Cq-ROFHSEWG operator, the score function value
ranking is as follows:

Y(5) > Y(4) > Y(2) > Y(1) > Y(3) or Y(5) > Y(4) > Y(2) > Y(3) > Y(1).

As can be seen, the Distributed Control System with the best comprehensive perfor-
mance is Y(5). Notice that the both operators provide different results. The Cq-ROFHSEWA
operator shows that Y(1) is the fourth choice and Y(3) is the last option, but the Cq-
ROFHSEWG operator shows that Y(3) is the fourth choice and Y(1) is the last choice option.

Table 1. Cq-ROFHSNs decision matrix for u1.

sub-attributes
.
f i

.
f 1

.
f 2

.
f 3

.
f 4

.
f 5

Y(1) (0.36ei2π0.74,0.79ei2π0.69) (0.56ei2π0.58,0.95ei2π0.8) (0.56ei2π0.36,0.75ei2π0.83) (0.71ei2π0.47,0.66ei2π0.57) (0.92ei2π0.93,0.35ei2π0.47)
Y(2) (0.38ei2π0.91,0.51ei2π0.8) (0.22ei2π0.95,0.88ei2π0.7) (0.41ei2π0.92,0.76ei2π0.29) (0.37ei2π0.48,0.23ei2π0.91) (0.64ei2π0.74,0.25ei2π0.36)
Y(3) (0.59ei2π0.77,0.47ei2π0.55) (0.93ei2π0.42,0.83ei2π0.46) (0.51ei2π0.75,0.44ei2π0.93) (0.87ei2π0.83,0.45ei2π0.86) (0.8ei2π0.81,0.54ei2π0.87)
Y(4) (0.47ei2π0.84,0.4ei2π0.9) (0.3ei2π0.7,0.42ei2π0.45) (0.76ei2π0.48,0.24ei2π0.79) (0.68ei2π0.62,0.84ei2π0.64) (0.33ei2π0.93,0.36ei2π0.37)
Y(5) (0.52ei2π0.92,0.32ei2π0.79) (0.36ei2π0.31,0.78ei2π0.64) (0.46ei2π0.63,0.31ei2π0.79) (0.6ei2π0.43,0.44ei2π0.41) (0.67ei2π0.8,0.86ei2π0.32)

sub-attributes
.
f i

.
f 6

.
f 7

.
f 8

.
f 9

Y(1) (0.66ei2π0.69,0.28ei2π0.3) (0.81ei2π0.65,0.93ei2π0.69) (0.28ei2π0.93,0.33ei2π0.3) (0.61ei2π0.63,0.53ei2π0.39)
Y(2) (0.94ei2π0.68,0.43ei2π0.57) (0.63ei2π0.6,0.72ei2π0.5) (0.22ei2π0.6,0.32ei2π0.74) (0.43ei2π0.8,0.47ei2π0.68)
Y(3) (0.73ei2π0.64,0.55ei2π0.4) (0.86ei2π0.85,0.7ei2π0.95) (0.6ei2π0.93,0.93ei2π0.54) (0.46ei2π0.68,0.67ei2π0.8)
Y(4) (0.63ei2π0.62,0.81ei2π0.65) (0.88ei2π0.85,0.53ei2π0.92) (0.36ei2π0.57,0.32ei2π0.68) (0.65ei2π0.29,0.37ei2π0.75)
Y(5) (0.38ei2π0.92,0.28ei2π0.77) (0.87ei2π0.37,0.87ei2π0.75) (0.94ei2π0.61,0.7ei2π0.23) (0.76ei2π0.79,0.52ei2π0.68)
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Table 2. Cq-ROFHSNs decision matrix for u2.

sub-attributes
.
f i

.
f 1

.
f 2

.
f 3

.
f 4

.
f 5

Y(1) (0.38ei2π0.27,0.48ei2π0.87) (0.35ei2π0.46,0.45ei2π0.53) (0.21ei2π0.5,0.74ei2π0.73) (0.52ei2π0.86,0.77ei2π0.91) (0.37ei2π0.34,0.92ei2π0.29)
Y(2) (0.58ei2π0.28,0.86ei2π0.23) (0.53ei2π0.84,0.57ei2π0.42) (0.5ei2π0.24,0.21ei2π0.67) (0.39ei2π0.23,0.61ei2π0.56) (0.63ei2π0.71,0.26ei2π0.61)
Y(3) (0.41ei2π0.95,0.68ei2π0.54) (0.54ei2π0.43,0.55ei2π0.63) (0.85ei2π0.71,0.78ei2π0.83) (0.61ei2π0.65,0.69ei2π0.89) (0.83ei2π0.54,0.83ei2π0.88)
Y(4) (0.26ei2π0.93,0.77ei2π0.42) (0.91ei2π0.43,0.94ei2π0.37) (0.59ei2π0.62,0.88ei2π0.34) (0.25ei2π0.38,0.21ei2π0.25) (0.43ei2π0.21,0.56ei2π0.54)
Y(5) (0.35ei2π0.68,0.86ei2π0.31) (0.53ei2π0.73,0.46ei2π0.3) (0.2ei2π0.45,0.3ei2π0.59) (0.29ei2π0.26,0.68ei2π0.46) (0.81ei2π0.84,0.22ei2π0.85)

sub-attributes
.
f i

.
f 6

.
f 7

.
f 8

.
f 9

Y(1) (0.42ei2π0.91,0.22ei2π0.4) (0.22ei2π0.44,0.23ei2π0.72) (0.36ei2π0.69,0.88ei2π0.31) (0.77ei2π0.53,0.33ei2π0.83)
Y(2) (0.55ei2π0.3,0.86ei2π0.21) (0.95ei2π0.24,0.44ei2π0.32) (0.21ei2π0.78,0.24ei2π0.41) (0.47ei2π0.94,0.53ei2π0.29)
Y(3) (0.69ei2π0.71,0.89ei2π0.87) (0.78ei2π0.76,0.82ei2π0.86) (0.49ei2π0.63,0.85ei2π0.58) (0.89ei2π0.71,0.69ei2π0.72)
Y(4) (0.53ei2π0.29,0.55ei2π0.3) (0.32ei2π0.86,0.86ei2π0.51) (0.68ei2π0.87,0.24ei2π0.45) (0.64ei2π0.63,0.24ei2π0.31)
Y(5) (0.69ei2π0.81,0.45ei2π0.38) (0.65ei2π0.36,0.27ei2π0.53) (0.91ei2π0.88,0.25ei2π0.23) (0.67ei2π0.63,0.25ei2π0.15)

Table 3. Cq-ROFHSNs decision matrix for u3.

sub-attributes
.
f i

.
f 1

.
f 2

.
f 3

.
f 4

.
f 5

Y(1) (0.93ei2π0.86,0.2ei2π0.42) (0.61ei2π0.5,0.51ei2π0.56) (0.85ei2π0.75,0.78ei2π0.48) (0.39ei2π0.3,0.7ei2π0.25) (0.67ei2π0.47,0.86ei2π0.59)
Y(2) (0.76ei2π0.71,0.21ei2π0.43) (0.65ei2π0.49,0.88ei2π0.63) (0.79ei2π0.84,0.2ei2π0.43) (0.62ei2π0.2,0.61ei2π0.5) (0.91ei2π0.27,0.58ei2π0.28)
Y(3) (0.6ei2π0.72,0.67ei2π0.86) (0.4ei2π0.62,0.75ei2π0.6) (0.66ei2π0.54,0.51ei2π0.55) (0.5ei2π0.67,0.88ei2π0.79) (0.88ei2π0.45,0.57ei2π0.75)
Y(4) (0.24ei2π0.66,0.5ei2π0.66) (0.27ei2π0.23,0.82ei2π0.52) (0.81ei2π0.36,0.51ei2π0.85) (0.62ei2π0.33,0.62ei2π0.92) (0.89ei2π0.56,0.34ei2π0.33)
Y(5) (0.6ei2π0.87,0.87ei2π0.95) (0.44ei2π0.45,0.37ei2π0.31) (0.74ei2π0.63,0.42ei2π0.74) (0.82ei2π0.94,0.93ei2π0.23) (0.83ei2π0.39,0.75ei2π0.57)

sub-attributes
.
f i

.
f 6

.
f 7

.
f 8

.
f 9

Y(1) (0.71ei2π0.35,0.81ei2π0.9) (0.87ei2π0.65,0.71ei2π0.83) (0.22ei2π0.74,0.57ei2π0.95) (0.25ei2π0.32,0.72ei2π0.83)
Y(2) (0.27ei2π0.9,0.84ei2π0.38) (0.76ei2π0.3,0.68ei2π0.56) (0.31ei2π0.6,0.37ei2π0.25) (0.27ei2π0.53,0.73ei2π0.34)
Y(3) (0.57ei2π0.4,0.73ei2π0.92) (0.53ei2π0.51,0.63ei2π0.95) (0.53ei2π0.43,0.61ei2π0.61) (0.49ei2π0.49,0.64ei2π0.65)
Y(4) (0.54ei2π0.37,0.51ei2π0.64) (0.69ei2π0.64,0.5ei2π0.28) (0.95ei2π0.79,0.27ei2π0.69) (0.69ei2π0.94,0.72ei2π0.23)
Y(5) (0.26ei2π0.86,0.25ei2π0.54) (0.3ei2π0.51,0.59ei2π0.86) (0.83ei2π0.87,0.44ei2π0.27) (0.89ei2π0.7,0.62ei2π0.63)

Table 4. Cq-ROFHSEWA operator’s overall assessment of each alternative.

Alternatives Cq-ROFHSEWA

Y(1) (0.1978ei2π0.2478,0.8453ei2π0.8562)
Y(2) (0.1956ei2π0.2658,0.8059ei2π0.7855)
Y(3) (0.2626ei2π0.2666,0.8974ei2π0.9028)
Y(4) (0.246ei2π0.2606,0.8047ei2π0.8104)
Y(5) (0.2748ei2π0.2964,0.7938ei2π0.7869)

Table 5. Cq-ROFHSEWG operator’s overall assessment of each alternative.

Alternatives Cq-ROFHSEWG

Y(1) (0.8011ei2π0.8484,0.2536ei2π0.2735)
Y(2) (0.8ei2π0.8413,0.2058ei2π0.1677)
Y(3) (0.8705ei2π0.8745,0.2963ei2π0.3163)
Y(4) (0.8449ei2π0.8486,0.2086ei2π0.2009)
Y(5) (0.858ei2π0.8826,0.1893ei2π0.1867)
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5. Analysis and Discussion of Comparative Studies

As we discuss in this section, the proposed method is evaluated in terms of its effec-
tiveness, simplicity, operability, and benefits. Additionally, we present a brief comparison
between the proposed method and some prior art.

5.1. The Superiority of the Proposed Method

Zadeh’s FS [1] provides inaccurate and imprecise membership information but does
not provide information regarding the NMem of alternatives under the parameters consid-
ered. Currently, FS uses only Mem to resolve difficulties, whereas our proposed technique
makes use of the inherent ambiguity in both Mem and NMem. Atanassov [2] uses Mem
and NMem to address uncertainty in their IFS. This theory cannot, however, be applied
in situations where the sum of Mem and NMem exceeds 1. When compared with the IFS,
the PFS of Yager [10,12] is able to accommodate a greater degree of uncertainty. These
theories do not take into account the parameters of the alternatives. The concept of FSS was
developed in order to address the problem of parameterizing uncertain objects, according
to Maki et al. [23]. A consideration of the Mem of the attributes is necessary in order to
deal with uncertainty. Nevertheless, the proposed FSS does not provide any information
regarding the object’s NMem. Maji et al. [24] have proposed using IFSS to overcome these
drawbacks. IFSS is unable to handle cases where Mem and NMem exceed one, but our
proposal overcomes these obstacles and provides more operational benefits. Cq-ROFHSS
is a special case of hybrid structures such as FS and IFS when certain conditions are met.
Any of the studies mentioned above provide no information regarding the sub-properties.
Accordingly, the above-mentioned theories cannot explain the case in which attributes have
corresponding subproperties. In addition to providing additional operational results to the
MADM method, our proposed approach addresses these complex issues as well.

The proposed concept allows for a more accurate handling of uncertain objects. The
MADM process can be quite effective when entity information is accurately and empirically
represented (see Table 6). On the basis of the results of this study and comparison, it has
been determined that the proposed method produces more accurate results than other
methods. In addition, MADM can incorporate a significant amount of information to
address anxiety in the data, as opposed to other methods. As a result of its effectiveness,
flexibility, simplicity, and superior performance, our hybrid structure performs better than
other hybrid structures for fuzzy sets.

Table 6. Comparison of Cq-ROFHSSs with some existing theories.

SN References Set Truth In-
formation Falsity Parameterization Attributes Sub-

Attributes Limitations

1 Zadeh [1] FS
√

8 8
√

8 Lack of NMem

2 Atanassov [2] IFS
√ √

8
√

8
Lack of complex
fuzzy values

3 Yager [10] PFS
√ √

8
√

8
Lack of complex
fuzzy values

4 Yager [12] q-ROFS
√ √

8
√

8
Lack of complex
fuzzy values

5 Maji et al. [23] FSS
√

8
√ √

8

Cannot deal with
NMem of the
parameters

6 Maji et al. [24] IFSS
√ √ √ √

8
Lack of complex
fuzzy values

7 Proposed
Approach

Cq-
ROFHSS

√ √ √ √ √ Long and heavy
calculations in
grades diagnosis
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5.2. Comparative Analysis
5.2.1. Influence of Parameter Values on Ranking Results

This section discusses the effects of parameter q on the ranking results of the alterna-
tives. First, we adjusted the parameter q using Equations (11) and (12) in order to produce
a more accurate representation of the warning system information. In order to investigate
the effect of different values of q = 2, 3, 4, 5, 8, 10, 15, and 20 on the final ranking results, the
analytical calculations were repeated as shown in Tables 7 and 8.

Table 7. Effect of the parameter q from the Cq-ROFHSWA operator.

Value of q The Result of the Methods Rankings of the Methods

q = 2 Ş(1) = 0.1965, Ş(2) = 0.2465, Ş(3) = 0.1689, Ş(4) = 0.2446, Ş(5) = 0.2749 Y(5) > Y(4) > Y(2) > Y(1) > Y(3)

q = 3 Ş(1) = 0.225, Ş(2) = 0.2881, Ş(3) = 0.1773, Ş(4) = 0.2812, Ş(5) = 0.3137 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

q = 4 Ş(1) = 0.2573, Ş(2) = 0.3285, Ş(3) = 0.1934, Ş(4) = 0.3185, Ş(5) = 0.3511 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

q = 5 Ş(1) = 0.289, Ş(2) = 0.3641, Ş(3) = 0.2127, Ş(4) = 0.3524, Ş(5) = 0.3838 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

q = 8 Ş(1) = 0.3686, Ş(2) = 0.4379, Ş(3) = 0.2739, Ş(4) = 0.3856, Ş(5) = 0.4501 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

q = 10 Ş(1) = 0.4068, Ş(2) = 0.4655, Ş(3) = 0.3115, Ş(4) = 0.4558, Ş(5) = 0.474 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

q = 15 Ş(1) = 0.4625, Ş(2) = 0.4947, Ş(3) = 0.3854, Ş(4) = 0.4897, Ş(5) = 0.498 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

q = 20 Ş(1) = 0.4857, Ş(2) = 0.5014, Ş(3) = 0.4330, Ş(4) = 0.4990, Ş(5) = 0.5025 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

Table 8. Effect of the parameter q from the Cq-ROFHSWG operator.

Value of q The Result of the Methods Rankings of the Methods

q = 2 Ş(1) = 0.7654, Ş(2) = 0.7946, Ş(3) = 0.7772, Ş(4) = 0.809, Ş(5) = 0.8334 Y(5) > Y(4) > Y(2) > Y(3) > Y(1)

q = 3 Ş(1) = 0.7336, Ş(2) = 0.7565, Ş(3) = 0.772, Ş(4) = 0.7792, Ş(5) = 0.807 Y(5) > Y(4) > Y(3) > Y(2) > Y(1)

q = 4 Ş(1) = 0.6997, Ş(2) = 0.7171, Ş(3) = 0.7507, Ş(4) = 0.7459, Ş(5) = 0.7765 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

q = 5 Ş(1) = 0.6678, Ş(2) = 0.6808, Ş(3) = 0.7274, Ş(4) = 0.7132, Ş(5) = 0.746 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

q = 8 Ş(1) = 0.5944, Ş(2) = 0.599, Ş(3) = 0.6603, Ş(4) = 0.6759, Ş(5) = 0.6669 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

q = 10 Ş(1) = 0.5626, Ş(2) = 0.5647, Ş(3) = 0.6233, Ş(4) = 0.5933, Ş(5) = 0.6266 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

q = 15 Ş(1) = 0.5213, Ş(2) = 0.5217, Ş(3) = 0.5603, Ş(4) = 0.5374, Ş(5) = 0.5614 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

q = 20 Ş(1) = 0.5068, Ş(2) = 0.5072, Ş(3) = 0.5280, Ş(4) = 0.5144, Ş(5) = 0.5291 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

Following that, we examined the effect of parameters on the results of the alternatives.
In Tables 7 and 8, the parameters have an impact on the best ranking results, and the value
of the score function gradually changes with an increase in parameter q. As an example,
the score function of the Cq-ROFHSEWA aggregation operator gradually increases with
increases in parameter q, while the score function of the Cq-ROFHSEWG aggregation
operator gradually decreases with increases in parameter q. However, the best ranking
results remain unchanged.

Figure 5 presents a geometrical interpretation of the proposed work described in
Tables 7 and 8.

According to Figure 5, the decision maker has the option of selecting different aggre-
gation operators and changing the results of each scenario by modifying the adjustment
parameter q. It should be noted, however, that the best ranking results remain unchanged.
Therefore, it shows that the complex q-rung orthopair fuzzy hypersoft information integra-
tion operator proposed in this paper is feasible and internally consistent.
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5.2.2. Comparison with Existing Methods

According to [30], Zulqarnain et al. propose intuitionistic fuzzy hypersoft sets (IFHSS),
as well as new aggregation operators, an intuitionistic fuzzy hypersoft weighted average
(IFHWA) operator, and an intuitionistic fuzzy hypersoft weighted geometric (IFHWG)
operator, and discuss some of their properties. On the basis of the proposed operators, a
decision method is developed to solve the MADM problem. However, this method cannot
be used in situations where the sum of the squares of (interval) Mem and (interval) NMem
exceeds 1. Additionally, they [25] proposed the concept of the Pythagorean fuzzy soft set
(PFSS) and derived from it the Pythagorean fuzzy soft weighted average (PFSWA) operator
and Pythagorean fuzzy soft weighted geometric (PCFWG) operator. As a result of these
operators, Pythagorean fuzzy soft information can be used to solve decision problems. This
method cannot be applied if the information is the complex Mem and complex NMem.
Liu et al. [19] propose the complex q-rung orthopair fuzzy weighted average operator (Cq-
ROFWA) and complex q-rung orthopair fuzzy weighted geometric operator (Cq-ROFWG)
to solve the MCDM problem. However, a major common limitation of this theory is that
they are not suitable for parametric descriptions.

In this paper, we propose a method that is capable of handling this situation easily.
Through the parameter q, the method proposed in this paper is more flexible than the
methods proposed in [30] and [25]. In order to avoid information distortion, the scope of
the decision process can be broadened by increasing the value of the parameter q. As a
result, the method proposed in this paper is more suitable, since it gives the decision maker
more space in the decision-making process. Furthermore, the method presented in this
paper has the advantage of being capable of handling parametric descriptions, which is an
advantage over [19].

Complex q-rung orthopair fuzzy hypersoft sets (Cq-ROFHSSs) provide an effective
description of complex fuzzy information in the real world. Since Cq-ROFHSSs contain
the parameter q and can adjust the range of complex fuzzy information expressed, the
Einstein aggregation operator is a useful tool for generating rules based on complex q-
rung orthopair fuzzy hypersoft numbers (Cq-ROFHSNs). The proposed theory resolves
the parametric ambiguity of two-dimensional fuzzy data, which makes it superior to the
Cq-ROFS model from the beginning. We have conducted a comparative analysis of the
seminal approach to illustrate its usefulness and superiority. The same examples are solved
using some existing methods, and their results are evaluated.

As part of this section, we make a number of quantitative comparisons. The same
examples are solved using existing methods, and their final ranking results are compared.
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Using our pioneering method, we compare it to the methods proposed by Zulqarnain [30]
for the weighted intuitionistic fuzzy hypersoft aggregation operators (IFHWA, IFHWG),
and Pythagorean fuzzy soft weighted averaging operators (PFSWA, PFSWG) [25], as well
as Liu’s complex q-rung orthopair fuzzy weighted averaging operators (Cq-ROFWA, Cq-
ROFWAG) [19]. A practical multi-attribute decision example is used in this paper in order
to demonstrate the superiority of the proposed method.

Example 5. Consider a very simple decision-making problem: ranking the performance of dis-
tributed control systems. This example differs from Example 4 in that the experts provide their
preferences as intuitionistic fuzzy numbers. In the previous section, we discussed the information
related to this example. Tables 9–11 provide a description of intuitionistic fuzzy information.

Table 9. Decision matrix Cq-ROFHSSs for ui, whose entities are derived from intuitionistic fuzzy num-
bers.

Information
given by
expert u1

sub-attributes
.
f i

.
f 1

.
f 2

.
f 3

.
f 4

.
f 5

.
f 6

.
f 7

.
f 8

.
f 9

Y(1) (0.52, 0.33) (0.37, 0.37) (0.24, 0.28) (0.4, 0.43) (0.52, 0.34) (0.51, 0.42) (0.38, 0.43) (0.5, 0.2) (0.44, 0.5)
Y(2) (0.31, 0.38) (0.54, 0.45) (0.27, 0.31) (0.44, 0.33) (0.46, 0.31) (0.65, 0.21) (0.52, 0.42) (0.33, 0.44) (0.63, 0.31)
Y(3) (0.5, 0.26) (0.49, 0.33) (0.62, 0.33) (0.36, 0.62) (0.72, 0.22) (0.43, 0.48) (0.37, 0.47) (0.55, 0.31) (0.35, 0.41)
Y(4) (0.33, 0.31) (0.48, 0.35) (0.31, 0.63) (0.71, 0.21) (0.53, 0.4) (0.43, 0.53) (0.38, 0.32) (0.66, 0.28) (0.55, 0.33)
Y(5) (0.54, 0.28) (0.34, 0.36) (0.43, 0.51) (0.32, 0.56) (0.22, 0.59) (0.5, 0.42) (0.49, 0.36) (0.38, 0.43) (0.46, 0.38)

Information
given by
expert u2

sub-attributes
.
f i

.
f 1

.
f 2

.
f 3

.
f 4

.
f 5

.
f 6

.
f 7

.
f 8

.
f 9

Y(1) (0.51, 0.48) (0.21, 0.49) (0.54, 0.32) (0.53, 0.24) (0.33, 0.24) (0.32, 0.26) (0.27, 0.24) (0.34, 0.32) (0.45, 0.43)
Y(2) (0.54, 0.42) (0.41, 0.27) (0.3, 0.42) (0.66, 0.28) (0.71, 0.22) (0.35, 0.55) (0.72, 0.2) (0.53, 0.35) (0.52, 0.35)
Y(3) (0.39, 0.53) (0.42, 0.41) (0.67, 0.2) (0.39, 0.41) (0.29, 0.49) (0.46, 0.35) (0.43, 0.38) (0.69, 0.25) (0.41, 0.51)
Y(4) (0.59, 0.26) (0.21, 0.48) (0.54, 0.21) (0.42, 0.55) (0.65, 0.31) (0.47, 0.34) (0.57, 0.34) (0.5, 0.48) (0.63, 0.27)
Y(5) (0.4, 0.49) (0.29, 0.4) (0.44, 0.47) (0.55, 0.27) (0.7, 0.21) (0.4, 0.47) (0.23, 0.54) (0.55, 0.41) (0.4, 0.47)

Information
given by
expert u3

sub-attributes
.
f i

.
f 1

.
f 2

.
f 3

.
f 4

.
f 5

.
f 6

.
f 7

.
f 8

.
f 9

Y(1) (0.4, 0.33) (0.44, 0.33) (0.27, 0.4) (0.26, 0.68) (0.5, 0.41) (0.28, 0.2) (0.38, 0.59) (0.21, 0.5) (0.2, 0.4)
Y(2) (0.79, 0.2) (0.47, 0.33) (0.43, 0.46) (0.37, 0.49) (0.21, 0.39) (0.65, 0.21) (0.24, 0.26) (0.55, 0.2) (0.36, 0.6)
Y(3) (0.57, 0.27) (0.2, 0.47) (0.48, 0.24) (0.55, 0.26) (0.34, 0.46) (0.37, 0.4) (0.4, 0.43) (0.31, 0.47) (0.37, 0.34)
Y(4) (0.64, 0.3) (0.39, 0.52) (0.49, 0.32) (0.49, 0.28) (0.43, 0.37) (0.45, 0.29) (0.35, 0.37) (0.77, 0.17) (0.51, 0.47)
Y(5) (0.35, 0.51) (0.55, 0.44) (0.55, 0.38) (0.46, 0.33) (0.4, 0.51) (0.54, 0.28) (0.37, 0.29) (0.23, 0.39) (0.33, 0.55)

Table 10. The overall value of each alternative by the Cq-ROFHSEWA operator.

Alternatives Cq-ROFHSEWA

Y(1) (0.1321ei2π0.0, 0.754ei2π0.0)
Y(2) (0.18ei2π0.0, 0.7458ei2π0.0)
Y(3) (0.1685ei2π0.0, 0.7559ei2π0.0)
Y(4) (0.1944ei2π0.0, 0.743ei2π0.0)
Y(5) (0.1535ei2π0.0, 0.7815ei2π0.0)

Table 11. The overall value of each alternative by the Cq-ROFHSEWG operator.

Alternatives Cq-ROFHSEWA

Y(1) (0.7544ei2π0.0, 0.131ei2π0.0)
Y(2) (0.8065ei2π0.0, 0.126ei2π0.0)
Y(3) (0.7973ei2π0.0, 0.1322ei2π0.0)
Y(4) (0.8242ei2π0.0, 0.1242ei2π0.0)
Y(5) (0.7825ei2π0.0, 0.15ei2π0.0)
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This algorithm consists of the following steps:
Step 1. Each entity is represented as an intuitionistic fuzzy number in this example. After
clarifying that e0 = 1, we constructed a matrix in which each entity is represented by a
complex number.
Step 2. No need for normalization because all parameters are of the same type.
Step 3. Based on the assumption that q = 1, determine the preference values of attributes
by using the Cq-ROFHSEWA or Cq-ROFHSEWG operators, and determine the summary
matrix as shown in Tables 10 and 11.
Step 4. Using the Cq-ROFHSEWA operator, compute the corresponding score function
values for each distributed control system:

Ş(1) = 0.3445, Ş(2) = 0.3585, Ş(3) = 0.3531, Ş(4) = 0.3629, Ş(5) = 0.3430,

From the Cq-ROFHSEWG operator, calculate the score function values between
each alternative:

Ş(1) = 0.6558, Ş(2) = 0.6701, Ş(3) = 0.6663, Ş(4) = 0.6750, Ş(5) = 0.6581.

Step 5. According to the score function value, rank the advantages and disadvantages of
the five Distributed Control Systems. Generally speaking, the higher the score function
value, the better the comprehensive conditions of the Distributed Control System. From
either the Cq-ROFHSEWA operator or the Cq-ROFHSEWG operator, the following score
function value ranking is provided:

Y(4) > Y(2) > Y(3) > Y(1) > Y(5) or Y(4) > Y(2) > Y(3) > Y(5) > Y(1).

As can be seen, the Distributed Control System with the best comprehensive perfor-
mance is Y(4). It should be noted that the results provided by the two operators are different.
According to the Cq-ROFHSEWA operator, it shows that Y(1) is the fourth option and Y(5)

is the last option, whereas, according to the Cq-ROFHSEWG operator, it shows that Y(5) is
the fourth option and Y(1) is the last option.

The following section compares the proposed method with the results of the existing
operators IFHWA, IFHWG [30], PFSWA, PFSWG [25], Cq-ROFWA, and Cq-ROFWG [19] for
Example 5. In the following section, we will demonstrate that the proposed Cq-ROFHSEWA
and Cq-ROFHSEWG operators generate more fruitful and more general results than the
existing operators.

In Table 12, the ranking results obtained by the existing methods and the proposed
methods are compared according to Example 5. Based on the comparison in Table 12,
Figure 6 provides a geometric explanation.

Table 12. Comparison between proposed method with existing methods for Example 5.

Methods Similarity Values and Scores Ranking Results

IFHSWA [30] Ş(1) = −0.5678, Ş(2) = −0.4975, Ş(3) = −0.5256, Ş(4) = −0.4771, Ş(5) = −0.5761 Y(4) > Y(2) > Y(3) > Y(1) > Y(5)

IFHSWG [30] Ş(1) = 0.5680, Ş(2) = 0.6357, Ş(3) = 0.6187, Ş(4) = 0.6607, Ş(5) = 0.5804 Y(4) > Y(2) > Y(3) > Y(5) > Y(1)

PFSWA [25] Ş(1) = 0.9973, Ş(2) = 0.9988, Ş(3) = 0.9983, Ş(4) = 0.9993, Ş(5) = 0.9979 Y(4) > Y(2) > Y(3) > Y(5) > Y(1)

PFSWG [25] Ş(1) = 0.9991, Ş(2) = 0.9993, Ş(3) = 0.9992, Ş(4) = 0.9994, Ş(5) = 0.9989 Y(4) > Y(2) > Y(3) > Y(1) > Y(5)

Cq-ROFWA, q = 1 [19] Ş(1) = 0.3581, Ş(2) = 0.3756, Ş(3) = 0.3686, Ş(4) = 0.3807, Ş(5) = 0.3560 Y(4) > Y(2) > Y(3) > Y(1) > Y(5)

Cq-ROFWG, q = 1 [19] Ş(1) = 0.6420, Ş(2) = 0.6589, Ş(3) = 0.6547, Ş(4) = 0.6652, Ş(5) = 0.6451 Y(4) > Y(2) > Y(3) > Y(5) > Y(1)

Proposed measure
Cq-ROHSEWA for q = 1 Ş(1) = 0.3445, Ş(2) = 0.3585, Ş(3) = 0.3531, Ş(4) = 0.3629, Ş(5) = 0.3430 Y(4) > Y(2) > Y(3) > Y(1) > Y(5)

Proposed measure
Cq-ROHSEWG for q = 1 Ş(1) = 0.6558, Ş(2) = 0.6701, Ş(3) = 0.6663, Ş(4) = 0.6750, Ş(5) = 0.6581 Y(4) > Y(2) > Y(3) > Y(5) > Y(1)

The geometrical interpretation of the proposed work described in Table 12 are available
in Figure 6.
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It is evident from Table 12 and Figure 6 that the same order of these methods gives
different results, but the best choice is Y(4). It will be found that IFHSWA [30], PFSWG [25],
Cq-ROFWA [19], and Cq-ROFHSEWA all yield the same ranking of results, while IFH-
SWG [30], PFSWA [25], Cq-ROFWG [19], and Cq-ROFHSEWG also yield the same ranking
of results.
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Despite this, IFHSS [30] cannot adequately describe the problem, whereas Cq-ROFHSSs
are more capable of handling uncertain and unpredictable information in realistic decision-
making situations. In order to further discuss our proposed method, we will examine its
superiority and flexibility by using different values of parameter q. If we consider the
Cq-ROFHSSs type, IFHSS [30] and CPFSS [19] cannot adequately describe it. It is not
possible to meet the conditions of IFHSS and CPFSS in an efficient manner.

To demonstrate the effectiveness of the proposed method, we change the imaginary
part of all sets in Example 4 to 0 (IM = 0), resulting in a simplified Complex q-rung orthopair
Fuzzy Hypersoft Set. This allows comparing Zulqarnain’s two weighted intuitionistic fuzzy
hypersoft leveling operators (IFHWA, IFHWG) [30] and Pythagorean fuzzy soft weighted
averaging operators (PFSWA, PFSWG) [25], as well as Liu’s complex q-rung orthopair
fuzzy weighted averaging operators (Cq-ROFWA, Cq-ROFWAG) [19]. A summary of the
results can be found in Table 13.

Table 13. Comparison between proposed method with existing methods for Example 4.

Methods Similarity Values and Scores Ranking Results

IFHSWA [30] Ş(1) = −0.5815, Ş(2) = −0.5380, Ş(3) = −0.5782, Ş(4) = −0.4761, Ş(5) = −0.4301 Y(5) > Y(4) > Y(2) > Y(3) > Y(1)

IFHSWG [30] Ş(1) = 0.4645, Ş(2) = 0.5198, Ş(3) = 0.5075, Ş(4) = 0.5724, Ş(5) = 0.6071 Y(5) > Y(4) > Y(2) > Y(3) > Y(1)

PFSWA [25] Ş(1) = 0.9901, Ş(2) = 0.9909, Ş(3) = 0.9947, Ş(4) = 0.9943, Ş(5) = 0.9954 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

PFSWG [25] Ş(1) = 0.9939, Ş(2) = 0.9964, Ş(3) = 0.9930, Ş(4) = 0.9962, Ş(5) = 0.9975 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

Cq-ROFWA, q = 3 [19] Ş(1) = 0.3839, Ş(2) = 0.4063, Ş(3) = 0.3566, Ş(4) = 0.4155, Ş(5) = 0.4292 Y(5) > Y(4) > Y(2) > Y(1) > Y(3)

Cq-ROFWG, q = 3 [19] Ş(1) = 0.5803, Ş(2) = 0.5899, Ş(3) = 0.6173, Ş(4) = 0.6161, Ş(5) = 0.6251 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

Proposed measure
Cq-ROHSEWA for q = 3 Ş(1) = 0.3616, Ş(2) = 0.3815, Ş(3) = 0.3399, Ş(4) = 0.3897, Ş(5) = 0.4032 Y(5) > Y(4) > Y(2) > Y(1) > Y(3)

Proposed measure
Cq-ROHSEWG for q = 3 Ş(1) = 0.6054, Ş(2) = 0.6145, Ş(3) = 0.6382, Ş(4) = 0.6376, Ş(5) = 0.6464 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

As shown in Table 13, the same order of these methods yields three different results,
but Y(5) is the most appropriate choice. The operators of IFHSWA, IFHSWG [30], and
PFSWG [25] indicate that Y(4) is the second option and Y(1) is the last option, whereas the
operators of PFSWA [25], Cq-ROFWG [19], and Cq-ROFHSEWG indicate that Y(3) is the
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second choice and Y(1) is the last choice. In Cq-ROFWA [19], Cq-ROFHSEWA shows that
Y(4) is the second choice, while Y(3) is the last option.

Following that, Table 14 presents the different ranking results derived from different
methods in the future. Based on the ranking in Table 14, a Spearman correlation analysis is
conducted in order to obtain Figure 7.

Table 14. Different ranking order from different methods.

Methods
Distributed Control System

Ranking Results
Y(1) Y(2) Y(3) Y(4) Y(5)

IFHSWA [30] 5 3 4 2 1 Y(5) > Y(4) > Y(2) > Y(3) > Y(1)

IFHSWG [30] 5 3 4 2 1 Y(5) > Y(4) > Y(2) > Y(3) > Y(1)

PFSWA [25] 5 4 2 3 1 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

PFSWG [25] 4 2 5 3 1 Y(5) > Y(2) > Y(4) > Y(1) > Y(3)

Cq-ROFWA, q = 3 [19] 4 3 5 2 1 Y(5) > Y(4) > Y(2) > Y(1) > Y(3)

Cq-ROFWG, q = 3 [19] 5 4 2 3 1 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)

Proposed measure Cq-ROHSEWA for q = 3 4 3 5 2 1 Y(5) > Y(4) > Y(2) > Y(1) > Y(3)

Proposed measure Cq-ROHSEWG for q = 3 5 4 2 3 1 Y(5) > Y(3) > Y(4) > Y(2) > Y(1)
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Figure 7 illustrates the Spearman correlations (see Table 14) based on different methods
and ranking orders [48]. The proposed framework is highly compatible with other state-
of-the-art approaches based on the analysis of the Spearman rank coefficients shown in
Figure 7. Despite this, the proposed set of ranking values is more reasonable as it also
incorporates complex fuzzy information and sub-attributes.

In comparison with existing methods, the proposed method has the following advantages:

(i) The proposed approach is highly complementary to current state-of-the-art techniques.
It is clear from Figure 7 that this conclusion can be drawn.

(ii) It is assumed that the sum of the q powers of the Mem degree and the NMem degree
is constrained to the unit circle within the complex plane. IFHSSs and PFSSs cannot
handle complex information provided by decision makers. Cq-ROFHSSs can provide
a solution to this problem.

(iii) The proposed approach is more general than the Cq-ROFS approaches. A wide variety
of practical applications are possible by subdividing attributes into subattributes. The
proposed theory addresses the parametric ambiguity of two-dimensional fuzzy data,
making it superior to the Cq-ROFS models since its inception.
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(iv) One of the principal advantages of the proposed MADM approach is its ability to
examine much more relevant data to approach the alternative with less data loss.
As well, employing the different values of q will provide a relief to the decision
expert in choosing the best alternative(s) with the field relaxation. Due to this, it
can be interpreted that by utilizing different choices for the dataset, the presented
generalized aggregation model assists decision experts in making the best decision.

(v) An example from an early warning system for public opinion illustrates the practicality
and effectiveness of the framework.

According to the comparison above, the methods proposed in this paper, such as
Cq-ROFHSEWA and Cq-ROFHSEWG, are more general than IFHSS, PFSS, and Cq-ROFS.
In this paper, a method is proposed that is more suitable for solving multi-attribute decision
problems. Despite the fact that this proposal has several advantages, it also has some
disadvantages. Since this algorithm utilizes information from Cq-ROFHSSs, it has a higher
complexity than its counterpart.

6. Conclusions

This article establishes the basis for a multi-skill mixed model known as the Cq-
ROFHSS. This tool is capable of capturing all types of errors in human cognition. It provides
a mathematical framework for representing two-dimensional inaccurate information in
a flexible and competent manner. Therefore, it extends several contemporary models by
incorporating the expertise of a Complex q-rung orthopair Fuzzy Set and the remarkable
parameters of HSSs. As a result of this theory, CIFHSSs and CPFHSSs are powerfully
generalized. The result of this study is a formal definition of Cq-ROFHSS and its basic set
theory operation. Additionally, we propose some algebraic operations that can be carried
out by the Einstein operation in addition to Cq-ROFHSS. The rationality of our model has
been demonstrated, and its relationship with existing theories has been briefly discussed.

Moreover, this research contributes to the development of two MADM algorithms in
the Cq-ROFHSS environment, which are used to identify the most optimal alternatives
based on their intrinsic characteristics. As a result of applying these methods in practice,
we have been able to determine which DCS is the most suitable in terms of performance.
An analysis of contemporary MADM technology was conducted in order to demonstrate
that our strategy is a reasonable extension of the technology. Our comparative study
was accompanied by an explanatory bar chart and Spearman analysis that illustrated
the compatibility and accuracy of the final results. Furthermore, we are committed to
reducing the number of calculations of these MADM technologies through some computer
programming and by developing a graphical representation of the proposed model in order
to better explain this skilled concept. To demonstrate its superiority to existing decision
theories, we examine the dynamic characteristics of the proposed model.

In spite of the fact that the developed model has some advantages over contemporary
methods, it is not without limitations. Consequently, its structure cannot convey the
abstinence and rejection aspects of inaccurate human expressions. Furthermore, since
our strategies for solving the MADM problem require tedious and difficult calculations,
they may be computationally intensive. The development of more advanced MADM
strategies will be the focus of our future research, such as the Cq-ROFHSS-PROMETHE
method, the Cq-ROFHSS-VIKOR method, the Cq-ROFHSS-AHP method, and the Cq-
ROFHSS-ELECTRE method. Our intention is to explore the potential application scope of
the Cq-ROFHSS model in a variety of environments.

Author Contributions: Conceptualization, W.S. and C.Y. (Changtian Ying); methodology, C.Y.
(Changyan Ying), W.S. and C.Y. (Changtian Ying); validation, C.Y. (Changyan Ying), W.S. and
C.Y. (Changtian Ying); formal analysis, W.S.; investigation, C.Y. (Changyan Ying), W.S. and C.Y.
(Changtian Ying); writing preparation, W.S. and C.Y. (Changtian Ying); writing review and editing,
C.Y. (Changyan Ying); supervision, C.Y. (Changyan Ying) and C.Y. (Changtian Ying); project adminis-
tration, W.S.; funding acquisition, C.Y. (Changyan Ying). All authors have read and agreed to the
published version of the manuscript.



Entropy 2022, 24, 1494 26 of 30

Funding: This work was supported in part by the National Natural Science Foundation of China (Grant
No. 61433012) and the Subproject of the National Key R&D Program Project (No. 2017YFC0820702-3),
and in part by a project grant from the Zhejiang Provincial Natural Science Foundation of China
(Grand No. LHQ20F020001), the Scientific Research Project of Zhejiang Provincial Department
of Education (Grand No. Y201940952), and in part by the Joint Funds of the Zhejiang Provincial
Natural Science Foundation of China and Huadong Engineering Corporation limited under Grant
No. HQ20F020001.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very grateful to the anonymous reviewers for their valuable
comments and constructive suggestions that greatly improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 2. We prove this Theorem by mathematical introduction.

(1) When m = 1, n = 1, then clearly Řr = 1, Ťt = 1 and the left side of Equation (11)
becomes
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Ť1

((1+Эq
ϕ11)
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)Ť1
) 1

q
e

i2π(
2

1
q ((Эψ11)
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Ř1AQ11

))
⊕
(

Ť2
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)Ťt

+ ∏2
t=1

((
ψ

q
1t

)Ř1
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Thus, Equation (11) is true for m = 1 and n = 2.

(3) Suppose that Equation (11) holds for m = k, n = `. Then, we have
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Ť1

(
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Ť2

(
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Ťt
−∏l

t=1 (∏k
r=1 (1−Эq

ϕrt )
Řr
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Ťt

+∏l
t=1 (∏k

r=1 (1−Эq
ϕrt )

Řr
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)Ťt

+ ∏l
t=1

(
∏k

r=1

(
ψ

q
rt

)Řr
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)Ťt


1
q

e

i2π(
∏l+1

t=1 (∏k+1
r=1 (1+Эq

ϕrt )
Řr
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Hence, the result holds for m = k + 1, n = ` + 1 and, therefore, holds true for all values of m, n.
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)Řr
)Ťt
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Řr
)
Ťt
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)∑n

t=1 Ťt
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
1
q

e
i2π(

((1+Эq
ϕ)

∑m
r=1 Řr
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+
(
(ψq)∑m

r=1 Řr
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Therefore, all the above properties are true.
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