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Abstract: The Reynolds transport theorem occupies a central place in continuum mechanics, provid-
ing a generalized integral conservation equation for the transport of any conserved quantity within a
fluid or material volume, which can be connected to its corresponding differential equation. Recently,
a more generalized framework was presented for this theorem, enabling parametric transformations
between positions on a manifold or in any generalized coordinate space, exploiting the underlying
continuous multivariate (Lie) symmetries of a vector or tensor field associated with a conserved
quantity. We explore the implications of this framework for fluid flow systems, based on an Eulerian
velocivolumetric (position-velocity) description of fluid flow. The analysis invokes a hierarchy of five
probability density functions, which by convolution are used to define five fluid densities and gener-
alized densities relevant to this description. We derive 11 formulations of the generalized Reynolds
transport theorem for different choices of the coordinate space, parameter space and density, only
the first of which is commonly known. These are used to generate a table of integral and differential
conservation laws applicable to each formulation, for eight important conserved quantities (fluid
mass, species mass, linear momentum, angular momentum, energy, charge, entropy and probability).
The findings substantially expand the set of conservation laws for the analysis of fluid flow and
dynamical systems.

Keywords: Reynolds transport theorem; conservation laws; Lie derivative; differential geometry;
probability density function; Eulerian description; fluid densities

1. Introduction

Near the end of his distinguished career, Osborne Reynolds presented what is now
called the Reynolds transport theorem: a generalized conservation equation for the transport
of a conserved quantity within a body of fluid (the domain, fluid volume or material volume) as
it moves through a prescribed region of space (the control volume) [1]. This provides a uni-
versal formulation for the construction of integral conservation equations for any conserved
quantity, and can be used to derive the corresponding differential equations for these quan-
tities, e.g., [2–6]. Such conservation laws—founded on the paradigm of the field or Eulerian
description of fluid flow—provide the basis for most theoretical and numerical analyses
of flow systems. Extensions of the Reynolds transport theorem have been presented for
moving and smoothly-deforming control volumes [3,6,7], domains with fixed or moving
discontinuities [7,8], irregular and rough domains [9,10], two-dimensional domains [11–14],
and differentiable manifolds using the formalism of exterior calculus [15–19]. The Reynolds
transport theorem is also a special case of the Helmholtz transport theorem for flow through
an open and moving surface [20], and of stochastic formulations to incorporate random
diffusion and uncertainty [21,22].

Traditionally, the Reynolds transport theorem has been viewed exclusively as a con-
tinuous one-parameter (temporal) mapping of the density of a conserved quantity in
geometric space, along the pathlines described by a time-dependent velocity vector field.
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Indeed, the above formulations all conform to this tradition. However, Flanders [15] inter-
preted the theorem more broadly as a generalization of the Leibniz rule for differentiation
of an integral, rather than simply a construct of continuum mechanics. It is therefore far
more general and powerful than the traditional interpretation might suggest. Using this
insight, a generalized framework for the Reynolds transport theorem has recently been
presented [23,24], based on continuous multiparametric mappings of a differential form
on a manifold—or of a density within a generalized coordinate space—connected by the
maximal integral curves or surfaces described by a vector or tensor field. This extends
the traditional interpretation to encompass new transformation theorems in any parameter
space, not just in time; these exploit previously unreported multiparametric continuous
(Lie) symmetries associated with a conserved quantity in the space considered. These can
be used, for example, to connect different positions in a velocity space connected by a
velocity gradient tensor field, different positions in a Fourier spectral space connected by a
velocity-wavenumber tensor field, or different positions in a velocity and chemical species
space connected by velocity and concentration gradient tensor fields, for the analysis of
chemical reaction systems and plasmas [23]. The generalized framework also yields new
forms of the Liouville equation for the conservation of probability in different spaces, and of
the Perron-Frobenius and Koopman operators for the extrapolation of probability densities
or observable densities in such systems [23].

The aim of this work is to examine the implications of the generalized Reynolds
transport theorem—and consequential integral and differential conservation laws—for
an Eulerian velocivolumetric (position-velocity) description of fluid flow systems. The
analysis commences in Section 2 with a detailed discussion of the extended Eulerian de-
scription, and of the properties of the volumetric and velocimetric domains for several
well-known classes of fluid flow systems. This leads in Section 3 to a hierarchy of densities,
starting in Section 3.1 with five probability density functions (pdfs), which are defined and
in which their commutative relations are examined. These are used in Section 3.2 to define
five corresponding fluid or material densities, of which only the volumetric density ρ is
commonly used in continuum mechanics; the remaining four have many similarities to
other densities (such as the phase space density) used in other branches of physics. The
fluid densities are formally defined from the pdfs by mathematical convolutions, for which
the definitions and philosophical implications are discussed in Appendices A and B. The
fluid densities are then used in Section 3.3 to define corresponding generalized densities
for any conserved quantity. In Section 4, we present the generalized framework for the
Reynolds transport theorem in both exterior calculus and vector calculus formulations.
As explained in Section 4 and Appendix C, this can also be used to extract Lie or partial
differential equations for an individual fluid element, the former expressed in terms of the
Lie derivative of a volume form in the domain. In Section 5, these equations are then used to
generate 11 formulations of the Reynolds transport theorem arising from the velocivolumet-
ric description, for different choices of the coordinate space, parameter space and density.
Of these, only the first accords with the traditional Reynolds transport theorem [1]. For
each formulation, a table of integral and differential conservation equations is presented for
the eight conserved quantities commonly considered in fluid mechanics (fluid mass, species
mass, linear momentum, angular momentum, energy, charge, entropy and probability).
The analyses provide a considerable assortment of new conservation laws for the analysis
of fluid flow systems.

In the following sections, the mathematical notation is defined when first used and is
also listed in Table 1.
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Table 1. Nomenclature used in this study.

Symbol Description SI Units

Mathematical Operators
> transpose
· vector scalar product

× cross product; multiplication symbol (only if there is
a line break in the equation)

∂ partial derivative operator; boundary of domain
∂C vector partial derivative operator with respect to C
∇C gradient operator with respect to C
∇u velocital gradient operator with respect to u (m s−1)−1

∇x spatial gradient operator with respect to x m−1

∇X gradient operator with respect to X

Hu = ∇u,t
velocitotemporal gradient operator with respect to
[u, t]

[(m s−1)−1, (m s−1)−1,
(m s−1)−1, s−1]

Hx = ∇x,t spatiotemporal gradient operator with respect to [x, t] [m−1, m−1, m−1, s−1]
[·] expectation over small volume U
〈·〉 expectation over small velocity domain V
[[[·]]] integral over volume Ω
〈〈〈·〉〉〉 integral over velocity domain D
∧ wedge product

x augmentation operator, such that VxC is the tensor V
based on coordinates X augmented by parameter C

1© integral path as labeled in Figure 5

Conventions
Vector derivatives are defined by the ∂(→)/∂(↓) convention
The product of two vectors implies a tensor, e.g., uu := uu>

The divergence of a tensor is rotated, e.g., ∇x ·G := (∇>x G)>

Roman symbols
c index of chemical species; index of components of C
Cc cth component of C
C generalized m-dimensional parameter vector
CV control volume = reference frame for fluid motion
d differential of a function; exterior derivative of a

differential form

d̂
extended exterior derivative based on augmented
coordinates

d/dt total derivative in time s−1

dA infinitesimal area element in volumetric space m2

dA directed infinitesimal area element in volumetric
space m2

dB infinitesimal surface element in velocimetric space (m s−1)2

dB directed infinitesimal surface element in velocimetric
space (m s−1)2

dm infinitesimal element of fluid mass kg
dU = dudvdw infinitesimal element of velocimetric space (m s−1)3

dV = dxdydz infinitesimal element of volumetric space m3

dXj cotangent to jth component of generalized vector X
dn−1X generalized directed area element on ∂Ω
dnX generalized volume element in Ω
dx,t vector of spatiotemporal SI units [m, m, m, s]
du,t vector of velocitotemporal SI units [m s−1, m s−1, m s−1, s]
D/Dt substantial or material derivative in time s−1

D velocimetric domain
e local specific total energy J kg−1

ĕ velocity-distinct specific energy J kg−1

ĕ velocity-distinct local specific energy J kg−1

E total energy J
∑ F sum of forces N
g acceleration due to gravity m s−2

G := ∇xu velocity gradient tensor field (m s−1) m−1 = s−1

G̃ := Hxu augmented velocity gradient tensor field [s−1, s−1, s−1, m s−2]
i electrical flux C m−2 s−1 = A m−2

i(C)
V

multivariate interior product with respect to V over
parameters C
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Table 1. Cont.

Symbol Description SI Units

I net inward electrical current (passive sign
convention) C s−1 = A

Im identity matrix of size m
j index of components of generalized coordinates X
jc molar flux of species c mol m−2 s−1

jQ heat flux J m−2 s−1

jS entropy flux J K−1 m−2 s−1

L(C)
V

multivariate Lie derivative with respect to V over
parameters C

L(C)
VxC

multivariate Lie derivative with respect to VxC over
parameters C

LHS left-hand side
m small fluid mass domain
m dimension of vector parameter C
M orientable differentiable manifold; generalized space
M total fluid mass kg
Ṁ rate of change of total fluid mass kg s−1

Ṁc rate of change of mass of species c kgc s−1

Mc molar mass of species c kgc mol−1

n dimension of manifold M, dimension of coordinates
X

n outward unit normal to Ω in volumetric space
nB outward unit normal to D in velocimetric space
p(a, b|c) = pa,b|c conditional pdf of a and b subject to c units of (ab)−1

P pressure Pa = J m−3

Q total conserved quantity (of any type) qty
Q̇in net inward heat flow rate J s−1

r dimension of submanifold Ω, dimension of
differential form ωr

r = [rx, ry, rz]> local Cartesian position coordinates m
r local radius of a lever arm m
r̆ velocity-distinct radius of a lever arm m
r̆ velocity-distinct local radius of a lever arm m
RHS right-hand side
s local specific entropy J K−1 kg−1

s̆ velocity-distinct specific entropy J K−1 kg−1

s̆ velocity-distinct local specific entropy J K−1 kg−1

s = [su, sv, sw]> local Cartesian velocity coordinates m s−1

S total entropy J K−1

Ṡn f total net inward non-fluid entropy flow rate J K−1 s−1

t time s
∑ T sum of torques N m
u = [u, v, w]> Cartesian velocity field := ∂x

∂t m s−1

u̇ = [u̇, v̇, ẇ]> Cartesian local acceleration field := ∂u
∂t m s−2

U small velocity domain

volnX
volume of an infinitesimal n-dimensional
parallelopiped spanned by the cotangents to X

Vjc
(jc)th component of generalized vector or tensor field
V

V generalized vector or tensor field
V small fluid volume
Ẇin net inward work flow rate J s−1

x = [x, y, z]> Cartesian position coordinates m
x0 =
[x0, y0, z0]

> Cartesian Lagrangian position coordinates m

Xj jth component of vector X

X generalized n-dimensional local or global Cartesian
coordinates

zc charge per mass of species c C kgc
−1

z local specific charge C kg−1

z̆ velocity-distinct specific charge C kg−1

z̆ velocity-distinct local specific charge C kg−1

Z total charge C
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Table 1. Cont.

Symbol Description SI Units

Greek symbols
α = ρ α generalized volumetric density qty m−3

α local generalized specific density qty kg−1

β = д β̆ generalized velocimetric density qty (m s−1)−3

β̆ velocity-distinct generalized specific density qty kg−1

Γ := ∇ux inverse velocity gradient tensor field m (m s−1)−1 = s
Γ̃ := Hux augmented inverse velocity gradient tensor field, [s, s, s, m s−1]
δ Kronecker delta tensor
ε = ξ ε̆ generalized conditional volumetric density qty m−3

ε̆ velocity-distinct local generalized specific density qty kg−1

ζ velocivolumetric fluid mass density kg m−3 (m s−1)−3

ζc velocivolumetric mass density of species c kgc m−3 (m s−1)−3

η conditional velocimetric fluid mass density kg (m s−1)−3

ηc conditional velocimetric mass density of species c kgc (m s−1)−3

θ = η θ̆ generalized conditional velocimetric density qty (m s−1)−3

θ̆ velocity-distinct local generalized specific density qty kg−1

ξ conditional volumetric fluid mass density kg m−3

ξc conditional volumetric mass density of species c kgc m−3

ˆ̇ξc molar rate of production of species c mol m−3 s−1

ρ volumetric fluid mass density kg m−3

ρc volumetric mass density of species c kgc m−3

σ̇ total entropy production J K−1 s−1

ˆ̇σ local entropy production J K−1 m−3 s−1

τ stress tensor (positive in compression) Pa = J m−3

φC multivariate flow generated by V
φ̂C augmented multivariate flow generated by VxC
ϕ = ζ ϕ̆ generalized velocivolumetric density qty m−3 (m s−1)−3

ϕ̆ velocity-distinct local generalized specific density qty kg−1

χc local specific mass density of species c kgc kg−1

χ̆c velocity-distinct specific mass density of species c kgc kg−1

χ̆c
velocity-distinct local specific mass density of species
c kgc kg−1

ψ
generalized density of conserved quantity in
generalized space

ωr, ωn r-form, n-form (respectively) in submanifold Ω

Ω general submanifold or domain; volumetric domain
(fluid volume or material volume)

Cyrillic symbols
д velocimetric fluid mass density kg (m s−1)−3

дc velocimetric mass density of species c kgc (m s−1)−3

2. The Position-Velocity Description and Domains

In continuum mechanics, fluid flow systems are commonly examined using the Eu-
lerian description, in which each local property of the fluid is specified as a function of
position (such as in Cartesian coordinates) x = [x, y, z]> ∈ Ω ⊂ R3 and time t ∈ R as the
fluid moves past, where Ω is a three-dimensional geometric space and > is the transpose.
Thus, for example, fluid mechanicians commonly consider the three-dimensional velocity
u(x, t), the volumetric mass density ρ(x, t) and the volumetric mass concentration ρc(x, t)
of the cth chemical species within the Eulerian description. We here consider an extended
velocivolumetric continuum description of a dynamical system based on Eulerian velocity
and position coordinates, in which each local property of a fluid is specified as a function
of the instantaneous fluid velocity u = [u, v, w]> ∈ D ⊂ R3, position x ∈ Ω ⊂ R3 and
time t ∈ R as the fluid moves past, where D is a three-dimensional velocity space. This
treatment—somewhat analogous to the phase space description used in many branches of
physics—has the advantage of explicitly incorporating the velocity dependence of physical
quantities, significantly extending the breadth of physical quantities that can be considered,
and the scope and fidelity of the analyses.
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We consider two alternative representations of the paired domains Ω and D:

(a) The geometric representation—the usual physical viewpoint—in which D(x, t) is a func-
tion of position and time, and Ω(t) is a function of time. In this perspective, as
illustrated in Figure 1a, there exists a map between each position x ∈ Ω(t) and an en-
tire velocity space D(x, t), consisting of all possible velocities for this position and time.

(b) The velocimetric representation—an alternative viewpoint—in which Ω(u, t) is a function
of velocity and time, and D(t) is a function of time. In this perspective, as illustrated in
Figure 1b, there exists a map between each velocity u ∈ D(t) and an entire geometric
space Ω(u, t), consisting of all possible positions for this velocity and time.

In principle, the set of all ordered triples (u, x, t) for a given flow system can be
mapped into either of these representations, hence D(x, t) ⊆ D(t) for all x ∈ Ω(t) and
Ω(u, t) ⊆ Ω(t) for all u ∈ D(t).

Subsidiary velocity
domain D(x,t)

Geometric space
Ω(t)

x
(a)

Subsidiary geometric
space Ω(u,t)

Velocity domain
D(t)

u
(b)

Figure 1. Schematic diagrams of the mapping between domains Ω and D in (a) the geometric
representation, and (b) the velocimetric representation.

Examining the velocity domainD(t) orD(x, t), we make two important assertions. First,
we expect D(t) or D(x, t) to be continuous, since for most flows, it is physically impossible
for a local velocity to change from u1 to u2 without passing through all intermediate velocities
u1 < u < u2, however fleetingly. The main exception to this rule are flows that cross a
regime threshold, e.g., from laminar to turbulent flow, or subsonic to supersonic flow, leading
to two internally continuous velocity domains D1 and D2, which may be disjoint. Second,
the velocity cannot be infinite (positive or negative) for any physically realizable flow, as
this would require local velocities of infinite kinetic energy. In consequence, for all flows
the domains D(t) or D(x, t) should be bounded, and for many flows will also be closed,
and thence compact. We note in passing that integration of the velocity over R3 is a useful
technique for many calculations, but this invokes an approximation that cannot be manifested
physically. In its place, integration over a compact velocity domain D(t) or D(x, t) is well-
defined, while integration over bounded and open domains can be performed by careful
consideration of the limits or, if necessary, by transformation to the Lebesgue integral.

In consequence, each domain in Figure 1 is drawn as compact and simply connected,
a useful starting assumption for turbulent flow systems, but with many exceptions. For
most flows involving a continuous fluid volume with no velocity discontinuities, the
primary domains Ω(t) and D(t) and the subsidiary domain D(x, t) should be compact and
simply connected, but some subsidiary geometric spaces Ω(u, t) may consist of disjoint
subspaces, each associated with a different location (or set of locations) within the flow.
Consider, for example, two-dimensional turbulent Poiseuille flow between parallel plates:
each pair of positions y+ and y− symmetric about the centerline will have the same mean
velocity, hence many instantaneous velocities u ∈ D(t) will map to two disjoint geometric
subspaces Ω+(u, t) and Ω−(u, t), respectively, containing y+ and y−. By breaking the
original problem into smaller coupled flows, or by a judicious choice of coordinate system,
it should be possible to isolate or unite these subspaces. In flows with different flow regimes,
leading to disjoint velocity domains D(t) and D(x, t), it should be possible to isolate each
subdomain using a dimensionless discriminator (such as a Reynolds, Mach or Froude
number). For some flows, for example the turbulent boundary layer, there are long-standing
arguments over whether the overall geometric space Ω(t) can be considered compact,
due to a lack of boundedness or closedness, but despite this the subsidiary geometric
spaces Ω(u, t) and the overall and subsidiary velocity domains D(t) and D(x, t) will very
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likely be bounded and may also be closed. For homogeneous isotropic turbulence—a
highly idealized flow—each subsidiary domain D(x, t) or Ω(u, t) must be independent,
respectively, of position or velocity, and so the two representations will collapse to give
two separable domains Ω(t) and D(t). In laminar flows, each subsidiary velocity domain
D(x, t) can be idealized as a single point (in reality, allowing for fluctuations, a small
region), while each subsidiary geometric space Ω(u, t) will consist of single or multiple
disconnected points (or small regions).

3. A Hierarchy of Densities
3.1. Probability Density Functions

We can now define the primary probability density functions (pdfs) that underlie
continuum systems, and will subsequently be used to define physical densities in these
systems. Writing the nonnegative real line as R+

0 , the velocivolumetric description gives
rise to the following five pdfs:

(a) A volumetric pdf p(x|t) : Ω×R→ R+
0 [SI units: m−3];

(b) A velocimetric pdf p(u|t) : D ×R→ R+
0 [(m s−1)−3];

(c) A velocivolumetric pdf p(u, x|t) : D ×Ω×R→ R+
0 [m−3 (m s−1)−3];

(d) A conditional velocimetric (ensemble) pdf p(u|x, t) : D×Ω×R→ R+
0 [(m s−1)−3]; and

(e) A conditional volumetric pdf p(x|u, t) : Ω×D ×R→ R+
0 [m−3];

where the solidus | is the conditional probability symbol, with the conditions listed to
the right (these follow the standard pdf notation with a common symbol p, leading to a
mixed signature and functional notation). Generally, the pdf at each point forms part of a
probability density field defined throughout its domain.

Using the notation dV = dxdydz = d3x for an infinitesimal volume element and
dU = dudvdw = d3u for an infinitesimal three-dimensional velocity element, the five pdfs
will by definition satisfy the following nine relations:

1 =

˚
Ω(t)

p(x|t) dV (1)

1 =

˚
D(t)

p(u|t) dU (2)

1 =

˚
Ω(t)

˚
D(x,t)

p(u, x|t) dU dV =

˚
D(t)

˚
Ω(u,t)

p(u, x|t) dV dU (3)

p(x|t) =
˚
D(x,t)

p(u, x|t) dU (4)

p(u|t) =
˚

Ω(u,t)
p(u, x|t) dV (5)

p(u|x, t) =
p(u, x|t)
p(x|t) =

p(u, x|t)˝
D(x,t) p(u, x|t)dU

(6)

p(x|u, t) =
p(u, x|t)
p(u|t) =

p(u, x|t)˝
Ω(u,t) p(u, x|t)dV

(7)

1 =

˚
D(x,t)

p(u|x, t) dU (8)

1 =

˚
Ω(u,t)

p(x|u, t) dV (9)

The connections between the five pdfs, and the roles of the different domain representations,
are illustrated in the relational diagram in Figure 2. As evident, the geometric representation
is adopted for the integration paths on the left-hand side of Figure 2, while the velocimetric
representation is required on the right-hand side.
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1
[−]

p(x|t)
[m−3]

p(u|t)
[(m s−1)−3]

p(u, x|t)
[m−3 (m s−1)−3]

p(u|x, t)
[(m s−1)−3]

p(x|u, t)
[m−3]

denom.

numer.

denom.

numer.

˝
D(x,t)

dU
˝

Ω(u,t)
dV

˝
D(x,t)

dU
˝

Ω(u,t)
dV

˝
Ω(t)

dV
˝
D(t)

dU

Figure 2. Relational diagram between the pdfs defined in this study.

Designating the infinitesimal velocity element, position element and time interval,
respectively, by [u, u + du], [x, x + dx] and [t, t + dt], we examine each pdf in turn:

(a) The velocivolumetric pdf p(u, x|t) is the most fundamental of the pdfs, giving rise to
p(x|t) or p(u|t) by the marginalization operations in Equations (4) and (5), and p(u|x, t)
and p(x|u, t) by the conditioning operations in Equations (6) and (7). Physically—albeit
imprecisely [25,26]—we can interpret p(u, x|t) dU dV as the joint probability of an
infinitesimal fluid element having a velocity of [u, u + du] and position in [x, x + dx],
during the time interval [t, t + dt].

(b) The volumetric pdf p(x|t) can be recognized as the common probabilistic descriptor
for fluid flow systems, forming the basis of the fluid mechanics formulations of the
Liouville and Fokker–Planck Equations [27–31], and allied to the volumetric density
ρ(x, t). Physically, p(x|t) dV can be interpreted as the probability that a fluid element is
situated at the position [x, x + dx] in the time interval [t, t + dt], regardless of velocity.

(c) The velocimetric pdf p(u|t) is rather strange. Physically, p(u|t) dU can be interpreted
as the probability of fluid elements within the control volume having a velocity of
[u, u + du] in the time interval [t, t + dt], regardless of position.

(d) To understand the conditional velocimetric pdf p(u|x, t), we interpret p(u|x, t) dU as
the probability that a fluid element has a velocity of [u, u+ du], at the position [x, x+ dx]
and time [t, t + dt]. We therefore recognize p(u|x, t)—typically but incorrectly written
as p(u)—as the basis of the ensemble mean commonly used in the Reynolds-averaged
Navier–Stokes (RANS) equations, and of the single-position correlation functions of
turbulent fluid mechanics [32–36].

(e) To understand the conditional volumetric pdf p(x|u, t), we interpret p(x|u, t) dV as the
probability that a fluid element has a position in [x, x + dx], for a velocity of [u, u + du]
and time [t, t + dt].

The infinitesimal intervals are necessitated by the fact that the probability itself vanishes at
each point: for example, for the random variable X with values x, by definition Prob(X = x)
= limdx→0 Prob(x ≤ X < x + dx) = limdx→0

´ x+dx
x p(x)dx =

´ x
x p(x)dx = 0, e.g., [25,37].

In addition to the pdfs in Figure 2, it is possible to consider joint pdfs with respect
to time, including p(x, t), p(u, t) and p(u, x, t). These require normalization over a time
interval in addition to their volume and/or velocity domain(s). Such pdfs are closely
associated with path-based formulations for the description of entire histories of events,
e.g., [38–40], and are not considered further here.

3.2. Fluid or Material Densities

The above five pdfs can be used to define corresponding fluid or material mass
densities, four of which are not commonly used for the analysis of continuum systems
(these revert to standard signature and functional notation):



Entropy 2022, 24, 1493 9 of 40

(a) A volumetric fluid density ρ : Ω×R→ R+
0 , (x, t) 7→ ρ(x, t) [kg m−3];

(b) A velocimetric fluid density д : D ×R→ R+
0 , (u, t) 7→ д(u, t) [kg (m s−1)−3];

(c) A velocivolumetric fluid density ζ : D ×Ω×R → R+
0 , (u, x, t) 7→ ζ(u, x, t) [kg m−3

(m s−1)−3];
(d) A conditional velocimetric (ensemble) fluid density η : D ×Ω×R→ R+

0 , (u, x, t) 7→
η(u, x, t) [kg (m s−1)−3]; and

(e) A conditional volumetric fluid density ξ : D × Ω × R → R+
0 , (u, x, t) 7→ ξ(u, x, t)

[kg m−3];

As with the pdfs, each density forms part of a density field, defined throughout its
domain. The symbols for the last four densities, including the Cyrillic “de” character (from
the transliteration of “density”), are chosen to not conflict with the most common notation
of fluid mechanics.

For analysis, consider a material volume containing the fluid or material mass M,
which in the absence of sources or sinks of fluid will be constant in time (n.b., systems with
sources or sinks of fluid mass will require a more complicated treatment). First, we require
the five fluid densities to satisfy the following nine relations:

M =

˚
Ω(t)

ρ(x, t) dV (10)

M =

˚
D(t)

д(u, t) dU (11)

M =

˚
Ω(t)

˚
D(x,t)

ζ(u, x, t) dU dV =

˚
D(t)

˚
Ω(u,t)

ζ(u, x, t) dV dU (12)

ρ(x, t) =
˚
D(x,t)

ζ(u, x, t) dU (13)

д(u, t) =
˚

Ω(u,t)
ζ(u, x, t) dV (14)

η(u, x, t) =
ζ(u, x, t) M

ρ(x, t)
=

ζ(u, x, t)(˝
D(x,t) ζ(u, x, t)dU

M

) =
ζ(u, x, t)( ˝

D(x,t) ζ(u, x, t)dU˝
Ω(t)
˝
D(x,t) ζ(u, x, t) dU dV

) (15)

ξ(u, x, t) =
ζ(u, x, t) M

д(u, t)
=

ζ(u, x, t)(˝
Ω(u,t) ζ(u, x, t)dV

M

) =
ζ(u, x, t)( ˝

Ω(u,t) ζ(u, x, t)dV˝
D(t)
˝

Ω(u,t) ζ(u, x, t) dV dU

) (16)

M =

˚
D(x,t)

η(u, x, t) dU (17)

M =

˚
Ω(u,t)

ξ(u, x, t) dV (18)

Clearly these are analogs of Equations (1)–(9), modified only by the introduction of M into
the definitions of η and ξ. Note that the time dependence is lost in the integrations in
Equations (10)–(12) and Equations (17) and (18); furthermore Equations (17) and (18) also
lose their dependence, respectively, on x or u. The connections between the different fluid
densities are illustrated in the relational diagram in Figure 3.
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M
[kg]

ρ(x, t)
[kg m−3]

д(u, t)
[kg (m s−1)−3]

ζ(u, x, t)
[kg m−3 (m s−1)−3]

η(u, x, t)
[kg (m s−1)−3]

ξ(u, x, t)
[kg m−3]

denom.

numer.

denom.

numer.

˝
D(x,t)

dU

numer.

˝
Ω(u,t)

dV

numer.

˝
D(x,t)

dU
˝

Ω(u,t)
dV

˝
Ω(t)

dV
˝
D(t)

dU

Figure 3. Relational diagram between the fluid or material densities defined in this study.

Second, following a rich line of research, e.g., [41–68], the fluid or material density ρ
at each position x and time t can be rigorously defined by integration over a small fluid
volume V—or equivalently a small fluid mass m—for which there are two interpretations.
In the common viewpoint, V must be sufficiently large to enable the fluid to be considered
a continuum, e.g., [44–47,56,57]. Thus, in single phase systems, it must provide a “micro-
scopic” scale large enough to average out the molecular phenomena, while for multiphase
systems it may need to be larger than the dominant “macroscopic” scales [45,48,58]. How-
ever, in the contrary “relativist” viewpoint, V is not considered a property of the continuum,
but is simply a characteristic of the measurement scale [53,54,59,61]. The analyses here
are agnostic, encompassing both viewpoints; we also adopt a small velocimetric domain
U for velocity averaging. For each small integral, we adopt the local Cartesian position
coordinates r = [rx, ry, rz]> ∈ Ω ⊂ R3 and velocity coordinates s = [su, sv, sw]> ∈ D ⊂ R3

aligned with their corresponding global coordinates, and with their origin, respectively,
at x or u. The small domains V and U are functions, respectively, of x and u, as well as
time, and must conform to the two domain representations introduced earlier, bringing
additional dependencies on r and/or s into the definition of ζ. The five fluid or material
densities can then be defined from their underlying pdfs by the following convolutions:

[ρ](x, t) =
ˆ
m(x,t)

p(r|t) dm(x + r, t) =
˚
V(x,t)

p(r|t) ρ(x + r, t) dV(r, t) (19)

〈д〉(u, t) =
ˆ
m(u,t)

p(s|t) dm(u + s, t) =
˚
U (u,t)

p(s|t) д(u + s, t) dU(s, t) (20)

[〈ζ〉](u, x, t) =
ˆ
m(u,x,t)

p(s, r|t) dm(u + s, x + r, t)

=

˚
V(x,t)

˚
U (u,x+r,t)

p(s, r|t) ζ(u + s, x + r, t) dU(s, x + r, t) dV(s, r, t)

=

˚
U (u,t)

˚
V(u+s,x,t)

p(s, r|t) ζ(u + s, x + r, t) dV(u + s, r, t) dU(s, r, t)

(21)

〈η〉(u, x, t) =
ˆ
m(u,x,t)

p(s|x, t) dm(u + s, x, t) =
˚
U (u,x,t)

p(s|x, t) η(u + s, x, t) dU(s, x, t) (22)

[ξ](u, x, t) =
ˆ
m(u,x,t)

p(r|u, t) dm(u, x + r, t) =
˚
V(u,x,t)

p(r|u, t) ξ(u, x + r, t) dV(u, r, t) (23)

where [·] is a local volumetric expectation, 〈·〉 is a local velocimetric expectation, and dm
is an infinitesimal element of fluid mass. A more detailed discussion of these definitions
is given in Appendix A, while the philosophical implications of the use of pdfs to define
material densities are explored in Appendix B. Note that if each pdf is assumed uniformly
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distributed over its domain, each expected fluid density reduces to the product of its
underlying pdf and the fluid mass, as would be obtained from dimensional considerations.

In this study, we adopt the mass integrals in Equations (19)–(23) as the primary
definitions of the fluid densities, since the volumetric and velocimetric integrals require
knowledge of point density terms that need to be defined. For convenience the expectation
notations used in Equations (19)–(23) are now dropped.

How should we physically interpret the different fluid or material densities? Several
schematic diagrams to aid their interpretation are given in Figure 4. From their functional
forms and underlying pdfs, we see that ξ, η, ζ and ρ are local densities, i.e., they apply to
each infinitesimal volume element within the geometric space. In contrast, д is a non-local
density, applying over the entire geometric space Ω. Furthermore, ξ, η, ζ and д also apply
to infinitesimal velocity elements within the velocity domain. Considering each density
in turn:

(a) As shown in Figure 4a, the velocivolumetric density ζ represents the fluid mass per
unit of velocimetric and geometric space carried by an infinitesimal fluid element of
velocity [u, u + du] through the infinitesimal control volume element at [x, x + dx],
during the infinitesimal time interval [t, t + dt]. In consequence, ζ is both a velocity
spectral density and a local volumetric density, accounting for the distribution of fluid
mass with both velocity and position. As evident in Figure 3, ζ is central to the current
formulation, giving the other fluid densities by marginalization or conditioning.

(b) As shown in Figure 4b, the well-known volumetric fluid density ρ represents the fluid
mass per unit volume carried by the fluid through the infinitesimal control volume
element at [x, x + dx], during the time interval [t, t + dt]. From Equation (13), ρ is
obtained by integration (marginalization) of ζ over the subsidiary velocity domain
D(x, t), consisting of all realizable velocities for this position and time. In well-behaved
systems, D(x, t) should consist of an infinitesimal trajectory (or trajectory bundle) in
velocity space, from which it may be possible to calculate ρ by line integration.

(c) In contrast, as shown in Figure 4c, the velocimetric density д represents the fluid mass
per unit of velocimetric space transported by fluid elements of velocity [u, u + du]
throughout the control volume, during the time interval [t, t + dt]. This is a very
strange, aggregated density field, representing the distribution of fluid mass across
the velocity spectrum rather than with position, but nonetheless both it and its un-
derlying pdf p(u|t) are well-defined. From Equation (14), д is obtained by integration
(marginalization) of ζ over the subsidiary geometric space Ω(u, t), consisting of all
realizable positions for this velocity and time. As discussed in Section 2 and illustrated
in Figure 4c, in many flow systems Ω(u, t) will consist of several disjoint but contin-
uous domains, which depending on the flow system may be bounded and may also
be closed.

(d) The conditional ensemble density η (not illustrated) represents the fluid mass per unit
velocimetric space carried by a fluid element of velocity [u, u + du], at the position
[x, x + dx] during the time interval [t, t + dt]. From Equation (15), η is obtained by the
ratio of ζM and ρ, which can be interpreted as a conditioning operation over position.
This removes the volume from the dimensions of η, giving the units of fluid mass per
unit velocity space.

(e) The conditional density ξ (not illustrated) represents the fluid mass per unit volume
carried by a fluid element in the position [x, x + dx], of velocity [u, u + du] during
the time interval [t, t + dt]. From Equation (16), ξ is obtained by the ratio of ζM and
д, which can be interpreted as a conditioning operation over velocity. This removes
the velocity volume from the dimensions of ξ, giving the units of fluid mass per
unit volume.

The distinctions between ξ, η and ζ are therefore quite subtle, but since they arise
from separate underlying pdfs, each density is mathematically well-defined. We fur-
ther see that Figure 3 is an analog of Figure 2, exhibiting the same vertical symmetry,
with the geometric representation evident on the left-hand side (integration paths in
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Equations (10), (13) and (17)), and the velocimetric representation evident on the right-
hand side (integration paths in Equations (11), (14) and (18)).

x y
z

Velocity
field

Density defined
by dm=дdU

Subsidiary geometric
space Ω(u,t) (disjoint)

u v
w

dv
dudwu

Geometric space
Ω(t)

Velocity domain
D(t)

u v
w

Subsidiary velocity
domain D(x,t)

dy
dxdz

x

Velocity
field

x y
z

Density defined
by dm=ρdV

Geometric space
Ω(t)

Velocity domain
D(t)

(c) Velocimetric representation(b) Geometric representation

dy
dxdz
u

x

Velocity
field

x y
z

Density defined by dm=ζdUdV
with dV=dxdydz, dU=dudvdw

u v
w

dv
dudwu

Geometric space
Ω(t)

Velocity domain
D(t)

dV
Ω(u,t)

dU
D(x,t)

dU
D(t)

dV
Ω(t)

M

(a) Velocivolumetric representation

(d) Total mass

Figure 4. Schematic diagrams for the three major fluid or material densities of this study: (a) the
velocivolumetric density ζ in the velocivolumetric, (b) the volumetric density ρ in the geometric
representation, (c) the velocimetric density д in the velocimetric representation, and (d) the total mass
M. These are drawn using the commutative diagram format given in Figure 3.

3.3. Generalized Densities

Based on the above definitions, we can now construct five generalized densities of any
conserved quantity carried by a fluid flow (strictly, density fields of an extensive variable):

(a) Volumetric densities α : Ω×R→ R+
0 , (x, t) 7→ α(x, t) [qty m−3];

(b) Velocimetric densities β : D ×R→ R+
0 , (u, t) 7→ β(u, t) [qty (m s−1)−3];

(c) Velocivolumetric densities ϕ : D × Ω × R → R+
0 , (u, x, t) 7→ ϕ(u, x, t) [qty m−3

(m s−1)−3];
(d) Conditional velocimetric (ensemble) densities θ : D × Ω × R → R+

0 , (u, x, t) 7→
θ(u, x, t) [qty (m s−1)−3]; and

(e) Conditional volumetric densities ε : D ×Ω×R→ R+
0 , (u, x, t) 7→ ε(u, x, t) [qty m−3];

where “qty” denotes the units of the conserved quantity. These can be defined by the
following relations:
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α(x, t) = ρ(x, t) α(x, t) (24)

β(u, t) = д(u, t) β̆(u, t) (25)

ϕ(u, x, t) = ζ(u, x, t) ϕ̆(u, x, t) (26)

θ(u, x, t) = η(u, x, t) θ̆(u, x, t) (27)

ε(u, x, t) = ξ(u, x, t) ε̆(u, x, t) (28)

where α, β̆, ϕ̆, θ̆ and ε̆ [qty kg−1] are specific quantities, representing the quantity carried
per unit fluid or material mass. For precision, these are labeled by an underline or a breve
accent to designate their functional dependencies; e.g., for the specific energy, e indicates
a local density (a function of x), ĕ indicates a velocity-distinct density (a function of u),
and ĕ indicates dependence on both u and x (hence e =

˝
D(x,t) ĕ dU and ĕ =

˝
Ω(t) ĕ dV).

However, the specific momentum density (the local velocity) u does not require these
designations—being already velocity-dependent—provided that care is taken over its
dependence on position.

We also define Q(t) to be the total conserved quantity (of any type) in the volumetric
domain, which due to sources or sinks of the conserved quantity will in general be a function
of time t. The generalized densities will then satisfy the following nine integral relations:

Q(t) =
˚

Ω(t)
α(x, t) dV (29)

Q(t) =
˚
D(t)

β(u, t) dU (30)

Q(t) =
˚

Ω(t)

˚
D(x,t)

ϕ(u, x, t) dU dV =

˚
D(t)

˚
Ω(u,t)

ϕ(u, x, t) dV dU (31)

α(x, t) =
˚
D(x,t)

ϕ(u, x, t) dU (32)

β(u, t) =
˚

Ω(u,t)
ϕ(u, x, t) dV (33)

θ(u, x, t) =
ϕ(u, x, t) Q(t)

α(x, t)
=

ϕ(u, x, t)(˝
D(x,t) ϕ(u, x, t)dU

Q(t)

) =
ϕ(u, x, t)( ˝

D(x,t) ϕ(u, x, t)dU˝
Ω(t)
˝
D(x,t) ϕ(u, x, t) dU dV

) (34)

ε(u, x, t) =
ϕ(u, x, t) Q(t)

β(u, t)
=

ϕ(u, x, t)(˝
Ω(u,t) ϕ(u, x, t)dV

Q(t)

) =
ϕ(u, x, t)( ˝

Ω(u,t) ϕ(u, x, t)dV˝
D(t)
˝

Ω(u,t) ϕ(u, x, t) dV dU

) (35)

Q(t) =
˚
D(x,t)

θ(u, x, t) dU (36)

Q(t) =
˚

Ω(u,t)
ε(u, x, t) dV (37)

Clearly these are analogs of Equations (10)–(18), containing Q(t) rather than M. The
connections between generalized densities are shown in the relational diagram in Figure 5
(compare Figures 2 and 3). By synthesis of Equations (19)–(23) and (24)–(28), we can
also extract the relations between each generalized density and its underlying pdf (see
discussion in Appendix A).

Finally, we note that all formulations in this section are functions of time, and in general
of both position and velocity. These can be simplified to give quantities and domains that
are not functions of time, position or velocity, leading to a considerable assortment of
reduced mathematical formulations.
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Q(t)
[qty]

α(x, t)
[qty m−3]

β(u, t)
[qty (m s−1)−3]

ϕ(u, x, t)
[qty m−3 (m s−1)−3]

θ(u, x, t)
[qty (m s−1)−3]

ε(u, x, t)
[qty m−3]

denom.

numer.

denom.

numer.

˝
D(x,t)

dU

numer.

5

˝
Ω(u,t)

dV

numer.

6

˝
D(x,t)

dU
3 ˝

Ω(u,t)
dV

4

˝
Ω(t)

dV

1

˝
D(t)

dU

2

Figure 5. Relational diagram between the generalized densities defined in this study (the integration
paths are numbered in red).

4. Generalized Formulations of Conservation Equations
4.1. Exterior Calculus Formulations

We now examine generalized forms of the Reynolds transport theorem, which can
be interpreted more broadly as transformation theorems, i.e., they provide a continuous
mapping within a domain, described by the maximal integral curves of a vector or tensor
field defined with respect to a parameter space. Traditionally, this is used to define a
mapping between positions connected by a velocity field, parameterized by time, to give
the usual Reynolds transport theorem [1]. However, as has been shown [23,24], this is not
the only possible formulation.

For maximum generality we adopt an exterior calculus formulation, e.g., [15–18,69–76].
Consider an r-dimensional oriented compact submanifold Ωr within an n-dimensional
orientable differentiable manifold Mn, described using a patchwork of local coordinate
systems. Let V be a vector or tensor field in Mn, a function of the local coordinates and
parameterized by the m-dimensional parameter vector C, but not a function of C. The
components Cc of C are assumed orthogonal. The field trajectories (tangent bundles) of V
define the continuous multivariate map (“flow”) φC : Mn → Mn such that V = (∂φC/∂C)>.
This is linear and invertible, and can be used to map the entire submanifold. If ωr is an
r-form representing a conserved quantity, its integral over Ωr can be proved to satisfy [23]:

d
ˆ

Ω(C)

ωr =

[ ˆ
Ω(C)

L(C)
V ωr

]
· dC

=

[ ˆ
Ω(C)

i(C)
V dωr +

˛

∂Ω(C)

i(C)
V ωr

]
· dC =

[ ˆ
Ω(C)

i(C)
V dωr + d(i(C)

V ωr)

]
· dC

(38)

where d is the exterior derivative, ∂Ω is the submanifold boundary, “·” is the dot product,
L(C)

V is a multivariate Lie derivative with respect to V over parameters C, and i(C)
V is

a multivariate interior product with respect to V over parameters C. The multivariate
operators provide vector extensions of their usual one-parameter definitions in exterior
calculus [23], while the last step in Equation (38) invokes Stokes’ theorem, imposing a
regularity condition on ωr in the submanifold Ω. For C = t, Equation (38) reduces to the
one-parameter exterior calculus formulation of the Reynolds transport theorem [18].

If the vector or tensor field V is also a function of C, the problem can be analyzed by
augmenting the manifold with the parameter space, to define the flow φ̂C : Mn ×Rm →
Mn × Rm based on the augmented (n + m)× m tensor field VxC = (∂φ̂C/∂C)>, where
x denotes this composition [23]. This is given by VxC = [ V

Im
], where Im is the identity
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matrix of size m. Applying Equation (38) based on VxC, this simplifies to the extended
theorem [23]:

d̂
ˆ

Ω(C)

ωr =

[ ˆ
Ω(C)

L(C)
VxC ωr

]
· dC =

[ ˆ
Ω(C)

∂Cωr + i(C)
V dωr + d(i(C)

V ωr)

]
· dC (39)

where d̂ is the extended exterior derivative based on the augmented coordinates, and ∂C
is a vector partial derivative operator with respect to the components of C. For Cartesian
parameters C, ∂C = ∇C, while for X = x, C = t and V = u, Equation (39) reduces to the
known exterior calculus formulation for a time-varying velocity field u(t) [15,18,22].

We can now extract the Lie differential equations applicable to each differential form
in Ω, respectively, from Equations (38) and (39):

L(C)
V ωr = i(C)

V dωr + d(i(C)
V ωr) (40)

L(C)
VxCωr = ∂Cωr + L(C)

V ωr = ∂Cωr + i(C)
V dωr + d(i(C)

V ωr) (41)

The former is the multivariate extension of Cartan’s relation of exterior calculus e.g., [17,18,72],
while the latter provides an extended form for a vector field V(C) that is a function of C.

4.2. Vector Calculus Formulations

Equations (38)–(39) provide very general equations applicable to submanifolds of any
dimension in a manifold. For a system with global coordinates, these can be simplified to
give a generalized parametric Reynolds transport theorem. Consider an n-dimensional
compact domain Ω within an n-dimensional space M, described by the global Cartesian
coordinates X. Let V = (∂X/∂C)> = (∇CX)> be a vector or tensor field in M, using the
∂(→)/∂(↓) vector derivative convention (where→ and ↓ refer to row and column vectors,
respectively), in general with V a function of C. Let ωn be an n-dimensional volume form
defined by:

ω = ψ dX1 ∧ ...∧ dXn = ψ voln
X (42)

where ψ(X, C) is the density of a conserved quantity, ∧ is the wedge product and voln
X is

the volume of an infinitesimal n-dimensional parallelopiped spanned by the cotangents
to X. We assume ψ is continuous and continuously differentiable with respect to X and C
throughout Ω. It can be shown that Equation (39) then reduces to [23]:

d
ˆ

Ω(C)

ψ dnX =

[
∇C

ˆ

Ω(C)

ψ dnX
]
· dC

=

[ ˆ
Ω(C)

∇Cψ dnX +

˛

∂Ω(C)

ψ V · dn−1X
]
· dC =

[ ˆ
Ω(C)

[
∇Cψ +∇X ·

(
ψ V

)]
dnX

]
· dC

(43)

where d is now the differential operator, ∇X is the n-dimensional nabla operator with
respect to X, ∇C is the m-dimensional nabla operator with respect to C, dnX is a volume
element in Ω, and dn−1X is a directed area element with outward unit normal on the
boundary ∂Ω. For consistency with the vector derivative convention used, the divergence
in Equation (43) is defined by ∇X · (ψ V) = [∇>X (ψ V)]>.

We emphasize that Equation (43) applies to a compact domain Ω with smoothly
varying densities, with coordinates X measured with respect to a fixed frame of reference.
Further extensions can also be derived for moving and smoothly deforming frames of
reference (control domains) [3,6,23], domains with jump discontinuities [7,8], irregular and
fragmenting domains [9,10] and stochastic flows [21,22].
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We now combine the exterior calculus (Equation (39)) and vector calculus (Equation (43))
formulations, to provide a generalized Lie differential equation applicable to each volume
form in Ω. Using the notation in the second part of Equation (42), we rewrite the first part
of Equation (39):

d̂
ˆ

Ω(C)

ψ voln
X =

[ ˆ
Ω(C)

L(C)
VxC(ψ voln

X)

]
· dC (44)

Since the exterior derivative of the integral is equivalent to its differential, and integration
of ψ with respect to voln

X is identical to integration over dnX, we also have:

d̂
ˆ

Ω(C)

ψ voln
X = d

ˆ

Ω(C)

ψ dnX (45)

Combining Equations (43)–(45) and equating integrands gives, for each volume form in Ω:

L(C)
VxC(ψ voln

X) =
[
∇Cψ +∇X ·

(
ψ V

)]
dnX (46)

This invokes the fundamental lemma of the calculus of variations, thus imposing a regu-
larity assumption on ψ and V within Ω. The generalized Reynolds transport theorem in
Equation (43) thus yields a Lie differential equation in the form of Equation (46), defined
using the augmented field VxC. In some flow systems, this can be simplified to give a
partial differential equation applicable to each local element dnX.

5. Example Flow Systems

In the following sections we explore different choices of the coordinates X, parameters
C, vector or tensor field V and generalized density ψ in Equations (43) and (46), based
on the velocivolumetric description and the hierarchy of densities developed in Sections
2 and 3. This yields 11 different case study flow systems, for the six integration paths
labeled in red in Figure 5, with some choices examined for both time-independent and
time-dependent systems. To establish a consistent nomenclature, each system is named
using its X − C coordinates and its selected density. The domains Ω and D are assumed
compact, and the components of X and C are assumed orthogonal. In all cases we consider
V = V(C), but report only the intrinsic equations, with V measured with respect to a fixed
frame of reference. We also consider only smoothly-varying fields within a compact and
simply-connected domain.

5.1. Volumetric-Temporal Formulation (Density α)

We first consider the well-known volumetric-temporal formulation of the Reynolds
transport theorem [1], based on the geometric space Ω with Cartesian coordinates X = x,
time parameter C = t, intrinsic velocity vector field V = u(x, t) := ∂x/∂t and generalized
density ψ = α(x, t), defined from the fluid density ρ(x, t). This follows integration path 1©
in Figure 5. From Equation (43) and the definition of α in Equation (29), we obtain:

dQ
dt

=
DQ
Dt

=
d
dt

˚

Ω(t)

α dV =

˚

Ω(t)

∂α

∂t
dV +

‹

∂Ω(t)

αu · ndA =

˚

Ω(t)

[
∂α

∂t
+∇x · (αu)

]
dV (47)

using dV = d3x and ndA = dA = d2x, where n is the outward unit normal, dA is an area
element and dA is a directed area element. Equation (47) is commonly written in terms of
the substantial derivative D/Dt = ∂/∂t + u · ∇x, expressing the transport of the conserved
quantity with the fluid volume.
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To extract the differential equation, we require a local form of the left-hand side of
Equation (47). Using the continuity equation:

0 =
∂ρ

∂t
+∇x · (ρu) (48)

a simple manipulation of Equation (47) using the local specific density α in Equation (24) gives:

ρ
Dα

Dt
=

∂(ρα)

∂t
+∇x · (ραu) (49)

Further details of this derivation are given in [77] and Appendix C.
The integral and differential Equations (47) and (49) provide generalized forms of the

standard conservation laws of fluid mechanics. In these equations, the left-hand terms
are generally used as placeholders for any source-sink terms or driving forces for the
conserved quantity to enter or leave the fluid volume or differential fluid element. Such
equations for the seven common conserved quantities (fluid mass, chemical species mass,
linear momentum, angular momentum, energy, charge and entropy) are listed in Table 2.
All symbols used are listed in Table 1 (note that some minor overlaps of symbols could
not be avoided). The equations given in Table 2 contain typical source-sink terms for the
left-hand side of each equation. More comprehensive versions for different representations
or coupled phenomena can also be derived, e.g., [2–4,6,77,78]. To enable dimensional
comparisons, the SI units of each integral and differential equation are also included in
Table 2.

To the seven conservation laws, we can also add an eighth, by assigning α(x, t) to its un-
derlying pdf p(x|t) (strictly, following the probabilistic averaging method of Appendix A,
this is achieved by assigning α(x + r, t) = p(x + r|t) in Equations (A3) and (A4) or α(x +
r, t) = 1 [kg−1] in Equation (A5), producing a probabilistic convolution). By normalization˝

Ω(t) p(x|t) dV = 1, the left-hand term of the Reynolds transport theorem in Equation (47)
then vanishes. In consequence, for a compactly supported continuous and continuously
differentiable pdf p(x|t) [79] we obtain the differential Equation [23]:

0 =
∂p(x|t)

∂t
+∇x · (p(x|t) u) (50)

This is the Liouville equation of fluid mechanics [27,29–31]. This and its integral form are
included in Table 2. As will be shown, other Liouville equations based on different pdfs
can be derived for other representations.

5.2. Velocimetric-Temporal Formulation (Density β)

Now consider a velocimetric-temporal formulation of the Reynolds transport theorem,
based on the Eulerian velocity space D with Cartesian velocity coordinates X = u, time
parameter C = t, local acceleration vector field V = u̇(u, t) := ∂u/∂t and generalized
density ψ = β(u, t), defined from the velocimetric fluid density д(u, t). This follows
integration path 2© in Figure 5. Recall that this requires u̇, β and д to be defined in the
velocimetric representation, for fluid elements of velocity u aggregated over all positions.
From Equation (43) and the definition of β in Equation (30) [24]:

dQ
dt

=
d
dt

˚

D(t)

β dU =

˚

D(t)

∂β

∂t
dU +

‹

∂D(t)

βu̇ · nB dB =

˚

D(t)

[
∂β

∂t
+∇u · (βu̇)

]
dU (51)

using dU = d3u and nB dB = dB = d2u, where nB is the outward unit normal, dB is a
velocimetric boundary element and dB is a directed velocimetric boundary element.
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Table 2. Conservation Laws for the (Well-Known) Volumetric-Temporal Formulation (based on the Volumetric Fluid Density ρ(x, t)) after [2–4,6,77,78].

Conserved Quantity Density Integral Equation Differential Equation

α(x, t) = ρα LHS =
dQ
dt

=
DQ
Dt

= RHS SI Units LHS = RHS SI Units

Fluid mass ρ 0 = Ṁ =
d[[[ρ]]]

dt
=
˝

Ω(t)

[
∂ρ

∂t
+∇x · (ρu)

]
dV [kg s−1] 0 =

∂ρ

∂t
+∇x · (ρu) [kg s−1 m−3]

Species mass ρχc = ρc (Ṁc) =
d[[[ρχc ]]]

dt
=
˝

Ω(t)

[
∂ρχc

∂t
+∇x · (ρχcu)

]
dV [kgc s−1] ρ

Dχc
Dt

=Mc(
ˆ̇ξc −∇x · jc) =

∂ρχc
∂t

+∇x · (ρχcu) [kgc s−1 m−3]

Linear momentum ρu ∑ F =
d[[[ρu]]]

dt
=
˝

Ω(t)

[
∂ρu
∂t

+∇x · (ρuu)
]

dV [(kg m s−1) s−1 = N] ρ
Du
Dt

= −∇xP−∇x · τ + ρg =
∂ρu
∂t

+∇x · (ρuu) [N m−3]

Angular momentum a ρ(r× u) ∑ T =
d[[[ρ(r× u)]]]

dt =


˝

Ω(t)

[
∂ρ(r× u)

∂t

+∇x · (ρ(r× u)u)
]

dV

[(kg m2 s−1) s−1 = N m] ρ
D(r× u)

Dt
= −∇x · (r× Pδ)

−∇x · (r× τ) + (r× ρg)

 =

 ∂ρ(r× u)
∂t

+∇x · (ρ(r× u)u)

[N m−2 = (N m) m−3]

Energy ρe
DE
Dt

=
d[[[ρe]]]

dt
= (Q̇in + Ẇin)

 =
˝

Ω(t)

[
∂ρe
∂t

+∇x · (ρeu)
]

dV [J s−1 = W] ρ
De
Dt

= −∇x · jQ −∇x · (Pu)

−∇x · (τ · u) + ρg · u

 =
∂ρe
∂t

+∇x · (ρeu) [J s−1 m−3 = W m−3]

Charge (in solution) ρz
DZ
Dt

=
d[[[ρz]]]

dt
= I +

(
∑c zc Ṁc

)
 =

˝
Ω(t)

[
∂ρz
∂t

+∇x · (ρzu)
]

dV [C s−1 = A] ρ
Dz
Dt

= −∇x · i

+∑cMczc(
ˆ̇ξc −∇x · jc)

 =
∂ρz
∂t

+∇x · (ρzu) [C s−1 m−3 = A m−3]

Entropy ρs
DS
Dt

=
d[[[ρs]]]

dt
= σ̇ + Ṡn f

 =
˝

Ω(t)

[
∂ρs
∂t

+∇x · (ρsu)
]

dV [J K−1 s−1] ρ
Ds
Dt

= ˆ̇σ−∇x · jS =
∂ρs
∂t

+∇x · (ρsu) [J K−1 s−1 m−3]

Probability p(x|t) = px|t 0 =
d[[[px|t ]]]

dt
=
˝

Ω(t)

[
∂px|t

∂t
+∇x ·

(
px|tu

)]
dV [s−1] 0 =

∂px|t
∂t

+∇x · (px|tu) [s−1 m−3]

a It can be shown that the differential equation for angular momentum reduces to τ = τ> [3,77].
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Using the previous manipulation (Appendix C), we recover a velocimetric analog of
the continuity equation at each velocity:

0 =
∂д
∂t

+∇u · (дu̇) (52)

and in general the differential equation based on β̆:

д
dβ̆

dt
=

∂(дβ̆)

∂t
+∇u · (дβ̆u̇) (53)

The conservation laws derived from Equations (51) and (53) are listed with their SI
units in Table 3. Note that from Equations (47) and (51) (see also Figure 5), each integral
on path 2© is equal to the same rate of change as its volumetric counterpart on path 1©
(see Table 2). In contrast, the differential equations are localized by velocity rather than
position, and so the source-sink terms are not immediately identifiable, but nonetheless can
be written in the form of Equation (53), providing convenient placeholders for all source-
sink terms. The corresponding integral and differential Liouville equations, obtained by
assigning β(u, t) = p(u|t), are also listed in Table 3.

5.3. Velocivolumetric-Temporal Formulation (Density ϕ)

Now consider a velocivolumetric-temporal formulation of the Reynolds transport the-
orem, based on the Eulerian velocity-position space D ×Ω with six-dimensional Cartesian
coordinates X = [ u

x ], time parameter C = t, composite vector field V = [ u̇
u ](u, x, t) :=

∂[ u
x ]/∂t and generalized density ψ = ϕ(u, x, t), defined from the velocivolumetric density

ζ(u, x, t). This follows the double integration path 3©– 1© or 4©– 2© in Figure 5. For path
3©– 1©, from Equation (43) and the definition of ϕ in Equation (31):

dQ
dt

=
d
dt

˚

Ω(t)

˚

D(x,t)

ϕ dUdV

=

˚

Ω(t)

˚

D(x,t)

∂ϕ

∂t
dUdV +

‹

∂Ω(t)

‹

∂D(x,t)

ϕ

[
u̇
u

]
·
[

nB
n

]
dB dA

=

˚

Ω(t)

˚

D(x,t)

[
∂ϕ

∂t
+∇u,x ·

(
ϕ

[
u̇
u

])]
dUdV

=

˚

Ω(t)

˚

D(x,t)

[
∂ϕ

∂t
+∇u · (ϕu̇) +∇x · (ϕu)

]
dUdV

(54)

The alternative path 4©– 2© can also be written using the second part of Equation (31). For
separable integrals, further simplification is possible. From Equation (54) we can extract
the continuity equation and differential equation based on ϕ̆ (Appendix C), respectively:

0 =
∂ζ

∂t
+∇u · (ζu̇) +∇x · (ζu) (55)

ζ
dϕ̆

dt
=

∂(ζ ϕ̆)

∂t
+∇u · (ζ ϕ̆u̇) +∇x · (ζ ϕ̆u) (56)

The conservation laws derived from Equations (54) and (56) are listed with their SI
units in Table 4. Again the integrals equate to dQ/dt, hence to the same rates of change
as the volumetric form (Table 2). The left-hand sides of the differential equations are
written in the form of Equation (56). The corresponding Liouville equations, obtained from
ϕ(u, x, t) = p(u, x|t), are also listed in Table 4.
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Table 3. Conservation Laws for the Velocimetric-Temporal Formulation (based on the Velocimetric Fluid Density д(u, t)).

Conserved Quantity Density Integral Equation Differential Equation

β(u, t) = дβ̆ LHS =
dQ
dt

=
DQ
Dt

= RHS SI Units LHS = RHS SI Units

Fluid mass д 0 = Ṁ =
d〈〈〈д〉〉〉

dt
=
˝
D(t)

[
∂д
∂t

+∇u · (дu̇)
]

dU [kg s−1] 0 =
∂д
∂t

+∇u · (дu̇) [kg s−1 (m s−1)−3]

Species mass дχ̆c = дc (Ṁc) =
d〈〈〈дχ̆c〉〉〉

dt
=
˝
D(t)

[
∂дχ̆c

∂t
+∇u · (дχ̆c u̇)

]
dU [kgc s−1] д

dχ̆c

dt
=

∂дχ̆c

∂t
+∇u · (дχ̆c u̇) [kgc s−1 (m s−1)−3]

Linear momentum дu ∑ F =
d〈〈〈дu〉〉〉

dt
=
˝
D(t)

[
∂дu
∂t

+∇u · (дuu̇)
]

dU [(kg m s−1) s−1 = N] д
du
dt

=
∂дu
∂t

+∇u · (дuu̇) [N (m s−1)−3]

Angular momentum д(r̆× u) ∑ T =
d〈〈〈д(r̆× u)〉〉〉

dt
=
˝
D(t)

[
∂д(r̆× u)

∂t
+∇u · (д(r̆× u)u̇)

]
dU

[(kg m2 s−1) s−1 = N
m] д

d(r̆× u)
dt =

 ∂д(r̆× u)
∂t

+∇u · (д(r̆× u)u̇)

[(N m) (m s−1)−3]

Energy дĕ
DE
Dt

=
d〈〈〈дĕ〉〉〉

dt
= (Q̇in + Ẇin)

 =
˝
D(t)

[
∂дĕ
∂t

+∇u · (дĕu̇)
]

dU [J s−1 = W] д
dĕ
dt

=
∂дĕ
∂t

+∇u · (дĕu̇) [J s−1 (m s−1)−3 = W (m s−1)−3]

Charge (in solution) дz̆
DZ
Dt

=
d〈〈〈дz̆〉〉〉

dt
= I +

(
∑c zc Ṁc

)
 =

˝
D(t)

[
∂дz̆
∂t

+∇u · (дz̆u̇)
]

dU [C s−1 = A] д
dz̆
dt

=
∂дz̆
∂t

+∇u · (дz̆u̇) [C s−1 (m s−1)−3 = A (m s−1)−3]

Entropy дs̆ DS
Dt

=
d〈〈〈дs̆〉〉〉

dt
= σ̇+Ṡn f =

˝
D(t)

[
∂дs̆
∂t

+∇u · (дs̆u̇)
]

dU [J K−1 s−1] д
ds̆
dt

=
∂дs̆
∂t

+∇u · (дs̆u̇) [J K−1 s−1 (m s−1)−3]

Probability p(u|t) = pu|t 0 =
d〈〈〈pu|t〉〉〉

dt
=
˝
D(t)

[
∂pu|t

∂t
+∇u · (pu|t u̇)

]
dU [s−1] 0 =

∂pu|t
∂t

+∇u · (pu|t u̇) [s−1 (m s−1)−3]
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Table 4. Conservation Laws for the Velocivolumetric-Temporal Formulation (based on the Velocivolumetric Fluid Density ζ(u, x, t)).

Conserved Quantity Density Integral Equation Differential Equation

ϕ(u, x, t) = ζ ϕ̆ LHS =
dQ
dt

=
DQ
Dt

= RHS SI Units LHS = RHS SI Units

Fluid mass ζ 0 = Ṁ =
d [[[〈〈〈ζ〉〉〉]]]

dt =


˝

Ω(t)

˝
D(x,t)

[
∂ζ

∂t
+∇u · (ζu̇)

+∇x · (ζu)
]

dUdV

[kg s−1] 0 =
∂ζ

∂t
+∇u · (ζu̇) +∇x · (ζu) [kg s−1 m−3 (m s−1)−3]

Species mass ζχ̆c = ζc (Ṁc) =
d [[[〈〈〈ζχ̆c〉〉〉]]]

dt =


˝

Ω(t)

˝
D(x,t)

[
∂ζχ̆c

∂t
+∇u · (ζχ̆c u̇)

+∇x · (ζχ̆cu)
]

dUdV

[kgc s−1] ζ
dχ̆c
dt =


∂ζχ̆c

∂t
+∇u · (ζχ̆c u̇)

+∇x · (ζχ̆cu)

[kgc s−1 m−3 (m s−1)−3]

Linear momentum ζu ∑ F =
d [[[〈〈〈ζu〉〉〉]]]

dt =


˝

Ω(t)

˝
D(x,t)

[
∂ζu
∂t

+∇u · (ζuu̇)

+∇x · (ζuu)
]

dUdV

[(kg m s−1) s−1 = N] ζ
du
dt =

{
∂ζu
∂t

+∇u · (ζuu̇)
+∇x · (ζuu)

[N m−3 (m s−1)−3]

Angular momentum ζ(r̆× u) ∑ T

=
d [[[〈〈〈ζ(r̆× u)〉〉〉]]]

dt

 =


˝

Ω(t)

˝
D(x,t)

[
∂ζ(r̆× u)

∂t
+∇u · (ζ(r̆× u)u̇)

+∇x · (ζ(r̆× u)u)
]

dUdV

[(kg m2 s−1) s−1 = N m] ζ
d(r̆× u)

dt =

 ∂ζ(r̆× u)
∂t

+∇u · (ζ(r̆× u)u̇)
+∇x · (ζ(r̆× u)u)

[(N m) m−3 (m s−1)−3]

Energy ζ ĕ
DE
Dt

=
d [[[〈〈〈ζ ĕ〉〉〉]]]

dt
= (Q̇in + Ẇin)

 =


˝

Ω(t)

˝
D(x,t)

[
∂ζ ĕ
∂t

+∇u · (ζ ĕu̇)

+∇x · (ζ ĕu)
]

dUdV

[J s−1 = W] ζ
dĕ
dt

=
∂ζ ĕ
∂t

+∇u · (ζ ĕu̇) +∇x · (ζ ĕu) [J s−1 m−3 (m s−1)−3]

Charge (in solution) ζ z̆
DZ
Dt

=
d [[[〈〈〈ζ z̆〉〉〉]]]

dt
= I +

(
∑c zc Ṁc

)
 =


˝

Ω(t)

˝
D(x,t)

[
∂ζ z̆
∂t

+∇u · (ζ z̆u̇)

+∇x · (ζ z̆u)
]

dUdV

[C s−1 = A] ζ
dz̆
dt

=
∂ζ z̆
∂t

+∇u · (ζ z̆u̇) +∇x · (ζ z̆u) [C s−1 m−3 (m s−1)−3]

Entropy ζ s̆
DS
Dt

=
d [[[〈〈〈ζ s̆〉〉〉]]]

dt
= σ̇ + Ṡn f

 =


˝

Ω(t)

˝
D(x,t)

[
∂ζ s̆
∂t

+∇u · (ζ s̆u̇)

+∇x · (ζ s̆u)
]

dUdV

[J K−1 s−1] ζ
ds̆
dt =

{
∂ζ s̆
∂t

+∇u · (ζ s̆u̇)
+∇x · (ζ s̆u)

[J K−1 s−1 m−3 (m s−1)−3]

Probability p(u, x|t) = pu,x|t 0 =
d [[[〈〈〈pu,x|t〉〉〉]]]

dt =


˝

Ω(t)

˝
D(x,t)

[
∂pu,x|t

∂t
+∇u · (pu,x|t u̇)

+∇x · (pu,x|tu)
]

dUdV

[s−1] 0
=


∂pu,x|t

∂t
+∇u · (pu,x|t u̇)

+∇x · (pu,x|tu)

[s−1 m−3 (m s−1)−3]
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5.4. Velocimetric-Temporal Formulation (Density ϕ)

Now consider a different velocimetric-temporal formulation, defined as in Section 5.2
but using the generalized density ψ = ϕ(u, x, t) based on ζ(u, x, t). This follows the partial
integration path 3© in Figure 5. From relation Equation (32) between ϕ and α:

d
˚

D(x,t)

ϕ dU = dα = ∇xα · dx +
∂α

∂t
dt (57)

Examining the time derivative term using Equation (43):

∂α

∂t
=

∂

∂t

˚

D(x,t)

ϕ dU =

˚

D(x,t)

∂ϕ

∂t
dU +

‹

∂D(x,t)

ϕu̇ · nB dB =

˚

D(x,t)

[
∂ϕ

∂t
+∇u · (ϕu̇)

]
dU (58)

For the conserved quantities considered, it is not straightforward to extract a differential
equation from Equation (58). Instead, it is necessary to write a Lie differential Equation (46)
in terms of the Lie derivative L(t)u̇xt with respect to the augmented local acceleration field
u̇xt := [ u̇

1 ]. The left-hand term can then be treated as a placeholder for sources, sinks or
drivers of the conserved quantity in the volume form vol3u. The conservation laws derived
from Equation (58) are listed in Table 5.

For this formulation, it is possible to derive two sets of temporal Liouville equations,
by assigning the density ϕ(u, x, t), respectively, to p(u, x|t) or p(u|x, t). The former gives
a Lie differential equation, while the latter reduces by normalization in Equation (8) to a
partial differential equation. Both sets are listed in Table 5.

5.5. Volumetric-Temporal Formulation (Density ϕ)

We here consider a different volumetric-temporal formulation, defined as in Section 5.1
but using the generalized density ψ = ϕ(u, x, t) based on ζ(u, x, t). This follows the partial
integration path 4© in Figure 5. From Equation (33) between ϕ and β:

d
˚

Ω(u,t)

ϕ dV = dβ = ∇uβ · du +
∂β

∂t
dt (59)

Examining the time derivative term using Equation (43):

∂β

∂t
=

∂

∂t

˚

Ω(u,t)

ϕ dV =

˚

Ω(u,t)

∂ϕ

∂t
dV +

‹

∂Ω(u,t)

ϕu · n dA =

˚

Ω(u,t)

[
∂ϕ

∂t
+∇x · (ϕu)

]
dV (60)

We again extract Lie differential Equation (46), here written in terms of the Lie derivative
L(t)uxt with respect to the augmented velocity field uxt := [ u

1 ]. The conservation laws derived
from Equation (60) are listed in Table 6. We also list two sets of temporal Liouville equations
based on p(u, x|t) or p(x|u, t).
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5.6. Velocimetric-Spatial (Time-Independent) Formulation (Density ϕ)

Now consider a time-independent velocimetric-spatial formulation of the Reynolds
transport theorem, based on the velocity spaceDwith Cartesian velocity coordinates X = u,
position parameter vector C = x, velocity gradient tensor field V = (G(u, x))> := (∇xu)>

and generalized density ψ = ϕ(u, x), defined from the velocivolumetric fluid density
ζ(u, x). This follows integration path 3© in Figure 5, but is independent of time, representing
a stationary flow system (this formulation can also be applied to statistically stationary flow
systems—for example a turbulent flow at steady state—by mapping the time dependence
to a velocity dependence, thus ϕ(u, x, t) 7→ ϕ(u, x, t(u))). For the spatial gradient term in
Equation (57), from Equation (43) and relation (32) between ϕ and α [23,24]:

∇xα = ∇x

˚

D(x)

ϕ dU =

˚

D(x)

∇x ϕ dU +

‹

∂D(x)

ϕG> · nB dB =

˚

D(x)

[
∇x ϕ +∇u · (ϕG>)

]
dU (61)

This gives an integral equation for the spatial gradient of the volumetric density α. We
can also write a Lie differential Equation (46), expressed in terms of the multivariate Lie
derivative L(x)

G>xx
with respect to the augmented field Gxx := ∇x[u, x] over parameters x.

The conservation laws derived from Equation (61) are listed in Table 7. We also list two sets
of spatial Liouville equations based on p(u, x) or p(u|x) [23].
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Table 5. Conservation Laws for the Velocimetric-Temporal Formulation (based on the Velocivolumetric Fluid Density ζ(u, x, t)).

Conserved Quantity Density Integral Equation Differential Equation

ϕ(u, x, t) = ζ ϕ̆ LHS =
∂α

∂t
=

∂(ρα)

∂t
= RHS SI Units LHS = RHS SI Units

Fluid mass ζ ∂ρ

∂t
=

∂ 〈〈〈ζ〉〉〉
∂t

=
˝
D(x,t)

[
∂ζ

∂t
+∇u · (ζu̇)

]
dU [kg m−3 s−1] L(t)u̇xt(ζ vol3u) =

[
∂ζ

∂t
+∇u · (ζu̇)

]
dU [kg m−3 s−1]

Species mass ζχ̆c = ζc
∂(ρχc)

∂t
=

∂ 〈〈〈ζχ̆c〉〉〉
∂t

=
˝
D(x,t)

[
∂ζχ̆c

∂t
+∇u · (ζχ̆c u̇)

]
dU [kgc m−3 s−1] L(t)u̇xt(ζχ̆c vol3u) =

[
∂ζχ̆c

∂t
+∇u · (ζχ̆c u̇)

]
dU [kgc m−3 s−1]

Linear momentum ζu ∂(ρu)
∂t

=
∂ 〈〈〈ζu〉〉〉

∂t
=
˝
D(x,t)

[
∂ζu
∂t

+∇u · (ζuu̇)
]

dU [(kg m s−1) m−3 s−1 = N m−3] L(t)u̇xt(ζu vol3u) =

[
∂ζu
∂t

+∇u · (ζuu̇)
]

dU [N m−3]

Angular momentum ζ(r̆× u)
∂(ρ(r× u))

∂t

=
∂ 〈〈〈ζ(r̆× u)〉〉〉

∂t

 =
˝
D(x,t)

[
∂ζ(r̆× u)

∂t
+∇u · (ζ(r̆× u)u̇)

]
dU

[(kg m2 s−1) m−3 s−1 = (N m)
m−3]

L(t)u̇xt(ζ(r̆× u))

vol3u)

}
=

[
∂ζ(r̆× u)

∂t
+∇u · (ζ(r̆× u)u̇)

]
dU [(N m) m−3]

Energy ζ ĕ ∂(ρe)
∂t

=
∂ 〈〈〈ζ ĕ〉〉〉

∂t
=
˝
D(x,t)

[
∂ζ ĕ
∂t

+∇u · (ζ ĕu̇)
]

dU [J m−3 s−1 = W m−3] L(t)u̇xt(ζ ĕ vol3u) =

[
∂ζ ĕ
∂t

+∇u · (ζ ĕu̇)
]

dU [J m−3 s−1 = W m−3]

Charge (in solution) ζ z̆ ∂(ρz)
∂t

=
∂ 〈〈〈ζ z̆〉〉〉

∂t
=
˝
D(x,t)

[
∂ζ z̆
∂t

+∇u · (ζ z̆u̇)
]

dU [C m−3 s−1 = A m−3] L(t)u̇xt(ζ z̆ vol3u) =

[
∂ζ z̆
∂t

+∇u · (ζ z̆u̇)
]

dU [C m−3 s−1 = A m−3]

Entropy ζ s̆ ∂(ρs)
∂t

=
∂ 〈〈〈ζ s̆〉〉〉

∂t
=
˝
D(x,t)

[
∂ζ s̆
∂t

+∇u · (ζ s̆u̇)
]

dU [J K−1 m−3 s−1] L(t)u̇xt(ζ s̆ vol3u) =

[
∂ζ s̆
∂t

+∇u · (ζ s̆u̇)
]

dU [J K−1 m−3 s−1]

Probability p(u, x|t) = pu,x|t
∂px|t

∂t
=

∂〈〈〈pu,x|t〉〉〉
∂t

=
˝
D(x,t)

[
∂pu,x|t

∂t
+∇u · (pu,x|t u̇)

]
dU [m−3 s−1] L(t)u̇xt(pu,x|t vol3u) =

[
∂pu,x|t

∂t
+∇u · (pu,x|t u̇)

]
dU [m−3 s−1 ]

p(u|x, t) = pu|x,t 0 =
∂〈〈〈pu|x,t〉〉〉

∂t
=
˝
D(x,t)

[
∂pu|x,t

∂t
+∇u · (pu|x,t u̇)

]
dU [s−1] 0 =

∂pu|x,t

∂t
+∇u · (pu|x,t u̇) [(m s−1)−3 s−1]
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Table 6. Conservation Laws for the Volumetric-Temporal Formulation (based on the Velocivolumetric Fluid Density ζ(u, x, t)).

Conserved Quantity Density Integral Equation Differential Equation

ϕ(u, x, t) = ζ ϕ̆ LHS =
∂β

∂t
=

∂(дβ̆)

∂t
= RHS SI Units LHS = RHS SI Units

Fluid mass ζ ∂д
∂t

=
∂ [[[ζ]]]

∂t
=
˝

Ω(u,t)

[
∂ζ

∂t
+∇x · (ζu)

]
dV [kg (m s−1)−3 s−1] L(t)uxt(ζ vol3x) =

[
∂ζ

∂t
+∇x · (ζu)

]
dV [kg (m s−1)−3 s−1]

Species mass ζχ̆c = ζc ∂(дχ̆c)

∂t
=

∂ [[[ζχ̆c ]]]

∂t
=
˝

Ω(u,t)

[
∂ζχ̆c

∂t
+∇x · (ζχ̆cu)

]
dV [kgc (m s−1)−3 s−1] L(t)uxt(ζχ̆c vol3x) =

[
∂ζχ̆c

∂t
+∇x · (ζχ̆cu)

]
dV [kgc (m s−1)−3 s−1]

Linear momentum ζu ∂(дu)
∂t

=
∂ [[[ζu]]]

∂t
=
˝

Ω(u,t)

[
∂ζu
∂t

+∇x · (ζuu)
]

dV
[(kg m s−1) (m s−1)−3 s−1 =
N (m s−1)−3] L(t)uxt(ζu vol3x) =

[
∂ζu
∂t

+∇x · (ζuu)
]

dV [N (m s−1)−3]

Angular momentum ζ(r̆× u)
∂(д(r̆× u))

∂t

=
∂ [[[ζ(r̆× u)]]]

∂t

 =


˝

Ω(u,t)

[
∂ζ(r̆× u)

∂t

+∇x · (ζ(r̆× u)u)
]

dV

[(kg m2 s−1) (m s−1)−3 s−1

= (N m) (m s−1)−3]
L(t)uxt(ζ(r̆× u))

vol3x)

}
=


[

∂ζ(r̆× u)
∂t

+∇x · (ζ(r̆× u)u)
]

dV

[(N m) (m s−1)−3]

Energy ζ ĕ ∂(дĕ)
∂t

=
∂ [[[ζ ĕ]]]

∂t
=
˝

Ω(u,t)

[
∂ζ ĕ
∂t

+∇x · (ζ ĕu)
]

dV
[J (m s−1)−3 s−1 = W (m
s−1)−3] L(t)uxt(ζ ĕ vol3x) =

[
∂ζ ĕ
∂t

+∇x · (ζ ĕu)
]

dV
[J (m s−1)−3 s−1 = W (m
s−1)−3]

Charge (in solution) ζ z̆ ∂(дz̆)
∂t

=
∂ [[[ζ z̆]]]

∂t
=
˝

Ω(u,t)

[
∂ζ z̆
∂t

+∇x · (ζ z̆u)
]

dV
[C (m s−1)−3 s−1 = A (m
s−1)−3] L(t)uxt(ζ z̆ vol3x) =

[
∂ζ z̆
∂t

+∇x · (ζ z̆u)
]

dV
[C (m s−1)−3 s−1 = A (m
s−1)−3]

Entropy ζ s̆ ∂(дs̆)
∂t

=
∂ [[[ζ s̆]]]

∂t
=
˝

Ω(u,t)

[
∂ζ s̆
∂t

+∇x · (ζ s̆u)
]

dV [J K−1 (m s−1)−3 s−1] L(t)uxt(ζ s̆ vol3x) =

[
∂ζ s̆
∂t

+∇x · (ζ s̆u)
]

dV [J K−1 (m s−1)−3 s−1]

Probability p(u, x|t) = pu,x|t
∂pu|t

∂t
=

∂[[[pu,x|t ]]]

∂t
=
˝

Ω(u,t)

[
∂pu,x|t

∂t
+∇x · (pu,x|tu)

]
dV [(m s−1)−3 s−1] L(t)uxt(pu,x|t vol3x) =

[
∂pu,x|t

∂t
+∇x · (pu,x|tu)

]
dV [(m s−1)−3 s−1]

p(x|u, t) = px|u,t 0 =
∂[[[px|u,t ]]]

∂t
=
˝

Ω(u,t)

[
∂px|u,t

∂t
+∇x · (px|u,tu)

]
dV [s−1] 0 =

∂px|u,t

∂t
+∇x · (px|u,tu) [m−3 s−1]



Entropy 2022, 24, 1493 26 of 40

5.7. Volumetric-Velocital (Time-Independent) Formulation (Density ϕ)

Now consider a time-independent volumetric-velocital formulation of the Reynolds
transport theorem, based on the geometric space Ω with Cartesian coordinates X = x,
velocity parameter vector C = u, inverse velocity gradient tensor field V = (Γ(u, x))> :=
(∇ux)> and generalized density ψ = ϕ(u, x) defined from ζ(u, x). (The descriptor velocital,
from Latin velocitas and -al for “pertaining to velocity”, follows [80].) This formulation fol-
lows integration path 4© in Figure 5; recall that this adopts the velocimetric representation,
which is integrated over the volumetric space for a distinct velocity. We again consider the
time-independent case. From Equations (43), (59) and relation (33) between ϕ and β:

∇uβ = ∇u

˚

Ω(u)

ϕ dV =

˚

Ω(u)

∇u ϕ dV +

‹

∂Ω(u)

ϕΓ> · n dA =

˚

Ω(u)

[
∇u ϕ +∇x · (ϕΓ>)

]
dV

(62)

This gives the gradient in velocity space of the velocimetric density β. The conservation
laws derived from Equation (62) are listed in Table 8. We also list two sets of spatial
Liouville equations based on p(u, x) or p(x|u).

5.8. Velocimetric-Spatiotemporal Formulation (Density ϕ)

Now consider the complete velocimetric-spatiotemporal formulation of the Reynolds
transport theorem, a time-dependent extension of Section 5.6 (path 3© in Figure 5). This ex-
amines the velocity space D with X = u, C = [x, t]>, V = (G̃(u, x, t))> := (Hxu)>, where
Hx = ∇x,t is the spatiotemporal gradient, and density ψ = ϕ(u, x, t) defined from ζ(u, x, t).
Here G̃ = [G, u̇]> can be recognized as the velocity gradient tensor field G augmented with
the local acceleration vector field u̇ := ∂u/∂t. From Equations (43) and (32) [23]:

Hxα = Hx

˚

D(x,t)

ϕ dU =

˚

D(x,t)

Hx ϕ dU +

‹

∂D(x,t)

ϕG̃
> · nB dB =

˚

D(x,t)

[
Hx ϕ +∇u · (ϕG̃

>
)

]
dU (63)

This gives the spatiotemporal gradient Hxα = [∇xα, α̇]> of the volumetric density α. The
conservation laws derived from Equation (63) are listed in Table 9. We also present two
sets of composite Liouville equations based on p(u, x|t) or p(u|x, t).

5.9. Volumetric-Velocitemporal Formulation (Density ϕ)

Now consider the complete volumetric-velocitemporal formulation of the Reynolds
transport theorem, a time-dependent extension of that in Section 5.7 (path 4© in Figure 5).
This examines the geometric space Ω with X = x, C = [u, t]>, V = (Γ̃(u, x, t))> := (Hux)>,
where Hu = ∇u,t is a velocitemporal gradient operator, and density ψ = ϕ(u, x, t) defined
from ζ(u, x, t). We recognize Γ̃ = [Γ, u]> as the inverse velocity gradient tensor field Γ

augmented with the local velocity vector field u := ∂x/∂t. From Equations (43) and (33):

Huβ = Hu

˚

Ω(u,t)

ϕ dV =

˚

Ω(u,t)

Hu ϕ dV +

‹

∂Ω(u,t)

ϕΓ̃
> · n dA =

˚

Ω(u,t)

[
Hu ϕ +∇x · (ϕΓ̃

>
)

]
dV (64)

This provides the velocitemporal gradient Huβ = [∇uβ, β̇]> of the velocimetric density β.
The conservation laws derived from Equation (64) are listed in Table 10. We also list two
sets of composite Liouville equations, here based on p(u, x|t) or p(x|u, t).
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Table 7. Conservation Laws for the Velocimetric-Spatial (Time-Independent) Formulation (based on the Velocivolumetric Fluid Density ζ(u, x)).

Conserved Quantity Density Integral Equation Differential Equation

ϕ(u, x) = ζ ϕ̆ LHS = ∇xα = ∇x(ρα) =RHS SI Units LHS =RHS SI Units

Fluid mass ζ ∇xρ = ∇x〈〈〈ζ〉〉〉 =
˝
D(x)

(
∇xζ +∇u · (ζ G>)

)
dU [kg m−4 = kg m−3 m−1] L(x)

G>xx
(ζ vol3u) =

(
∇xζ +∇u · (ζ G>)

)
dU [kg m−4 = kg m−3 m−1]

Species mass ζχ̆c = ζc
∇x(ρχc) = ∇x(ρc)

= ∇x〈〈〈ζχ̆c〉〉〉

}
=
˝
D(x)

(
∇x(ζχ̆c) +∇u · (ζχ̆c G>)

)
dU [kgc m−4 = kgc m−3 m−1] L(x)

G>xx
(ζχ̆c vol3u) =

(
∇x(ζχ̆c) +∇u · (ζχ̆c G>)

)
dU [kgc m−4 = kgc m−3 m−1]

Linear momentum ζu ∇x(ρu) = ∇x〈〈〈ζu〉〉〉 =
˝
D(x)

(
∇x(ζu) +∇u · (ζu G>)

)
dU

[kg m−3 s−1 = (kg m s−1)
m−3 m−1] L(x)

G>xx
(ζu vol3u) =

(
∇x(ζu) +∇u · (ζu G>)

)
dU [kg m−3 s−1]

Angular momentum ζ(r̆× u) ∇x(ρ(r× u))

= ∇x〈〈〈ζ(r̆× u)〉〉〉

}
=


˝
D(x)

(
∇x(ζ(r̆× u))

+∇u · (ζ(r̆× u)G>)
)
dU

[kg m−2 s−1 = (kg m2 s−1)
m−3 m−1]

L(x)
G>xx

(ζ(r̆× u)

vol3u)

 =

{(
∇x(ζ(r̆× u))
+∇u · (ζ(r̆× u)G>)

)
dU

[kg m−2 s−1]

Energy ζ ĕ ∇x(ρe) = ∇x〈〈〈ζ ĕ〉〉〉 =
˝
D(x)

(
∇x(ζ ĕ) +∇u · (ζ ĕ G>)

)
dU [J m−3 m−1] L(x)

G>xx
(ζ ĕ vol3u) =

(
∇x(ζ ĕ) +∇u · (ζ ĕ G>)

)
dU [J m−3 m−1]

Charge (in solution) ζ z̆ ∇x(ρz) = ∇x〈〈〈ζ z̆〉〉〉 =
˝
D(x)

(
∇x(ζ z̆) +∇u · (ζ z̆ G>)

)
dU [C m−3 m−1] L(x)

G>xx
(ζ z̆ vol3u) =

(
∇x(ζ z̆) +∇u · (ζ z̆ G>)

)
dU [C m−3 m−1]

Entropy ζ s̆ ∇x(ρs) = ∇x〈〈〈ζ s̆〉〉〉 =
˝
D(x)

(
∇x(ζ s̆) +∇u · (ζ s̆ G>)

)
dU [J K−1 m−3 m−1] L(x)

G>xx
(ζ s̆ vol3u) =

(
∇x(ζ s̆) +∇u · (ζ s̆ G>)

)
dU [J K−1 m−3 m−1]

Probability p(u, x) = pu,x ∇x px = ∇x〈〈〈pu,x〉〉〉 =
˝
D(x)

(
∇x pu,x +∇u · (pu,x G>)

)
dU [m−3 m−1] L(x)

G>xx
(pu,x vol3u) =

(
∇x pu,x +∇u · (pu,x G>)

)
dU [m−3 m−1]

p(u|x) = pu|x 0 = ∇x〈〈〈pu|x〉〉〉 =
˝
D(x)

(
∇x pu|x +∇u · (pu|x G>)

)
dU [m−1] 0 = ∇x pu|x +∇u · (pu|x G>) [(m s−1)−3 m−1]
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Table 8. Conservation Laws for the Volumetric-Velocital (Time-Independent) Formulation (based on the Velocivolumetric Fluid Density ζ(u, x)).

Conserved Quantity Density Integral Equation Differential Equation

ϕ(u, x) = ζ ϕ̆ LHS = ∇u β = ∇u(дβ̆) = RHS SI Units LHS = RHS SI Units

Fluid mass ζ ∇uд = ∇u [[[ζ]]] =
˝

Ω(u)

(
∇uζ +∇x · (ζ Γ>)

)
dV

[kg (m s−1)-4 = kg
(m s−1)−3 (m s−1)−1] L(u)

Γ>xu
(ζ vol3x) =

(
∇uζ +∇x · (ζ Γ>)

)
dV

[kg (m s−1)-4 = kg
(m s−1)−3 (m s−1)−1]

Species mass ζχ̆c = ζc
∇u(дχ̆c) = ∇u(дc)

= ∇u [[[ζχ̆c ]]]

}
=
˝

Ω(u)

(
∇u(ζχ̆c) +∇x · (ζχ̆c Γ>)

)
dV

[kgc (m s−1)-4 = kgc
(m s−1)−3 (m s−1)−1] L(u)

Γ>xu
(ζχ̆c vol3x) =

(
∇u(ζχ̆c) +∇x · (ζχ̆c Γ>)

)
dV

[kgc (m s−1)-4 = kgc
(m s−1)−3 (m s−1)−1]

Linear momentum ζu ∇u(дu) = ∇u [[[ζu]]] =
˝

Ω(u)

(
∇u(ζu) +∇x · (ζu Γ>)

)
dV

[kg (m s−1)−3 = (kg m
s−1) (m s−1)−3 (m s−1)−1] L(u)

Γ>xu
(ζu vol3x) =

(
∇u(ζu) +∇x · (ζu Γ>)

)
dV [kg (m s−1)−3]

Angular momentum ζ(r̆× u) ∇u(д(r̆× u))

= ∇u [[[ζ(r̆× u)]]]

}
=


˝

Ω(u)

(
∇u(ζ(r̆× u))

+∇x · (ζ(r̆× u) Γ>)
)
dV

[kg m (m s−1)−3 = (kg m2

s−1) (m s−1)−3 (m s−1)−1]
L(u)

Γ>xu
(ζ(r̆× u)

vol3x)

 =

{(
∇u(ζ(r̆× u))
+∇x · (ζ(r̆× u) Γ>)

)
dV

[kg m (m s−1)−3]

Energy ζ ĕ ∇u(дĕ) = ∇u [[[ζ ĕ]]] =
˝

Ω(u)

(
∇u(ζ ĕ) +∇x · (ζ ĕ Γ>)

)
dV [J (m s−1)−3 (m s−1)−1] L(u)

Γ>xu
(ζ ĕ vol3x) =

(
∇u(ζ ĕ) +∇x · (ζ ĕ Γ>)

)
dV [J (m s−1)−3 (m s−1)−1]

Charge (in solution) ζ z̆ ∇u(дz̆) = ∇u [[[ζ z̆]]] =
˝

Ω(u)

(
∇u(ζ z̆) +∇x · (ζ z̆ Γ>)

)
dV [C (m s−1)−3 (m s−1)−1] L(u)

Γ>xu
(ζ z̆ vol3x) =

(
∇u(ζ z̆) +∇x · (ζ z̆ Γ>)

)
dV [C (m s−1)−3 (m s−1)−1]

Entropy ζ s̆ ∇u(дs̆) = ∇u [[[ζ s̆]]] =
˝

Ω(u)

(
∇u(ζ s̆) +∇x · (ζ s̆ Γ>)

)
dV

[J K−1 (m s−1)−3

(m s−1)−1] L(u)
Γ>xu

(ζ s̆ vol3x) =
(
∇u(ζ s̆) +∇x · (ζ s̆ Γ>)

)
dV

[J K−1 (m s−1)−3

(m s−1)−1]

Probability p(u, x) = pu,x ∇u pu = ∇u [[[pu,x ]]] =
˝

Ω(u)

(
∇u pu,x +∇x · (pu,x Γ>)

)
dV [(m s−1)−3 (m s−1)−1] L(u)

Γ>xu
(pu,x vol3x) =

(
∇u pu,x +∇x · (pu,x Γ>)

)
dV [(m s−1)−3 (m s−1)−1]

p(x|u) = px|u 0 = ∇u [[[px|u ]]] =
˝

Ω(u)

(
∇u px|u +∇x · (px|u Γ>)

)
dV [(m s−1)−1] 0 = ∇u px|u +∇x · (px|u Γ>) [m−3 (m s−1)−1]



Entropy 2022, 24, 1493 29 of 40

Table 9. Conservation Laws for the Velocimetric-Spatiotemporal Formulation (based on the Velocivolumetric Fluid Density ζ(u, x, t)).

Conserved Quantity Density Integral Equation Differential Equation

ϕ(u, x, t) = ζ ϕ̆ LHS = Hxα = Hx(ρα) = RHS SI Units LHS = RHS SI Units

Fluid mass ζ Hxρ = Hx〈〈〈ζ〉〉〉 =
˝
D(x,t)

(
Hxζ +∇u · (ζ G̃

>
)
)
dU [kg m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(ζ vol3u) =
(
Hxζ +∇u · (ζ G̃

>
)
)
dU [kg m−3 d−1

x,t ]

Species mass ζχ̆c = ζc
Hx(ρχc) = Hx(ρc)

= Hx〈〈〈ζχ̆c〉〉〉

}
=
˝
D(x,t)

(
Hx(ζχ̆c) +∇u · (ζχ̆c G̃

>
)
)
dU [kgc m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(ζχ̆c vol3u) =
(
Hx(ζχ̆c) +∇u · (ζχ̆c G̃

>
)
)
dU [kgc m−3 d−1

x,t ]

Linear momentum ζu Hx(ρu) = Hx〈〈〈ζu〉〉〉 =
˝
D(x,t)

(
Hx(ζu) +∇u · (ζu G̃

>
)
)
dU [(kg m s−1) m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(ζu vol3u) =
(
Hx(ζu) +∇u · (ζu G̃

>
)
)
dU [(kg m s−1) m−3 d−1

x,t ]

Angular momentum ζ(r̆× u) Hx(ρ(r× u))

= Hx〈〈〈ζ(r̆× u)〉〉〉

}
=


˝
D(x,t)

(
Hx(ζ(r̆× u))

+∇u · (ζ(r̆× u) G̃
>
)
)
dU

[(kg m2 s−1) m−3 d−1
x,t ] L(x,t)

G̃
>
xx,t

(ζ(r̆× u)

vol3u)

 =

{(
Hx(ζ(r̆× u))

+∇u · (ζ(r̆× u) G̃
>
)
)
dU

[(kg m2 s−1) m−3 d−1
x,t ]

Energy ζ ĕ Hx(ρe) = Hx〈〈〈ζ ĕ〉〉〉 =
˝
D(x,t)

(
Hx(ζ ĕ) +∇u · (ζ ĕ G̃

>
)
)
dU [J m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(ζ ĕ vol3u) =
(
Hx(ζ ĕ) +∇u · (ζ ĕ G̃

>
)
)
dU [J m−3 d−1

x,t ]

Charge (in solution) ζ z̆ Hx(ρz) = Hx〈〈〈ζ z̆〉〉〉 =
˝
D(x,t)

(
Hx(ζ z̆) +∇u · (ζ z̆ G̃

>
)
)
dU [C m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(ζ z̆ vol3u) =
(
Hx(ζ z̆) +∇u · (ζ z̆ G̃

>
)
)
dU [C m−3 d−1

x,t ]

Entropy ζ s̆ Hx(ρs) = Hx〈〈〈ζ s̆〉〉〉 =
˝
D(x,t)

(
Hx(ζ s̆) +∇u · (ζ s̆ G̃

>
)
)
dU [J K−1 m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(ζ s̆ vol3u) =
(
Hx(ζ s̆) +∇u · (ζ s̆ G̃

>
)
)
dU [J K−1 m−3 d−1

x,t ]

Probability p(u, x|t) = pu,x|t Hx px|t = Hx〈〈〈pu,x|t〉〉〉 =
˝
D(x,t)

(
Hx pu,x|t +∇u · (pu,x|t G̃

>
)
)
dU [m−3 d−1

x,t ] L(x,t)

G̃
>
xx,t

(pu,x|t

vol3u)

 =

{(
Hx pu,x|t

+∇u · (pu,x|t G̃
>
)
)
dU

[m−3 d−1
x,t ]

p(u|x, t) = pu|x,t 0 = Hx〈〈〈pu|x,t〉〉〉 =
˝
D(x,t)

(
Hx pu|x,t +∇u · (pu|x,t G̃

>
)
)
dU [d−1

x,t ] 0 = Hx pu|x,t +∇u · (pu|x,t G̃
>
) [(m s−1)−1 d−1

x,t ]
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5.10. Velocimetric-Temporal Formulation (Density θ)

Now consider the alternative velocimetric-temporal formulation on path 5© in Figure 5,
based on the generalized density ψ = θ(u, x, t) defined from the fluid density η(u, x, t).
From the definition of θ in Equations (34) and (36):

d
˚

D(x,t)

θ dU = dQ(t) =
dQ
dt

dt (65)

Note the peculiar property that integrating θ(u, x, t) with respect to u also eliminates x, giving a
velocimetric-temporal formulation with X = u, C = t and V = u̇. From Equation (43):

dQ
dt

=
d
dt

˚

D(x,t)

θ dU =

˚

D(x,t)

[
∂θ

∂t
+∇u · (θu̇)

]
dU (66)

The left-hand terms are again equivalent to those in Tables 2–4. The extracted continuity
equation and differential equation based on θ̆ (Appendix C) are:

0 =
∂η

∂t
+∇u · (ηu̇) (67)

η
dθ̆

dt
=

∂(ηθ̆)

∂t
+∇u · (ηθ̆u̇) (68)

The conservation laws derived from Equations (66) and (68) are listed in Table 11. Apart
from the different fluid density η and specific density labels, these are mathematically
identical to the conservation laws based on the velocimetric density д in Table 3. The
Liouville equations based on equating θ to its underlying pdf p(u|x, t) are also listed,
giving an alternative route to these equations to that given in Table 5.

5.11. Volumetric-Temporal Formulation (Density ε)

Now consider the alternative volumetric-temporal formulation on path 6© in Figure 5,
based on the generalized density ψ = ε(u, x, t) defined from the fluid density ξ(u, x, t).
From the definition of ε in Equations (35) and (37):

d
˚

Ω(u,t)

ε dV = dQ(t) =
dQ
dt

dt (69)

This also has the peculiar property that integration with respect to x eliminates u, reducing this
to a volumetric-temporal formulation with X = x, C = t and V = u. From Equation (43):

dQ
dt

=
d
dt

˚

Ω(u,t)

ε dV =

˚

Ω(u,t)

[
∂ε

∂t
+∇x · (εu)

]
dV (70)

The left-hand terms are again equivalent to those in Tables 2–4. The extracted continuity
equation and differential equation based on ε̆ (Appendix C) are:

0 =
∂ξ

∂t
+∇x · (ξu) (71)

ξ
dε̆

dt
=

∂(ξε̆)

∂t
+∇x · (ξε̆u) (72)

The conservation laws derived from Equations (70) and (72) are listed in Table 12. Apart
from the fluid density ξ and specific density labels, these are mathematically identical to
the volumetric conservation laws based on ρ in Table 2. The Liouville equations based on
the underlying pdf p(x|u, t) are also listed, providing an alternative route to that in Table 6.
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Table 10. Conservation Laws for the Volumetric-Velocitotemporal Formulation (based on the Velocivolumetric Fluid Density ζ(u, x, t)).

Conserved quantity Density Integral Equation Differential Equation

ϕ(u, x, t) = ζ ϕ̆ LHS = Hu β = Hu(дβ̆) = RHS SI Units LHS = RHS SI Units

Fluid mass ζ Huд = Hu [[[ζ]]] =
˝

Ω(u,t)

(
Huζ +∇x · (ζ Γ̃

>
)
)
dV [kg (m s−1)−3 d−1

u,t ] L(u,t)

Γ̃
>
xu,t

(ζ vol3x) =
(
Huζ +∇x · (ζ Γ̃

>
)
)
dV [kg (m s−1)−3 d−1

u,t ]

Species mass ζχ̆c = ζc
Hu(дχ̆c) = Hu(дc)

= Hu [[[ζχ̆c ]]]

}
=
˝

Ω(u,t)

(
Hu(ζχ̆c) +∇x · (ζχ̆c Γ̃

>
)
)
dV [kgc (m s−1)−3 d−1

u,t ] L(u,t)

Γ̃
>
xu,t

(ζχ̆c vol3x) =
(
Hu(ζχ̆c) +∇x · (ζχ̆c Γ̃

>
)
)
dV [kgc (m s−1)−3 d−1

u,t ]

Linear momentum ζu Hu(дu) = Hu [[[ζu]]] =
˝

Ω(u,t)

(
Hu(ζu) +∇x · (ζu Γ̃

>
)
)
dV

[(kg m s−1) (m s−1)−3

d−1
u,t ] L(u,t)

Γ̃
>
xu,t

(ζu vol3x) =
(
Hu(ζu) +∇x · (ζu Γ̃

>
)
)
dV

[(kg m s−1) (m s−1)−3

d−1
u,t ]

Angular momentum ζ(r̆× u) Hu(д(r̆× u))

= Hu [[[ζ(r̆× u)]]]

}
=


˝

Ω(u,t)

(
Hu(ζ(r̆× u))

+∇x · (ζ(r̆× u) Γ̃
>
)
)
dV

[(kg m2 s−1) (m s−1)−3

d−1
u,t ]

L(u,t)

Γ̃
>
xu,t

(ζ(r̆× u)

vol3x)

 =

{(
Hu(ζ(r̆× u))

+∇x · (ζ(r̆× u) Γ̃
>
)
)
dV

[(kg m2 s−1) (m s−1)−3

d−1
u,t ]

Energy ζ ĕ Hu(дĕ) = Hu [[[ζ ĕ]]] =
˝

Ω(u,t)

(
Hu(ζ ĕ) +∇x · (ζ ĕ Γ̃

>
)
)
dV [J (m s−1)−3 d−1

u,t ] L(u,t)

Γ̃
>
xu,t

(ζ ĕ vol3x) =
(
Hu(ζ ĕ) +∇x · (ζ ĕ Γ̃

>
)
)
dV [J (m s−1)−3 d−1

u,t ]

Charge (in solution) ζ z̆ Hu(дz̆) = Hu [[[ζ z̆]]] =
˝

Ω(u,t)

(
Hu(ζ z̆) +∇x · (ζ z̆ Γ̃

>
)
)
dV [C (m s−1)−3 d−1

u,t ] L(u,t)

Γ̃
>
xu,t

(ζ z̆ vol3x) =
(
Hu(ζ z̆) +∇x · (ζ z̆ Γ̃

>
)
)
dV [C (m s−1)−3 d−1

u,t ]

Entropy ζ s̆ Hu(дs̆) = Hu [[[ζ s̆]]] =
˝

Ω(u,t)

(
Hu(ζ s̆) +∇x · (ζ s̆ Γ̃

>
)
)
dV [J K−1 (m s−1)−3 d−1

u,t ] L(u,t)

Γ̃
>
xu,t

(ζ s̆ vol3x) =
(
Hu(ζ s̆) +∇x · (ζ s̆ Γ̃

>
)
)
dV [J K−1 (m s−1)−3d−1

u,t ]

Probability p(u, x|t) = pu,x|t
Hu pu|t

= Hu [[[pu,x|t ]]]

}
=
˝

Ω(u,t)

(
Hu pu,x|t +∇x · (pu,x|t Γ̃

>
)
)
dV [(m s−1)−3 d−1

u,t ] L(u,t)

Γ̃
>
xu,t

(pu,x|t vol3x)

 =
(
Hu pu,x|t +∇x · (pu,x|t Γ̃

>
)
)
dV [(m s−1)−3 d−1

u,t ]

p(x|u, t) = px|u,t 0 = Hu [[[px|u,t ]]] =
˝

Ω(u,t)

(
Hu px|u,t +∇x · (px|u,t Γ̃

>
)
)
dV [d−1

u,t ] 0 = Hu px|u,t +∇x · (px|u,t Γ̃
>
) [m−3 d−1

u,t ]
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Table 11. Conservation Laws for the Velocimetric-Temporal Formulation (based on the Velocimetric Fluid Density η(u, x, t)).

Conserved Quantity Density Integral Equation Differential Equation

θ(u, x, t) = ηθ̆ LHS =
dQ
dt

=
DQ
Dt

= RHS SI Units LHS = RHS SI Units

Fluid mass η 0 = Ṁ =
d〈〈〈η〉〉〉

dt
=
˝
D(x,t)

[
∂η

∂t
+∇u · (ηu̇)

]
dU [kg s−1] 0 =

∂η

∂t
+∇u · (ηu̇) [kg s−1 (m s−1)−3]

Species mass ηχ̆c = ηc (Ṁc) =
d〈〈〈ηχ̆c〉〉〉

dt
=
˝
D(x,t)

[
∂ηχ̆c

∂t
+∇u · (ηχ̆c u̇)

]
dU [kgc s−1] η

dχ̆c
dt

=
∂ηχ̆c

∂t
+∇u · (ηχ̆c u̇) [kgc s−1 (m s−1)−3]

Linear momentum ηu ∑ F =
d〈〈〈ηu〉〉〉

dt
=
˝
D(x,t)

[
∂ηu
∂t

+∇u · (ηuu̇)
]

dU [(kg m s−1) s−1 = N] η
du
dt

=
∂ηu
∂t

+∇u · (ηuu̇) [N (m s−1)−3]

Angular momentum η(r̆× u) ∑ T =
d〈〈〈η(r̆× u)〉〉〉

dt
=
˝
D(x,t)

[
∂η(r̆× u)

∂t
+∇u · (η(r̆× u)u̇)

]
dU [(kg m2 s−1) s−1 = N m] η

d(r̆× u)
dt

=
∂η(r̆× u)

∂t
+∇u · (η(r̆× u)u̇) [(N m) (m s−1)−3]

Energy ηĕ
DE
Dt

=
d〈〈〈ηĕ〉〉〉

dt
= (Q̇in + Ẇin)

 =
˝
D(x,t)

[
∂ηĕ
∂t

+∇u · (ηĕu̇)
]

dU [J s−1 = W] η
dĕ
dt

=
∂ηĕ
∂t

+∇u · (ηĕu̇)
[J s−1 (m s−1)−3 = W (m
s−1)−3]

Charge (in solution) ηz̆
DZ
Dt

=
d〈〈〈ηz̆〉〉〉

dt
= I +

(
∑c zc Ṁc

)
 =

˝
D(x,t)

[
∂ηz̆
∂t

+∇u · (ηz̆u̇)
]

dU [C s−1 = A] η
dz̆
dt

=
∂ηz̆
∂t

+∇u · (ηz̆u̇)
[C s−1 (m s−1)−3 = A
(m s−1)−3]

Entropy ηs̆
DS
Dt

=
d〈〈〈ηs̆〉〉〉

dt
= σ̇ + Ṡn f

 =
˝
D(x,t)

[
∂ηs̆
∂t

+∇u · (ηs̆u̇)
]

dU [J K−1 s−1] η
ds̆
dt

=
∂ηs̆
∂t

+∇u · (ηs̆u̇) [J K−1 s−1 (m s−1)−3]

Probability p(u|x, t) = pu|x,t 0 =
d〈〈〈pu|x,t〉〉〉

dt
=
˝
D(x,t)

[
∂pu|x,t

∂t
+∇u · (pu|x,t u̇)

]
dU [s−1] 0 =

∂pu|x,t

∂t
+∇u · (pu|x,t u̇) [(m s−1)−3 s−1]
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Table 12. Conservation Laws for the Volumetric-Temporal Formulation (based on the Volumetric Fluid Density ξ(u, x, t)).

Conserved quantity Density Integral Equation Differential Equation

ε(u, x, t) = ξε̆ LHS =
dQ
dt

=
DQ
Dt

= RHS SI Units LHS = RHS SI Units

Fluid mass ξ 0 = Ṁ =
d[[[ξ]]]

dt
=
˝

Ω(u,t)

[
∂ξ

∂t
+∇x · (ξu)

]
dV [kg s−1] 0 =

∂ξ

∂t
+∇x · (ξu) [kg s−1 m−3]

Species mass ξχ̆c = ξc (Ṁc) =
d[[[ξχ̆c ]]]

dt
=
˝

Ω(u,t)

[
∂ξχ̆c

∂t
+∇x · (ξχ̆cu)

]
dV [kgc s−1] ξ

Dχ̆c
Dt

=
∂ξχ̆c

∂t
+∇x · (ξχ̆cu) [kgc s−1 m−3]

Linear momentum ξu ∑ F =
d[[[ξu]]]

dt
=
˝

Ω(u,t)

[
∂ξu
∂t

+∇x · (ξuu)
]

dV [(kg m s−1) s−1 = N] ξ
Du
Dt

=
∂ξu
∂t

+∇x · (ξuu) [N m−3]

Angular momentum ξ(r̆× u) ∑ T =
d[[[ξ(r̆× u)]]]

dt
=
˝

Ω(u,t)

[
∂ξ(r̆× u)

∂t
+∇x · (ξ(r̆× u)u)

]
dV [(kg m2 s−1) s−1 = N m] ξ

D(r̆× u)
Dt

=
∂ξ(r̆× u)

∂t
+∇x · (ξ(r̆× u)u) [N m−2 = (N m) m−3]

Energy ξ ĕ
DE
Dt

=
d[[[ξ ĕ]]]

dt
= (Q̇in + Ẇin)

 =
˝

Ω(u,t)

[
∂ξ ĕ
∂t

+∇x · (ξ ĕu)
]

dV [J s−1 = W] ξ
Dĕ
Dt

=
∂ξ ĕ
∂t

+∇x · (ξ ĕu) [J s−1 m−3 = W m−3]

Charge (in solution) ξ z̆
DZ
Dt

=
d[[[ξ z̆]]]

dt
= I +

(
∑c zc Ṁc

)
 =

˝
Ω(u,t)

[
∂ξ z̆
∂t

+∇x · (ξ z̆u)
]

dV [C s−1 = A] ξ
Dz̆
Dt

=
∂ξ z̆
∂t

+∇x · (ξ z̆u) [C s−1 m−3 = A m−3]

Entropy ξ s̆
DS
Dt

=
d[[[ξ s̆]]]

dt
= σ̇ + Ṡn f

 =
˝

Ω(u,t)

[
∂ξ s̆
∂t

+∇x · (ξ s̆u)
]

dV [J K−1 s−1] ξ
Ds̆
Dt

=
∂ξ s̆
∂t

+∇x · (ξ s̆u) [J K−1 s−1 m−3]

Probability p(x|u, t) = px|u,t 0 =
d[[[px|u,t ]]]

dt
=
˝

Ω(u,t)

[
∂px|u,t

∂t
+∇x ·

(
px|u,tu

)]
dV [s−1] 0 =

∂px|u,t

∂t
+∇x · (px|u,tu) [s−1 m−3]
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5.12. Discussion

Comparing the above analyses, we see that the first three and last two formulations in
Sections 5.1–5.3, 5.10 and 5.11 are connected by their equivalence to the rate of change of
the conserved quantity dQ/dt, and thence to the source-sink terms of the standard (volu-
metric) integral equations of fluid mechanics. These are based on complete integrations,
respectively, of the densities α, β, ϕ, θ and ε.

The remaining examples involve partial integrations of the velocivolumetric den-
sity ϕ. Of these, the velocimetric-spatiotemporal formulation in Section 5.8 combines
the velocimetric-temporal and velocimetric-spatial formulations in Sections 5.4 and 5.6,
connected by Equation (57), based on α and ϕ. Similarly, the volumetric-velocitemporal
formulation in Section 5.9 combines the volumetric-temporal and volumetric-velocital for-
mulations in Sections 5.5 and 5.7, connected by Equation (59), based on β and ϕ. For these
formulations, it is possible to extract a Lie differential equation based on a Lie operator
specific to that formulation.

All formulations can be used to derive a number of Liouville equations based on the
underlying pdfs defined in Section 3.1 and Figure 2. In general, these take the form of Lie dif-
ferential equations, but for cases in which the pdf is normalized by the integration, the anal-
ysis yields a homogeneous integral equation and associated partial differential equation.

6. Conclusions

This study examines a generalized framework for the Reynolds transport theorem [23,24],
which enables continuous multiparametric mappings of a differential form on a manifold—
or of a density within a generalized coordinate space—connected by the maximal integral
curves or surfaces described by a vector or tensor field. These extend the formulation
of [1] to encompass new transformation theorems, which exploit previously unreported
multiparametric continuous (Lie) symmetries of a vector or tensor field associated with a
conserved quantity. In this study, we explore the implications of the generalized framework
for fluid flow systems, using an extended Eulerian velocivolumetric description of fluid
flow in place of the standard Eulerian description.

The analysis commences in Section 2 with a detailed discussion of the extended
velocity-position description, and of the form and connection between the geometric and
velocity domains for different classes of fluid flow systems. In Section 3.1, we then define a
hierarchy of five pdfs {p(x|t), p(u|t), p(u, x|t), p(u|x, t), p(x|u, t)} within this description,
the properties of which are then explored. In Sections 3.2 and 3.3, these are used by con-
volution to define analogous hierarchies of fluid densities {ρ, д, ζ, η, ξ} and generalized
densities {α, β, ϕ, θ, ε}, of which only the first (ρ and α) are commonly known. The gen-
eralized framework for the Reynolds transport theorem is presented in Section 4, in both
exterior calculus and vector calculus formulations. Its connection to underlying partial
differential equations and Lie differential equations—the latter containing the Lie deriva-
tive of a volume form in the domain—is also examined. In Section 5, the densities and
theorems are used to obtain 11 formulations of the Reynolds transport theorem arising from
the veloci-volumetric description, for different choices of the coordinate space, parameter
space and density. These are reported in the form of 11 tables of integral and differential
conservation laws applicable to these systems, for the eight common conserved quanti-
ties of interest in fluid mechanics (fluid mass, species mass, linear momentum, angular
momentum, energy, charge, entropy and probability). The equations for conservation of
probability can be interpreted as analogs of the Liouville equation, applicable to different
spaces. The analyses provide a considerable assortment of new conservation laws for the
analysis of fluid flow systems.

While every effort has been made to provide a comprehensive treatment, this study
exclusively considers compact domains with Cartesian position and velocity coordinates,
and no attempt is made to examine orthogonal or non-orthogonal curvilinear coordinate
systems or parameter spaces (however, care is taken to distinguish the vector of partial
derivatives ∂X from the gradient ∇X ). Further work is required to extend these analyses to
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more general domains and coordinate systems. Further detailed study is also required of
the partial and Lie differential equations reported in Tables 3–12, to identify the appropriate
source-sink terms for each expression. The analyses are also restricted to fixed frames of
reference (control volumes or domains), but can readily be extended to moving and deform-
ing frames of reference using relative vector or tensor fields V rel , e.g., [3,6,23]. The analyses
could also be extended to consider domains with jump discontinuities [7,8], irregular and
fragmenting domains [9,10], or special or general relativity [81]. The generalized Reynolds
theorem framework can also be used to generate conservation laws for other dynamical
systems containing conserved quantities [23].
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Appendix A. Definition of Densities by Convolution

The definition of a fluid or generalized density based on spatial averaging has received
considerable attention in the literature, especially for the analysis of fluid flow through
porous media, where many different averages can be defined and a precise terminology is
necessary, e.g., [41–68].

Consider the generalized volumetric density α(x, t) [qty m−3] in Equation (24) based
on the fluid or material density ρ(x, t). This can be defined by the convolution [41,44–
48,51,56–58,60–62,64,66–68]:

[α](x, t) =
1

V(x, t)

˚
V(x,t)

α(x + r, t) dV(r, t) (A1)

where [·] indicates a volumetric expected value, V is a small fluid domain, V = |V|
[m3] is the volume of V , and here dV = drxdrydrz = d3r is an infinitesimal volume
element in V . Usually Equation (A1) has a geometric interpretation, but V can be rein-
terpreted as the measure of set V [52,59,61]. As noted, most authors require V to be
sufficiently large that the medium can be considered a continuum, but smaller than any
larger-scale heterogeneities. However, some authors reject the notion of an averaging
volume as a continuum property, to instead recognize it as a characteristic of the mea-
surement scale [53–55,59,61]. In multiphase systems, variants of Equation (A1) can be
defined for each phase, in which many authors use a characteristic function θα to indi-
cate the presence of phase α [47,48,51–54,56–60,66]. Equation (A1) has also been gener-
alized to give a variety of averages in zero-, one-, two- and three-dimensional spaces
and/or time [45,46,48,56,57,60,62,63,65], and used to examine the effects of multiple or
time-varying averaging scales [48,54,57–59,61–66,68].

Equation (A1) can be further generalized using a weighting function, here labeled
w [33,41–43,50,53,54,58,59,61,67]:

[α](x, t) =
˚
V(x,t)

w(r, t) α(x + r, t) dV(r, t), (A2)

The weighting function enables each volume element to be weighted differently, and indeed
is chosen by most adherents to allow integration over the entire domain Ω(t). If assumed
uniformly distributed over the small averaging volume w = V−1, Equation (A2) reduces
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to Equation (A1). As commonly defined [43,53], w is infinitely differentiable, w ≥ 0 and˝
Ω(t) w(r, t) dV(r, t) = 1, from which w has units of reciprocal volume. In consequence,

w(r, t) satisfies the properties of the conditional pdf p(r|t).
Other definitions of continuum averages have also been proposed. Many authors,

e.g., [33,42,50,51,60] have extended Equation (A1) or (A2) by integration over time to
give temporal and spatiotemporal averages. Cushman [51,52,55] defined a density by the
mathematical limit of a distribution, and show it reduces to Equation (A1) or (A2) under
certain assumptions. Alternatively, Cushman [54,55,61] identified the weighted average
in Equation (A2) as a frequency filter (later exploited for periodic media [67]) and as a
compactness filter, in which w plays the role of a test function (see also [58]) and need not
satisfy a differentiability property.

Several authors [48–50] also emphasized that the volume average in Equation (A1)
applies only to extensive variables, and intensive variables such as temperature or pres-
sure require additional “capacity” terms (thermodynamic susceptibilities) in the integrand
and divisor [49], or should be incorporated without averaging [48]. This concept was
extended in a series of many papers by Gray, Miller and co-authors on thermodynamically
constrained averaging theory, e.g., [63,65] based on unnormalized geometric or thermody-
namic weighting functions, such that the right-hand side of Equation (A2) is normalized by˝
V(x,t) w(r, t) dV(r, t) (or its equivalent in discrete spaces).

In the present study, we formally identify the weighting function as a pdf (as implicitly
foreshadowed in [42,52,54]), to define the expected generalized volumetric density in terms
of its underlying pdf:

[α](x, t) =
˚
V(x,t)

p(r|t) α(x + r, t) dV(r, t) (A3)

This contains the density α(x + r, t) at each point, which can be reduced by the differen-
tial relation:

dQ(x + r, t) = α(x + r, t) dV(r, t) (A4)

where dQ [qty] is a differential element of the conserved quantity. Coordinate transforma-
tion of Equation (A3) then gives:

[α](x, t) =
ˆ
Q(x,t)

p(r|t) dQ(x + r, t) (A5)

whereQ is the small quantity domain corresponding to V . Using the relation in Equation (24)
this also gives:

[α](x, t) =
ˆ
m(x,t)

p(r|t) α(x + r, t) dm(x + r, t) (A6)

based on the specific density α of the conserved quantity.
As an example, consider the application of Equation (A3) to the volumetric fluid

density ρ, giving:

[ρ](x, t) =
˚
V(x,t)

p(r|t) ρ(x + r, t) dV(r, t) (A7)

Using the differential relation:

dm(x + r, t) = ρ(x + r, t) dV(r, t) (A8)
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this reduces to:

[ρ](x, t) =
ˆ
m(x,t)

p(r|t) dm(x + r, t) (A9)

thus giving both parts of Equation (19).
Since the volume integral definitions in Equations (A3) and (A7) require knowledge of

the density at each point, the mass and quantity integrals in Equations (A5) and (A9)—and
their analogs in different spaces—are adopted as the primary definitions, respectively, of
the fluid and generalized densities in this study.

We note that some authors, e.g., [78] consider each element in the mass integrals such
as Equation (A9)—and by implication in the quantity integrals such as Equation (A5)—to
be represented by their original (Lagrangian) position coordinate x0, for each position and
time. This would require a coordinate transformation between the local and Lagrangian
coordinates, e.g., for Equation (A9):

[ρ](x, t) =
ˆ
m(x0)

p(r(x0)|t(x0))

∣∣∣∣ ∂r
∂x0

∣∣∣∣dm((x + r)(x0), t(x0)) (A10)

where |∂r/∂x0| is the determinant of the coordinate Jacobian. This construction is correct,
but could create many complications, for example if the Lagrangian mass domain m(x0)
consists of disjoint regions, creating singularities in the Jacobian. It is for this reason
that we consider the mass domain m(x, t) or quantity domain Q(x, t) to be in one-to-one
correspondence (bijective) with—and to have the same topology as—the local volume
domain V(x, t), based on differential relations such as Equations (A4) or (A8).

As defined here, the fluid and generalized densities are nonnegative, corresponding
to their underlying pdfs. However, their definitions extend naturally to negative conserved
quantities, e.g., systems containing matter and antimatter, or positive and negative charged
particles, using a fluid mass or conserved quantity domain defined in R rather than R+

0 ,
allowing negative densities. Even more generalized formulations, which allow for positive
and negative volumes and local coordinate systems, are available using differential forms
such as ρdx ∧ dy ∧ dz in the framework of exterior calculus [23].

Appendix B. Philosophical Implications

In probability theory, there are two main philosophical interpretations of probabilities:

1. The frequentist interpretation, in which probabilities are considered to represent mea-
surable frequencies. In this viewpoint, a probability distribution is equivalent to the
frequency distribution of an infinite number of random samples collected from a
stationary sample space, e.g., [26].

2. The Bayesian or probabilistic interpretation, in which a probability is a mathematical
assignment based on one’s knowledge, which need not correspond to a measurable
frequency. Nonetheless, a probability is a rational assignment, which can be calculated
and manipulated using the rules of probability theory [82,83].

In continuum fluid mechanics, it is generally considered that every continuum variable,
such as the density ρ(x, t) or velocity u(x, t), will have a “true” value at each position and
time in a given flow system. Each such variable is considered to be in principle measurable,
regardless of the difficulties inherent in its measurement. In this viewpoint, the definitions
of the fluid densities in terms of their underlying pdfs in Equations (19)–(23) suggest that
these pdfs are also measurable—in accordance with the frequentist interpretation—and
indeed, these relations provide a tool for their measurement.

The definitions in Equations (19)–(23) do however open the door to a very different
statistical or probabilistic interpretation of continuum variables as assignments based on
one’s knowledge of the flow system. In practice, it can be difficult to accurately measure the
density of a compressible fluid at a given position and time, while the measurement of the
three-dimensional velocity in a turbulent flow system will always require some degree of
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time and spatial averaging and interference with the flow. Furthermore, in a turbulent flow,
there will always be a probabilistic component of each continuum variable, which cannot
be predicted accurately by deterministic methods. Indeed, an observer will usually have far
less information than that needed to conduct such a deterministic analysis. The definitions
in Equations (19)–(23) therefore suggest that continuum variables can be interpreted as
probabilistic quantities, which must be inferred from the limited data available using the
laws of physics (especially the conservation equations) and the rules of probability theory.

Appendix C. Extraction of Differential Equations

For several integral equations, we can extract the differential equation by a simple
manipulation [77]. First considering Equation (47), we substitute α = ρα in Equation (24)
based on the local specific density α, to give:

d
dt

˚

Ω(t)

ρα dV =

˚

Ω(t)

[
∂(ρα)

∂t
+∇x · (ραu)

]
dV =

˚

Ω(t)

{
ρ

[
∂α

∂t
+ u · ∇xα

]
+ α

[
∂ρ

∂t
+∇x · (ρu)

]}
dV (A11)

For the conservation of fluid mass, α = 1, while from Equation (10), d
dt
˝

Ω(t) ρ dV =

dM/dt = 0, giving:

0 =

˚

Ω(t)

[
∂ρ

∂t
+∇x · (ρu)

]
dV (A12)

Invoking the fundamental lemma of the calculus of variations [79], thus for a compactly sup-
ported, continuous and continuously differentiable density ρ, this gives the continuity equation:

∂ρ

∂t
+∇x · (ρu) = 0 (A13)

Substitution into the last term in Equation (A11) gives:

d
dt

˚

Ω(t)

ρα dV =

˚

Ω(t)

ρ

[
∂α

∂t
+ u · ∇xα

]
dV (A14)

Equating Equations (A11) and (A14), and again invoking the fundamental lemma of the
calculus of variations [79]—thus for compactly supported, continuous and continuously
differentiable ρ and α—we obtain the differential Equation (49):

∂(ρα)

∂t
+∇x · (ραu) = ρ

[
∂α

∂t
+ u · ∇xα

]
= ρ

Dα

Dt
= ρ

dα

dt
(A15)

We here recognize that the second term can be rewritten in terms of the substantial deriva-
tive D/Dt, also equivalent to the total derivative d/dt.

Similar manipulations of Equations (51), (54), (66) and (70), respectively, yield the
continuity Equations (52), (55), (67) and (71) and general differential Equations (53), (56),
(68) and (72).
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