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Abstract: This paper combines the mechanical efficiency theory and finite time thermodynamic
theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer
between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There
are mechanical losses, as well as heat leakage, thermal resistance, and regeneration loss. We treated
temperature ratio x of working fluid and volume compression ratio λ as optimization variables, and
used the NSGA-II algorithm to carry out multi-objective optimization on four optimization objectives,
namely, dimensionless shaft power output Ps, braking thermal efficiency ηs, dimensionless efficient
power Ep and dimensionless power density Pd. The optimal solutions of four-, three-, two-, and
single-objective optimizations are reached by selecting the minimum deviation indexes D with the
three decision-making strategies, namely, TOPSIS, LINMAP, and Shannon Entropy. The optimization
results show that the D reached by TOPSIS and LINMAP strategies are both 0.1683 and better than the
Shannon Entropy strategy for four-objective optimization, while the Ds reached for single-objective
optimizations at maximum Ps, ηs, Ep, and Pd conditions are 0.1978, 0.8624, 0.3319, and 0.3032, which
are all bigger than 0.1683. This indicates that multi-objective optimization results are better when
choosing appropriate decision-making strategies.

Keywords: irreversible Stirling heat engine; finite time thermodynamics; mechanical efficiency
theory; linear phenomenological heat-transfer law; mechanical losses; multi-objective optimization

1. Introduction

Finite time thermodynamics (FTT) [1–30] has developed and emerged since the mid-
1970s. With the continuous development and improvement of the theory, its research
objects have expanded from Carnot heat engine to almost all engineering thermal devices
and systems, which include the Stirling heat engine (SHE). Blank et al. [31] considered
the finiteness of temperature difference between working fluid (WF) and heat reservoir
to establish a FTT model of an endoreversible SHE cycle and optimized its power output
(P). Chen et al. [32,33] studied SHE with imperfect regeneration, analyzed the influence
of regeneration loss, and reached thermal efficiency (η) at maximum P [32], then obtained
the η bound of the solar-driven SHE cycle [33]. Wu et al. [34] studied SHE cycle with heat-
transfer (HT) loss and regeneration loss, and derived the expressions of cycle P and η. Tlili
et al. [35,36] studied the influences of relevant parameters on η of a SHE cycle at maximum
P, and found that increasing specific heat capacity of heat sink would cause the SHE cycle to
have higher P. Li et al. [37] performed optimization on P of a solar-powered SHE cycle and
reached the η at maximum P. Ahmadi et al. [38] studied the influences of heat-exchanger
and regenerator parameters on P and η of a SHE cycle. Ahmed et al. [39] studied the
influences of HT and flow frictions of a regenerator, a heater, and a cooler on P and η of a
beta-type SHE cycle. Ramachandran et al. [40] studied the influences of different types of
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WF and regenerator materials on cycle P and η of a solar low-temperature differential SHE
cycle with regeneration loss. Ahadi et al. [41] studied the influences of coating type and
thickness on P and η of a SHE cycle, and pointed out that for different types of coating, η
was enhanced with increased coating thickness. De Moura et al. [42] studied the influences
of regenerator efficiency, compression ratio, HT coefficient, engine frequency, piston stroke,
and area on performance of a space power SHE cycle, and optimized the P and η. Purkait
and Biswas [43] studied the effect on P and η of a quantum SHE cycle. Kitaya and Isobe [44]
optimized the effect on P and η of a nano-scale β-type SHE cycle.

Power density (PD) was first proposed by Sahin et al. [45], and they used it to perform
optimization of a Joule-Brayton cycle. The research showed that compared with the maxi-
mum P conditions, the heat engine had smaller dimensions and higher η at maximum PD
optimization. Chen et al. [46] studied an endoreversible closed Brayton cycle with thermal
resistance, and derived the expression of PD. Ust [47] compared the η of an Atkinson
heat-engine cycle with temperature ratio and internal irreversibility loss at maximum P and
maximum PD. Gonca [48] studied the influences of internal irreversibility loss and HT loss
on a dual-Atkinson cycle, and derived its maximum dimensionless P, η, and dimensionless
PD. Karakurt et al. [49] performed optimization on the PD characteristics of a supercritical
CO2 Brayton cycle.

When studying and optimizing the performance of heat engines, one can neither
pursue η and ignore P, nor consider P without considering η. Therefore, in addition to the
basic output rate, Yan [50] used a product of cycle P and η (Pη) as an optimization objective
to perform optimization on an endoreversible Carnot heat-engine cycle. Yilmaz [51] named
it efficient power (EP) and pointed out that a heat engine designed at the maximum EP
conditions may have better P than maximum PD optimization. Besides, the maximum
EP optimization had a significant η advantage with respect to maximum P optimization.
Later, more and more scholars applied it to various heat-engine cycles on the basis of EP
optimization objective (OO) [52–55].

With the increase in OOs, conflicts will occur among various OOs; single-objective
optimization will improve one OO but worsen another. In order to take more OOs into ac-
count and reach the optimal design scheme, one must perform multi-objective optimization
(MOO) research on different thermodynamic cycles. For SHE cycles, Ahmadi et al. [56–58]
had conducted extensive MOO research on different SHE cycles. Luo et al. [59] took power
loss, P, and η as OOs to perform MOO research on SHE cycles, and the results showed
that MOO not only improved the P and η, but also significantly reduced the power loss
caused by flow resistance. Punnathanam and Kotecha [60] took entropy generation rate,
P, and η as OOs to perform MOO research on SHE cycles. Hooshang et al. [61] applied
third-order thermodynamic analysis to optimize the performance of SHE cycles, performed
MOO research on the cycle with two OOs of P and regenerator differential pressure, and
compared the results reached by three decision-making strategies. Dai et al. [62] performed
MOO research on a regenerative SHE cycle with three OOs of ecological coefficient of
performance, P, and η. Ye et al. [63] took P, η, and exergy efficiency as OOs to perform
MOO research on SHE cycles. Shah et al. [64] considered volume ratio, temperature ratio,
and surface area ratio of nanoscale SHE cycles, and performed MOO research on the cycles’
ecological coefficient of performance, η and entropy generation rate. Shakouri et al. [65]
performed MOO research on solid oxide fuel cell-SHE cycles with three OOs of P, exergy
efficiency, and exergy destruction density. Ahmed et al. [66] considered such parameters
as heat-source temperature, engine frequency, average effective pressure, piston diameter,
and regenerator grid line diameter, and took P, η, and losses as OOs to perform MOO on
SHE cycles.

Senft [67,68] proposed mechanical efficiency theory, offering the upper limit of the
mechanical efficiency of heat engines, and pointed out that the ideal SHE has maximum
mechanical efficiency in the reciprocating heat engine; then, he combined it with FTT to
establish a new SHE cycle model which was different from the conventional FTT model.
He derived expressions of shaft power output (Ps) and braking thermal efficiency (ηs), and
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analyzed the effect of mechanical losses and HT loss with Newtonian heat-transfer law
(HTL) (q ∝ ∆T). On the basis of the model established by Senft [67,68], Xu et al. [69] pro-
posed dimensionless shaft power output (Ps), ηs, dimensionless EP (Ep), and dimensionless
ecological function, then took them as OOs to perform MOO research on SHE cycles.

Actually, the heat transfer between WF and heat reservoir does not completely obey
Newton’s HTL. When options governed by the HTL change, the performance of the heat
engine will also change. Therefore, in addition to Newton’s HTL, some scholars have
studied the influences of linear phenomenological, radiation, and generalized radiation
HTLs on P and η of the endoreversible heat engine [70–72]. The authors of references [73,74]
studied P and η of an endoreversible Carnot heat engine with generalized convection HTL.
Chen et al. [75] studied the maximum P and maximum η of an irreversible Carnot heat
engine based on a universal HTL q ∝ (∆Tn)m. Li and Chen [76] and Chen and Xia [77]
found the optimal configuration of heat engines with q ∝ (∆Tn)m [76] and more universal
HTL [77]. Ding et al. [78] optimized the Ps and ηs characteristics of irreversible SHE cycles
with linear phenomenological HTL.

On the basis of references [67,68], this study will analyze the effects of mechanical
losses, as well as heat leakage, regeneration loss, and thermal resistance on SHE cycles
with linear phenomenological HTL (q ∝ ∆(T−1)). The temperature ratio (x) of the WF and
volume compression ratio (λ) of the cycle will be selected as optimization variables, then
the NSGA-II algorithm [79–82] will be applied to perform MOO on four OOs, that is, Ps,
ηs, Ep, and dimensionless PD (Pd). The Pareto optimal solution of four-, three-, two-, and
single-objective optimizations will be reached, and the optimal scheme will be reached by
selecting the minimum deviation indexes (D) [83] with TOPSIS [84–86], LINMAP [87,88],
and Shannon Entropy [89,90] decision-making strategies.

Compared with the previous MOO research of different SHE cycles [56–66,69], the
major contribution of this paper is that, firstly, the effects of the linear phenomenological
HTL, which is different from Newton’s HTL, on the performance of the SHE are studied,
and the expressions of four OOs are derived. It is also found that Ps, ηs, and Ep are obviously
different from those in reference [69] referring to Newton’s HTL; secondly, a more realistic
cycle model with various heat and mechanical losses is adopted; and, finally, different OOs
are introduced. In addition to Ps, ηs, and Ep, this paper takes Pd as the fourth OO, so the
optimization results will be significantly different from the previous research.

2. Model of SHE Cycle and OOs

An irreversible SHE cycle model [67] is presented in Figure 1. TH and TL are tempera-
tures of heat source and heat sink, WF of the cycle is an ideal gas, R is a regenerator, Qi is
heat leakage, T1 is temperature of WF in the expansion process, and T2 is the temperature
of WF in the compression process.
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On the basis of thermodynamic properties of ideal gas and linear phenomenological
HTL (q ∝ ∆(T−1)), the heats transferred between the heat reservoir and the WF can be
expressed as follows:

Q1 = α(
1
T1
− 1

TH
)t1 = nRuT1 ln λ (1)

Q2 = β(
1

TL
− 1

T2
)t2 = nRuT2 ln λ (2)

where α and β are HT coefficients, t1 and t2 are time duration of the expansion and
compression process, n is mole number of the WF, λ = v2/v1 is volume compression ratio
(equal to the maximum specific volume ratio of the cycle), and Ru is the universal gas
constant of WF.

The regeneration loss (∆QR) of the cycle can be expressed as:

∆QR = nCv(1− ηR)(T1 − T2) (3)

where ηR is the efficiency of the regenerator and Cv is the constant volume specific heat
capacity of WF.

Sorting out Equations (1) and (2), t1 and t2 can be expressed as:

t1 =
nRuT1 ln λ

α( 1
T1
− 1

TH
)

, t2 =
nRuT2 ln λ

β( 1
TL
− 1

T2
)

(4)

The WF temperature (T) varies uniformly with time (t) during the regeneration process,
and satisfies the following equation:

dT
dt

= ±K1 (5)

where “+” indicates the heating process and “−” indicates the cooling process; K1 (K1 > 0)
is only determined by the material of the regenerator.

By integrating Equation (5), the time durations of the regenerative process (t3 and t4)
can be expressed as:

t3 =
(T1 − T2)

K1
= t4 (6)

According to Equations (4) and (6), the cycle period τ can be expressed as:

τ =
nRuT1 ln λ

α(T1
−1 − TH−1)

+
nRuT2 ln λ

β(TL−1 − T2−1)
+

2(T1 − T2)

K1
(7)

The heat leakage can be expressed as:

Qi = Ci(
1

TL
− 1

TH
)τ (8)

where Ci is the heat-leakage coefficient.
According to Equations (1)–(3) and (8), the heat (QH) supplied by the heat source and

heat (QL) released to the heat sink can be expressed as, respectively:

QH = Q1 + Qi + ∆QR (9)

QL = Q2 + Qi + ∆QR (10)

The P and η can be expressed as:

P =
QH −QL

τ
=

(Q1 −Q2)

τ
(11)
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η =
QH −QL

QH
=

Q1 −Q2

Q1 + Qi + ∆QR
(12)

According to the expressions of QH , QL, ∆QR, Qi, and τ, the P and η can be further
expressed as:

P =
nαRu ln λK1(1− x)(T2 − TL)(xTH − T2)

2α(1− x)(T2 − TL)(xTH − T2) + nR ln λK1T2[T2(TH − δ2xTL) + THTL(δ2x2 − 1)]
(13)

η =
nαRu ln λK1THTL(1− x)(T2 − TL)(xTH − T2){

2αCi(TH − TL)(x− 1)(T2 − TL)(xTH − T2)− nRu ln λK1T2Ci(TH − TL)[T2(TH − δ2xTL)+
THTL(δ

2x2 − 1)] + nαK1THTL(T2 − TL)(T2 − xTH)[Ru ln λ + Cv(x− 1)(ηR − 1)]
} (14)

where δ =
√

α/β, and x = T2/T1 is the WF temperature ratio during the isothermal
process.

According to references [30–34], the PD can be expressed as:

Pd
′ =

P
vmax

=
P
v2

=
P

λv1
(15)

The optimal temperature for optimal P, η, and Pd
′ can be expressed as follows:

T2,opt =
THTL[TH(1 + δx)− TLδ(1 + δ)]

TH2 − δTL2 (16)

Taking the expression of T2,opt into Equations (13)–(15), the optimal performance
expressions of P, η, and Pd

′ can be expressed as:

P =
nRu ln λK1(−TH

2δ−1 + 2THTL − δTL
2)(xTH − TL){

2[2THTL(xTH − TL)− (xTH
3δ−1 − δTL

3)− THTL(δxTL − THδ−1)]−
nRu ln λK1THTL(TH

2δ−1 − 2THTL + δTL
2)(δx2 + 2x + δ−1)

} (17)

η =
nαRu ln λK1THTL(1− x)(xTH − TL)

2(TH − δTL)(δ
−1TH − TL)

{2αCi(TH − TL)(x− 1){x(δ−1TH
2 − δTL

2)
2
+ [(δ−1 + x)TH − (xδ + 1)TL]

2THTL + [(δ−1 + x)TH−
(xδ + 1)TL](δ

−1TH
2 − δTL

2)(TL + xα2δ−2TH)
}
+ nRu ln λK1THTLCi(TH − TL)[(δ

−1 + x)TH−
(xδ + 1)TL]

{
[(δ−1 + x)TH − (xδ + 1)TL](TH − xδ2TL) + (TH

2 − δ2TL
2)(δ−1 − δx2)

}
−

nαK1THTL(δTL − TH)(δ
−1TH − TL)(xTH − TL)

2[Ru ln λ + Cv(x− 1)(ηR − 1)]}

(18)

Pd
′ =

nRu ln λK1(−TH
2δ−1 + 2THTL − δTL

2)(xTH − TL)

v1λ
{

2[2THTL(xTH − TL)− (xTH
3δ−1 − δTL

3)− THTL(δxTL − THδ−1)]−
nRu ln λK1THTL(TH

2δ−1 − 2THTL + δTL
2)(δx2 + 2x + δ−1)

} (19)

A reciprocating heat-engine model is presented in Figure 2 [68], and the arrow indicates
the direction of the work transfer. The mechanical device, flywheel, and buffer space are
represented by M, F, and B, respectively. The atmosphere often serves as the buffer gas
in B. Buffer gas acts on the piston directly and it absorbs and stores energy and returns
it to the WF. The arrow indicates the direction of the work transfer. We and Wc are cycle
expansion work and compression work. W+ is the work conducted by the piston on M,
W− is the work conducted by M on the piston. Ws is the cycle shaft work, which is also
the useful output work produced by the engine in each cycle. The quantity of the output
work for the cycle is determined by mechanism effectiveness (e). The ratio of shaft work to
indicated work is referred to as mechanical efficiency (ηms), and Senft pointed out that it
cannot exceed as follows for fixed x, λ, and e [68]:

ηms(e, x, λ) = e− S(x, λ)(
1
e
− e) (20)
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where:

S(x, λ) =

{
0 xλ ≤ 1

x ln x−(1+x)[ln(1+x)−ln(1+λ)]−ln λ
(1−x) ln λ

xλ > 1
(21)

Combining Equations (17), (18) and (20), the Ps and ηs expressions for the SHE cycle
are, respectively:

Ps = Pηms (22)

ηs = ηηms (23)

Combining Equations (19)–(23), the EP and PD of the SHE cycle with mechanical
losses can be expressed as:

Ep = Ps ηs (24)

Pd = Pd
′ηms (25)

Consequently, the Ps, Ep, and Pd can be expressed as:

Ps = Ps/(Ps)max (26)

Ep = Ep/(Ep)max (27)

Pd = Pd/(Pd)max (28)
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3. Multi-Objective Optimizations

Problems with two or more OOs are called MOO problems. MOO can improve at
least one OO without deteriorating other objectives, and it does not indicate that each OO
reaches the maximum. The Pareto optimal solution is the ultimate result of continuous
optimization, and the set composed of these solutions is called the Pareto frontier.

The NSGA-II algorithm is used to resolve the MOO problem in this paper, and its
flow chart is represented as Figure 3. Taking x and λ as optimization variables, and
Ps, ηs, Ep, and Pd are OOs of the cycle, the MOOs are performed on four-, three-, two-,
and single-objective by using the NSGA-II algorithm. TOPSIS, LINMAP, and Shannon
Entropy decision-making strategies are taken to obtain the optimal scheme by comparing
the deviation indexes.

The following parameters are determined by references [67,68]: n = 1.0 mol,
Cv = 20.77 J/(mol · K), TH = 800 K, TL = 300 K, and K1 = 8.0 × 103 K/s. The value
ranges of the two variables are 0.375 ≤ x ≤ 0.775 and 1.15 ≤ λ ≤ 7.15, respectively.
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The NSGA-II algorithm’s configuration parameters are listed in Table 1. The results
reached by four-, three-, two-, and single-objective optimizations under three strategies
are shown in Table 2. According to Table 2, the values of positive ideal points are 1.000,
1.000, 0.3718, and 1.000, respectively, and the values of negative ideal points are 0.3745,
0.1854, 0.4962, and 0.1442, respectively. At the maximum Ps, ηs, Ep, and Pd conditions,
the deviation indexes of four single-objective optimizations are 0.1978, 0.8624, 0.3319, and
0.3032, respectively.

Table 1. NSGA-II algorithm parameters.

Parameters Values

Generations 700
Population size 300
Pareto fraction 0.5

Crossover fraction 0.8

Figure 4 shows the Pareto frontiers reached by corresponding two-objective optimiza-
tions (Ps − ηs, Ps − Ep, Ps − Pd, ηs − Ep, ηs − Pd, and Ep − Pd). From these six figures, as Ps
grows, ηs, Ep, and Pd will all decline. As ηs grows, Ep and Pd will decline. As Ep grows, Pd
will decline. According to Table 2, when MOO is performed on Ps − ηs, the deviation index
(0.3250) calculated by the TOPSIS strategy is smaller. When MOO is performed on Ps − Ep,
Ps − Pd, ηs − Pd, and Ep − Pd, the deviation indexes (0.2580, 0.2286, 0.1782, and 0.1636)
calculated by the LINMAP strategy are smaller. When MOO is performed on ηs − Ep, the
deviation index (0.3306) calculated by the Shannon Entropy strategy is smaller.
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Table 2. Results of four-, three-, two-, and single-objective optimizations.

Optimization
Methods

Decision-
Making

Strategies

Optimization
Variables

Optimization
Objectives

Deviation
Index

x λ Ps ηs Ep Pd D

Four-objective
optimization(

Ps , ηs, Ep, and Pd)

LINMAP 0.5815 1.5301 0.9608 0.2601 0.8905 0.8721 0.1683
TOPSIS 0.5815 1.5301 0.9608 0.2601 0.8905 0.8721 0.1683

Shannon
Entropy 0.6610 1.2684 0.9128 0.1877 0.6103 1.0000 0.3018

Three-objective
optimization(

Ps , ηs, and Ep)

LINMAP 0.5462 2.2788 0.9178 0.3056 0.9995 0.5597 0.3455
TOPSIS 0.5475 2.2032 0.9226 0.3042 1.0000 0.5819 0.3306

Shannon
Entropy 0.5475 2.2032 0.9226 0.3042 1.0000 0.5819 0.3306

Three-objective
optimization(
Ps , ηs, and Pd)

LINMAP 0.5885 1.5360 0.9670 0.2576 0.8903 0.8775 0.1648
TOPSIS 0.5968 1.4652 0.9658 0.2462 0.8475 0.9161 0.1735

Shannon
Entropy 0.6611 1.2679 0.9124 0.1875 0.6095 1.0000 0.3022

Three-objective
optimization(

Ps , Ep, and Pd)

LINMAP 0.6030 1.5375 0.9835 0.2512 0.8802 0.8889 0.1641
TOPSIS 0.6030 1.5375 0.9835 0.2512 0.8802 0.8889 0.1641

Shannon
Entropy 0.6610 1.2686 0.9129 0.1877 0.6106 1.0000 0.3016

Three-objective
optimization

(ηs , Ep, and Pd)

LINMAP 0.5718 1.2686 0.9502 0.2663 0.9017 0.8509 0.1756
TOPSIS 0.5852 1.5303 0.9653 0.2584 0.8890 0.8766 0.1663

Shannon
Entropy 0.6610 1.2686 0.9129 0.1877 0.6106 1.0000 0.3016

Two-objective
optimization(

Ps and ηs)

LINMAP 0.5407 2.1898 0.9095 0.3082 0.9988 0.5771 0.3367
TOPSIS 0.5531 2.2047 0.9325 0.3008 0.9992 0.5877 0.3250

Shannon
Entropy 0.4208 3.6089 0.3745 0.3718 0.4962 0.1442 0.8630

Two-objective
optimization(

Ps and Ep)

LINMAP 0.5793 1.9746 0.9740 0.2820 0.9786 0.6855 0.2580
TOPSIS 0.5783 1.9812 0.9728 0.2827 0.9799 0.6824 0.2600

Shannon
Entropy 0.5476 2.2031 0.9227 0.3042 1.0000 0.5820 0.3305

Two-objective
optimization(

Ps and Pd)

LINMAP 0.6459 1.3747 0.9647 0.2141 0.7360 0.9752 0.2286
TOPSIS 0.6468 1.3629 0.9608 0.2120 0.7257 0.9796 0.2345

Shannon
Entropy 0.6610 1.2686 0.9129 0.1877 0.6107 1.0000 0.3016

Two-objective
optimization
(ηs and Ep)

LINMAP 0.5026 2.6195 0.7965 0.3341 0.9482 0.4226 0.4700
TOPSIS 0.5079 2.5508 0.8154 0.3306 0.9605 0.4442 0.4491

Shannon
Entropy 0.5475 2.2033 0.9226 0.3042 1.0000 0.5819 0.3306

Two-objective
optimization
(ηs and Pd)

LINMAP 0.5709 1.5216 0.9439 0.2835 0.8861 0.8620 0.1782
TOPSIS 0.5898 1.4515 0.9551 0.2471 0.8410 0.9144 0.1792

Shannon
Entropy 0.6614 1.2682 0.9126 0.1875 0.6098 1.0000 0.3021

Two-objective
optimization(

Ep and Pd)

LINMAP 0.5989 1.5332 0.9797 0.2527 0.8821 0.8879 0.1636
TOPSIS 0.5984 1.5217 0.9777 0.2518 0.8772 0.8928 0.1642

Shannon
Entropy 0.6610 1.2686 0.9129 0.1877 0.6106 1.0000 0.3016

Maximum Ps - 0.6229 1.7047 1.0000 0.2501 0.8909 0.8152 0.1978

Maximum ηs - 0.4213 3.6042 0.3777 0.3718 0.5003 0.1456 0.8624

Maximum Ep - 0.5469 2.2063 0.9213 0.3046 1.0000 0.5803 0.3319

Maximum Pd - 0.6626 1.2676 0.9121 0.1870 0.6078 1.0000 0.3032

Positive ideal point - - 1.0000 0.3718 1.0000 1.0000 -

Negative ideal point - - 0.3745 0.1854 0.4962 0.1442 -
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frontier, and (f) Ep − Pd Pareto frontier.

Figure 5 shows the Pareto frontiers reached by corresponding three-objective optimiza-
tions (Ps − ηs − Ep, Ps − ηs − Pd, Ps − Ep − Pd, and ηs − Ep − Pd). As Ps grows, ηs will
decline, Ep and Pd will all first grow and then decline. As ηs grows, Pd will decline, Ep will
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first grow and then decline. According to Table 2, when MOO is performed on Ps− ηs− Ep,
the deviation indexes (0.3306) calculated by the TOPSIS and Shannon Entropy strategies
are the same and smaller than that (0.3455) reached by the LINMAP strategy. When MOO
is performed on Ps − ηs − Pd, the deviation index (0.1648) reached by the LINMAP strategy
is smaller. When MOO is performed on ηs − Ep − Pd, the deviation index (0.1663) reached
by the TOPSIS strategy is smaller. When MOO is performed on Ps − Ep − Pd, the deviation
indexes (0.1641) reached by the LINMAP and TOPSIS strategies are the same and smaller.
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Figure 5. Results for three-objective combinatorial optimizations. (a) Ps − ηs − Ep Pareto frontier,
(b) Ps − ηs − Pd Pareto frontier, (c) Ps − Ep − Pd Pareto frontier, and (d) ηs − Ep − Pd Pareto frontier.

Figure 6 shows the Pareto frontier reached by four-objective optimization (Ps − ηs −
Ep − Pd). From Figure 6, the three axes stand in for the values of the Ps, ηs, and Ep,
respectively, and the change of the value of Pd is represented by the change in color on the
Pareto frontier. The positive and negative ideal points are the points where the four OOs
reach the best or worst values at the same time. It can be found that there are no optimal or
worst x and λ to make the four OOs all reach the maximum or minimum at the same time.
As Ps grows, ηs will decline, and Ep and Pd will first grow and then decline.
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Figure 6. Ps − ηs − Ep − Pd Pareto frontier.

Table 2 shows that when performing MOO on Ps− ηs− Ep− Pd, the deviation indexes
reached by TOPSIS and LINMAP strategies are smaller and their results are superior to
those of the Shannon Entropy strategy.

Figure 7 shows the average distance and spread versus the number of generations for
three different MOOs (Ep − Pd, Ps − Ep − Pd, and Ps − ηs − Ep − Pd). From Figure 7a–c,
when the genetic algorithm approaches convergence, which happens at 470th, 371st, and
331st generations for Ep − Pd, Ps − Ep − Pd, and Ps − ηs − Ep − Pd optimizations, respec-
tively, the genetic algorithm ends immediately.
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4. Conclusions

On the basis of the model established in references [67,68] and the NSGA-II algorithm,
this study performs thermodynamic analysis and MOO on an irreversible SHE with linear
phenomenological HTL. We treated x and λ as optimization variables, and utilized four
performance indicators, namely, Ps, ηs, Ep, and Pd, which were treated as OOs. We utilized
TOPSIS, LINMAP, and Shannon Entropy strategies to reach deviation indexes of MOO on
different combinations of OOs. The results showed that:

1. From the expressions derived of the four OOs under linear phenomenological HTL it
was found that Ps, ηs, and Ep were obviously different from those in reference [69],
which indicates that the change of HTL also fundamentally changes the performance
indicators of the heat engine;

2. The deviation indexes calculated by TOPSIS and LINMAP decision-making strategies
are both 0.1683 when MOO is performed on Ps − ηs − Ep − Pd, which are smaller
and the optimization results are better than the results using the Shannon Entropy
strategy. Compared with the deviation indexes (0.1978, 0.8624, 0.3319, and 0.3032)
calculated by single-objective optimization at maximum Ps, ηs, Ep, and Pd conditions,
the deviation indexes of MOO are smaller and their results are better;

3. When the genetic algorithm approaches convergence, which happens at the 331st
generation for Ps− ηs− Ep− Pd optimization, the genetic algorithm ends immediately.
The average distance and spread gradually decrease from the beginning to the 25th
generation, after which they remain stable until the end of the calculation. The average
distance is mainly between 0.5~1.5, and the average spread keeps to nearly zero after
the 25th generation, which suggests that the optimization process is nearly stable;

4. When performing triple-objective optimizations, the MOO results of Ps − Ep − Pd
are better than the other combinations. The average distance mainly ranges from 0
to 0.5, and the average spread keeps to nearly zero after the 15th generation. When
performing double-objective optimizations, the MOO results of Ep − Pd are better
than the other combinations. The average distance mainly ranges from 0.2 to 0.4, and
the average spread keeps to nearly zero after the 20th generation;

5. Compared with single-objective optimization, MOO can better take different OOs
into account by choosing appropriate decision-making strategies. For the results of
different objective combinations, appropriate schemes can be selected according to
the actual design and operation to meet the requirements under different working
conditions;

6. FTT and MOO are effective tools to guide performance improvement and optimization
for SHE cycles. The consideration of different HTLs is also necessary.
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Nomenclature

B Buffer space
Ci Heat-leakage coefficient, W/K
Cv Molar constant volume specific heat capacity, W/K
e Mechanism effectiveness
F Flywheel
M Mechanical device
n Mole number, mol
R Regenerator
Ru Universal gas constant, J/(mol ·K)

T Temperature, K
t Time duration of the process, s
V Volume, m3

Wc Compression work, J
We Expansion work, J
W+ Positive piston work, J
W− Negative piston work, J
Greek symbol
α, β Heat-transfer coefficient, W/K
λ Volume–compression ratio
ηR Efficiency of the regenerator
τ Cycle period, s
σ Entropy-generation rate, W/K
Subscripts
opt Optimal
Superscripts
− Dimensionless
EP Efficient power
FTT Finite time thermodynamics
HT Heat transfer
HTL Heat-transfer law
MOO Multi-objective optimization
OO Optimization objective
PD Power density
SHE Stirling heat engine
WF Working fluid
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