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Abstract: The side-channel security of lattice-based post-quantum cryptography has gained extensive
attention since the standardization of post-quantum cryptography. Based on the leakage mechanism
in the decapsulation stage of LWE/LWR-based post-quantum cryptography, a message recovery
method, with templates and cyclic message rotation targeting the message decoding operation, was
proposed. The templates were constructed for the intermediate state based on the Hamming weight
model and cyclic message rotation was used to construct special ciphertexts. Using the power leakage
during operation, secret messages in the LWE/LWR-based schemes were recovered. The proposed
method was verified on CRYSTAL-Kyber. The experimental results demonstrated that this method
could successfully recover the secret messages used in the encapsulation stage, thereby recovering
the shared key. Compared with existing methods, the power traces required for templates and attack
were both reduced. The success rate was significantly increased under the low SNR, indicating a
better performance with lower recovery cost. The message recovery success rate could reach 99.6%
with sufficient SNR.

Keywords: lattice-based post-quantum cryptography; side-channel attack; decapsulation; template;
cyclic message rotation; hamming weight

1. Introduction

The threat of quantum computing targeting traditional public key cryptography has
generated great interest around the world in actively researching post-quantum cryptography
(PQC). Since December 2016, NIST has launched a global standardization project for PQC
algorithms [1]. With characteristics of small public key size, small ciphertext/signature size,
fast calculation speed, and diverse functions, latticed-based PQC has received much attention.
The selected PQC candidates have certain requirements in terms of security and performance,
among which resistance to side-channel attack (SCA) is particularly emphasized.

SCA was first proposed by Kocher [2] and includes timing attacks, power analysis,
and fault attacks. Power analysis is widely employed in SCA due to its low cost and simple
principle. Power analysis mainly uses the power leakage generated by the cryptographic
equipment during operation, including power consumption, electromagnetic (EM) radia-
tion and other information, combining certain mathematical analysis methods to obtain the
secret information. With the advent of standardization, the side-channel vulnerabilities of
implementations of the PQC algorithms need to be urgently explored.

It is pertinent to study the power analysis of the learning with errors/learning with
rounding (LWE/LWR)-based schemes [3,4], as most lattice-based PQCs are constructed
based on these two mathematical problems. In recent years, the SCAs of LWE/LWR-based
schemes have fallen into two categories. One scheme involves obtaining the private key
used over the long term, and the other involves recovery of the secret message and shared
key used in the encryption process.

In relation to the first scheme, Refs. [5,6] chose to attack the number theoretic transform
(NTT) and used a single EM trace to recover the private key. However, this approach was
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only applicable to NTT-based PQCs. Aysu et al. [7] applied a horizontal attack on key
exchange protocols, targeting the matrix and polynomial multiplication by correlation of
the intermediate values and secrets, which was only adaptable to the hardware implementa-
tions. Ravi et al. [8] proposed SCAs on some NIST second-round candidates by constructing
specific ciphertexts and attacking the error-correcting codes or the Fujisaki-Okamoto (FO)
transform, but the methods still required many power traces. Hamburg et al. [9] described
a method of crafting ciphertexts to generate sparse polynomials as the inputs of inverse
NTT and used CRYSTAL-Kyber as a case study. Ngo et al. [10] presented a 16-trace attack
against a first-order masked Saber by applying a deep-learning technique.

Following the second scheme, Ravi et al. [11] combined EM emanation and fault
injection to attack the decryption process of partial-lattice-based PQCs but required more
samples in the preprocessing phase and a demanding attacking condition. Amiet et al. [12]
proposed a message recovery attack for NewHope using a single EM trace but with
25,600 EM traces for the preprocessing phase. Sim et al. [13] used machine-learning
algorithms, such as clustering, to attack the encode function of PQC with a single EM trace.
Ravi et al. [14] proposed generic SCAs with inherent algorithmic properties which were
adaptable to the implementations under protection.

The main contributions of this paper are as follows:

1. Considering the vulnerability proposed in [11], we present a message recovery attack
of LWE/LWR-based schemes. Our method aims at the decoding operation in the
decapsulation procedure and recovers the secret message, as well as the shared key,
using the cyclic message rotation property in template style.

2. We use the Hamming weight (HW) model to construct a classifier for the templates
and construct specific ciphertexts using cyclic message rotation to reduce the number
of power traces needed in the template-matching phase.

3. We provided details of the specific attack and implemented the message recovery
attack for CRYSTAL-Kyber with an ARM Cortex-M4 microprocessor. Compared
with previous results, the power traces required for constructing the templates were
reduced and the success rate for recovery of the message was greatly improved with
the same signal-to-noise ratio (SNR), indicating better performance at lower cost.

4. The main findings of this paper are summarized and compared to the existing liter-
ature. We also briefly illustrate the feasibility and validity of applying our message
recovery attack to other schemes.

The remainder of the paper is organized as follows: Section 2 provides an introduction
to the relevant concepts. Section 3 analyzes the leakage mechanism of the vulnerability
which forms the basis of the attack. Section 4 presents a detailed method for the message
recovery attack, using CRYSTAL-Kyber as an example. Section 5 assesses the proposed
methods with CRYSTAL-Kyber and evaluates the accuracy and efficiency of this method.
Section 6 concludes the paper.

2. Preliminaries
2.1. Notations

Let Z be the integer ring and Rq = Zq/ϕ(x) be the ring of integer polynomials modulo
ϕ(x) and q, where ϕ(x) is a cyclotomic polynomial of Z and q is an integer. We use bold
lowercase letters (a) for polynomials and bold uppercase letters (A) for vectors or matrices.
Let βµ be a central binomial distribution with parameter µ. We write x ← χσ to denote a
uniform sampling of x from a distribution with standard deviation σ in a random way. We
denote the ith coefficient of polynomial a as a[i] and the byte array of length k as Bk. For
m ∈ Bk, we use m[i] to denote the ith byte of m, mi to denote the ith bit of m, and m[i]j to
denote the jth bit of m[i] for j ∈ [0, 7]. We write m[i, j] as the intermediate value of m[i] at
the end of the jth iteration.
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2.2. LWE/LWR Problem

The LWE problem was first introduced by Regev [3], and governs the security of most
lattice-based PQCs. Let n and q be positive integers, and, for a given s ∈ Zn×l

q , a standard
LWE instance is denoted as a tuple (A, t) = (A, (A× s + E) mod q), where A ∈ Zk×n

q is chosen
randomly and uniformly and E ∈ Zk×l

q is sampled from distribution χ. The LWR problem
proposed by Banerjee et al. [4] is a variant of the LWE problem as its error parameter is
generated by the remainder of (a × s). We denote the scaled rounding as b·e and an LWR
instance with p < q is defined as (a, b) = (a, (bp/q × (a × s)e)), where a is chosen uniformly
and randomly and s← βµ

(
Zn

q

)
.

Among the NIST PQC candidates, FrodoKEM is the only candidate based on the
standard LWE problem. Some schemes, such as NewHope and Round5, are developed in
relation to the Ring-LWE/Ring-LWR problem, while some schemes, such as CRYSTAL-
Kyber and Saber, are built on the Module-LWE/Module-LWR (MLWE/MLWR) problem,
using polynomial vectors or matrices to operate on Rk

q, where k represents the rank of the
module. MLWE/MLWR is a more efficient problem that reduces the computation pressure
and the bandwidth of the standard LWE problem, providing a tradeoff between cost and
security [15].

A simplified version of the LWE/LWR-based public key encryption (PKE) is presented
in Algorithms 1 and 2, which is proven to be secure in the indistinguishability under
chosen plaintext attack (IND-CPA) security model [16]. The Encode is an encoding function,
representing the conversion of a byte array to a polynomial, while Decode is the inverse
process of Encode, representing the conversion of the polynomial to a byte array. As shown
in Algorithm 1, the IND-CPA PKE encryption uses the public key pk and the random seed r
to encrypt the message m, and the ciphertext c is formed by concatenating the ciphertext
segments c1 and c2. In Algorithm 2, the IND-CPA PKE decryption uses the long-term
private key sk to decrypt the received ciphertext c and results in the decrypted message m′.

Algorithm 1 IND-CPA PKE Encryption (simple ver.)

Input public key pk = (t̂||seedA); message m; randomness r
Output ciphertext c
1: A = GenerateA(seedA)
2: sample s, e1, e2
3: u = A × s + e1
4: v = t̂ × s + e2 + Encode(m)
5: c1 = Decode(u), c2 = Decode(v)
6: return c = (c1||c2)

Algorithm 2 IND-CPA PKE Decryption (simple ver.)

Input private key sk; ciphertext c = (c1||c2)
Output message m′

1: u = Encode(c1), v = Encode(c2)
2: ŝk = Encode(sk)
3: m′ = Decode(v − (ŝk × u))
4: return m′

However, an adversary can recover the long-term used private key of IND-CPA PKE
with the chosen ciphertexts. Thus, most LWE/LWR-based IND-CPA PKE schemes apply
the FO transform [17] to ensure security under chosen ciphertext attack (CCA), resulting in
the indistinguishability under chosen-ciphertext attack (IND-CCA) KEM. The FO transform
requires two hash functions denoted as H and G, together with a key derivation function
denoted as KDF. The IND-CCA KEM encapsulation is shown in Algorithm 3. The randomly
selected message m is encrypted by PKE encryption to obtain the ciphertext c, while the
shared key K is generated by KDF.
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Algorithm 3 IND-CCA KEM Encapsulation

Input public key pk
Output ciphertext c; shared key K
1: randomly chosen m
2: m = H(m)

3: (
−
K, r)= G(m, pk)

4: c = IND-CPA PKE Encryption(pk, m, r)

5: K = KDF(
−
K||H(c))

6: return K

Referring to Algorithm 4 for IND-CCA KEM decapsulation, the message m′ is de-
crypted by PKE decryption with the original ciphertext c and the private key skKEM as input.
The re-encryption of m′ with the public key pk is to obtain the re-encrypted ciphertext c′.
The CCA is detected with the comparison between c′ and c. If c′ is invalid, i.e., c′ 6= c, the
adversary will not be able to obtain any information about the decrypted message and thus
break the CCA.

Algorithm 4 IND-CCA KEM Decapsulation

Input private key skKEM = (sk, pk, H(pk), z); ciphertext c
Output shared key K
1: m′ = IND-CPA PKE Decryption(sk, c)

2: (
−
K′, r′) = G(m′, H(pk))

3: c′ = IND-CPA PKE Encryption(pk, m′, r′)
4: if c′ = c

return K = KDF(
−
K′||H(c))

5: else
return K = KDF(z||H(c))

2.3. Test Vector Leakage Assessment (TVLA)

TVLA is a conformance-based method commonly used in both academia and industry
to evaluate the side-channel security of cryptographic implementations [18]. It evaluates
the data dependence and operational dependence of power consumption during encryption
on devices through hypothesis testing. The collected power traces are divided into two
groups and hypothesis testing is used to determine whether there is a significant difference
in power consumption between these two groups. If there is a difference, then the device
is likely to have data dependence and operational dependence, indicating that the device
has power leakage. The accuracy of hypothesis testing is closed related to the method of
hypothesis testing, among which Welch’s t-test is the most widely used.

The formulation of TVLA over two sets of power measurements Tr and Tf is given by:

TVLA =
Xr − X f√

σ2
r

Nr
+

σ2
f

N f

, (1)

where Xr, σr, and Nr (resp. Xf, σf, and Nf) represent the expectation, sample standard
deviation, and size of Tr (resp. Tf). The null and alternative hypotheses (H0 and H1 resp.)
of Welch’s t-test are shown below: {

H0 : Xr = X f
H1 : Xr 6= X f

, (2)

The H0 is rejected with a confidence of 99.9999% if, and only if, the absolute value of the
TVLA is greater than the pass-fail criterion of 4.5. Rejecting H0 represents a considerable
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discrepancy between the two measurement sets, which may lead to a leakage of side-
channel information.

2.4. Normalized Inter-Class Variance (NICV)

NICV is a univariate analysis of variance (ANOVA) F-test [19], which is the ratio
between the class-conditioned leakage mean-variance and the total leakage variance. It does
not need to know the implementation process or secret parameters of the cryptographic
scheme but only the public parameters of the encryption and the plaintexts or ciphertexts
of each time. Both NICV and TVLA can be used as side-channel evaluation metrics, but
TVLA is usually used to distinguish two different classes, while NICV can distinguish two
or more classes simultaneously.

We denote the classes of a variable X as C(X) and the measured leakage of X as T, then
the NICV is computed as follows:

NICV =
Var[E[T|C(X)]]

Var[T]
, (3)

where E[·] and Var[·] represent the univariate average and the standard deviation. Although
there is no exact NICV threshold, the higher the NICV value at a given point, the greater
the difference in leakage among each class.

In this paper, we use TVLA as a leakage-detecting tool, while NICV is the feature-
selecting tool for constructing different templates for each class.

3. Vulnerability in Message Decoding of LWE/LWR-Based KEM

In general, the operations that are closely related to the plaintexts or keys are chosen
as the attack point in power analysis. Ravi et al. [11] described the Single_Bit_Update
vulnerability of the decoding function (Decode in Algorithm 2, the red module in CPA
PKE Decryption of Figure 1), which exists in most LWE/LWR-based PKEs/KEMs. This
vulnerability uses the leakage generated when storing single-bit information of the de-
crypted message in memory, then realizing the complete recovery of the secret message.
We chose CRYSTAL-Kyber as an example for a brief analysis of this vulnerability, detailed
information on which can be found in [20].
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Figure 1. Illustration of LWE/LWR-based KEM decapsulation.

In CRYSTAL-Kyber, the function poly2mg is used to convert polynomials to message
bytes. Refer to Algorithm 5 for the C code snippet of poly2msg, which is taken from the
pqm4 library [21]. All the experiments in this paper are based on this open-source library.
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Algorithm 5 CRYSTAL-Kyber poly2msg

1 void poly2msg(uint8_t *m, const poly *a)
2 {
3 size_t i, j;
4 uint16_t t;
5 for (i = 0; i < CRYSTAL-KYBER_N / 8; i++)
6 {
7 m[i] = 0;
8 for (j = 0; j < 8; j++)
9 {
10 t = a->coeffs[8 * i + j];
11 t += ((int16_t)t >> 15) & CRYSTAL-KYBER_Q;
12 t = (((t << 1) + CRYSTAL-KYBER_Q / 2) / CRYSTAL-KYBER_Q) & 1;
13 m[i] |= t << j;
14 }
15 }
16 }

The function poly2msg completes the conversion of a given polynomial a with 256
coefficients to a message array m ∈ B32 through a double loop. The outer loop operates on
bytes (see line 5, Algorithm 5), while the inner loop operates on a single bit of the target
byte (see line 8, Algorithm 5). The message byte m[i] is initialized to zero in the outer loop
(see line 7, Algorithm 5) and the coefficient a[8 × i + j] is then computationally transformed
into the intermediate t and updated to m[i]j by shifting and XOR in the inner loop for i ∈
[0, 31] and j ∈ [0, 7] (see line 10~13, Algorithm 5). This update repeats 256 times in total.
It can be observed that each message bit mi is only related to one coefficient a[i], and the
message m starts from a fixed value of 0 and updates in memory one single bit at a time. In
other words, message m is different by only one bit in two adjacent iterations and the way
of updating one bit at a time becomes an effective target for SCA.

We used the arm-none-eabi-gcc compiler for the ARM Cortex-M4 processor to compile
the above code and generated the assembly code for further analysis. When i, j = 0, the
assembly code snippet corresponding to the poly2msg is as shown in Figure 2. We can
see that, after a series of calculations, the intermediate t in the register r3 is stored in the
memory unit r2 through the STRB instruction (see line 9, Figure 2). The conversion of
coefficients to message byte m[i] completes after eight iterations. The execution of STRB
will cause power consumption, which has a certain relationship with the HW of the stored
intermediate value. The intermediate value can be inferred by analyzing the relationship of
the intermediate value between two adjacent iterations, thereby restoring the key message.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 17 
 

 

will cause power consumption, which has a certain relationship with the HW of the stored 
intermediate value. The intermediate value can be inferred by analyzing the relationship 
of the intermediate value between two adjacent iterations, thereby restoring the key mes-
sage. 

  1  ldrsh  r4,[r1] // r4=[r1]
  /*t  = (((t << 1) + KYBER_Q / 2) / KYBER_Q) & 1*/
  2  lsl  r4,r4,#1 // r4 = r4<<1
  3  add  r4,r4,#1664 // r4 = r4+q/2
  4  smull  r3,r5,ip,r4 // r3 = H(ip*r4)
                       r5 = L(ip*r4)
  5  asr  r3,r4,#31 // r3 = r4>>31
  6  add  r4,r5,r4                  // r4 = r4+r5
  7  rsb  r3,r3,r4,asr #11       // r3 = (r4>>11)-r3
  8  and  r3,r3,#1                  // r3 = r3&1
  9  strb  r3,[r2]                  // [r2] = r3

 
Figure 2. Assembly code snippet of poly2msg function of CRYSTAL-Kyber. 

4. Message Recovery Attack Method 
According to the analysis of the Single_Bit_Update in Section 3, the message byte 

m[i] can be fully updated after eight iterations and each message byte is updated in the 
same way. Therefore, we consider our message recovery attack targeting a single message 
byte at a time. We construct templates for a target message byte and cycle the given ci-
phertext to move the remaining message bytes to the target position; then the remaining 
message bytes can be recovered using the constructed templates. The attack process is 
performed in two stages: the data preprocessing stage and the template matching stage. 
In this section, we introduce our message recovery attack based on the templates and cy-
clic message rotation and then analyze its feasibility. 

4.1. Data Preprocessing 
In this section, the data preprocessing method is introduced, which includes leakage 

detection and template construction. First, we detect the power leakage and build sets of 
points of interest (PoIs) by decapsulating ciphertexts that contain different messages and 
collecting corresponding power traces with TVLA. Then, we use NICV to classify the HW 
of different message intermediate values to establish corresponding reduced templates 
for the classification of the messages’ HW value. 

4.1.1. Leakage Detection 
Since the same leakage mechanism applies to each message byte, we take the first 

message byte m[0] as an example and use Welch’s t-test to achieve leakage detection. We 
denote n as the message bytes. First, we build two ciphertext sets denoted CT0 and CT1, 
each containing l random ciphertexts. For the set CT0, the first message byte m[0] = 0, while 
the remaining message bytes m[i] for i ∈ [1, n-1] are chosen randomly. The set CT1 contains 
ciphertexts satisfying m[0] = 1, while the remaining message bytes m[i] for i ∈ [1, n-1] are 
selected randomly. This guarantees that, during the decoding procedure, ciphertexts in 
CT0 always have m[0, j] = 0 for j ∈ [0,7], while ciphertexts in CT1 have m[0, j] = 1 for j ∈ [0,7]. 
This results in one bit of difference throughout the eight iterations of updating m[0], which 
can be measured by power consumption. The process can be described as follows: 
1. Collect the power traces. Collect two sets of l power traces for CT0 and CT1, denoted 

as T0 and T1, respectively, with T = T0∪T1. 

Figure 2. Assembly code snippet of poly2msg function of CRYSTAL-Kyber.

4. Message Recovery Attack Method

According to the analysis of the Single_Bit_Update in Section 3, the message byte m[i]
can be fully updated after eight iterations and each message byte is updated in the same
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way. Therefore, we consider our message recovery attack targeting a single message byte at
a time. We construct templates for a target message byte and cycle the given ciphertext to
move the remaining message bytes to the target position; then the remaining message bytes
can be recovered using the constructed templates. The attack process is performed in two
stages: the data preprocessing stage and the template matching stage. In this section, we
introduce our message recovery attack based on the templates and cyclic message rotation
and then analyze its feasibility.

4.1. Data Preprocessing

In this section, the data preprocessing method is introduced, which includes leakage
detection and template construction. First, we detect the power leakage and build sets of
points of interest (PoIs) by decapsulating ciphertexts that contain different messages and
collecting corresponding power traces with TVLA. Then, we use NICV to classify the HW
of different message intermediate values to establish corresponding reduced templates for
the classification of the messages’ HW value.

4.1.1. Leakage Detection

Since the same leakage mechanism applies to each message byte, we take the first
message byte m[0] as an example and use Welch’s t-test to achieve leakage detection. We
denote n as the message bytes. First, we build two ciphertext sets denoted CT0 and CT1,
each containing l random ciphertexts. For the set CT0, the first message byte m[0] = 0, while
the remaining message bytes m[i] for i ∈ [1, n-1] are chosen randomly. The set CT1 contains
ciphertexts satisfying m[0] = 1, while the remaining message bytes m[i] for i ∈ [1, n-1] are
selected randomly. This guarantees that, during the decoding procedure, ciphertexts in
CT0 always have m[0, j] = 0 for j ∈ [0,7], while ciphertexts in CT1 have m[0, j] = 1 for j ∈
[0,7]. This results in one bit of difference throughout the eight iterations of updating m[0],
which can be measured by power consumption. The process can be described as follows:

1. Collect the power traces. Collect two sets of l power traces for CT0 and CT1, denoted
as T0 and T1, respectively, with T = T0∪T1.

2. Normalize the measured power traces. The influence of the environment is reduced
by removing the mean of each trace in the measurement sets, i.e., ti

′ = ti − ti, where
ti represents the mean of ti with ti ∈ Tj for i ∈ [0, l-1] and j ∈ {0,1}.

3. Identify the PoIs of the measurement sets. Use Equation (1) to calculate the TVLA
between the two measurement sets. If the absolute value of the calculated TVLA is
greater than the threshold Thsel, then there is a considerable discrepancy between the
two measurement sets at this point, which may have leakage.

Since the update and storage of m[0] require eight iterations, the approximate time
window of each leakage can be distinguished according to the calculated TVLA and the
order of update and storage of m[0]; we denote the time window as Wj, where j ∈ [0,7].

4.1.2. Template Construction

With the analysis of the Single_Bit_Update in Section 3, we adopt the Hamming
weight (HW) model to construct templates with HW(m[i, j]) for j ∈ [0, 7] as the classification
standard and derive m[i] through restoring HW(m[i, j]). The relationship between the first
intermediate value m[i, 0] and m[i] is HW(m[i, 0]) = m[i]0 since m[i] is initialized to 0 at the
beginning, then the remaining bits of m[i] can be derived with the following formula:

m[i]j =
{

0, if HW(m[ i, j]) = HW(m[ i, j−1])
1, if HW(m[ i, j]) = HW(m[ i, j−1]) + 1

, (4)

The possible value of m[i, j] can only be 0 or 1 when j = 0, so there are only two possible
values for HW(m[i, 0]) (0 or 1). In the following iterations, the number of possible values of
HW(m[i, j]) increases by one with the number of iterations. Thus, there are (j + 2) possible
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values for HW(m[i, j]) for j ∈ [0, 7]. Then, HW(m[i, j]) has nine possible values in the last
iteration, i.e., HW(m[i, j]) ∈ [0,8] when j = 7.

We use the PoIs in each approximate time window Wj for j ∈ [0, 7], updating each
intermediate value identified in Section 4.1.1 to construct the templates. The process is as
follows:

1. Build the ciphertext sets CTk
(0,j) for k ∈ [0, j + 1] and j ∈ [0, 7] with m[0] satisfying

HW(m[0, j]) = k for decapsulation, while the remaining bytes except m[0] are chosen
randomly. Denote the collected power traces as Tk

(0,j).

2. Calculate the NICV over Tk
(0,j) to distinguish different HW(m[0, j]), and select the

points whose value of NICV in Wj is greater than a certain threshold of PoIs denoted
as p(0, j).

3. Construct the reduced trace sets Tk
(0,j)
′ according to p(0, j) and calculate the mean of

Tk
(0,j)
′, denoted as rtk

(0,j), which is the reduced template of each classification, so (j + 2)
templates will be constructed at the jth iteration.

4.2. Template Matching

In this section, we first introduce the cyclic message rotation and then the procedure
for matching the special ciphertexts with constructed templates.

4.2.1. Cyclic Message Rotation

Most of the lattice-based PQCs are constructed based on the LWE\LWR problem and
its variants. Rq has different properties with different choices of cyclotomic polynomial ϕ(x).
For example, Round5 and its variants operate over Rq = Zq[x]/(xn+1 − 1), where (xn+1 − 1)
is a reducible polynomial, leading to Rq, a cyclic polynomial ring [14]. The multiplication
of polynomial a and ft(x) = xt in Rq results in at[i] = Rotr(a, t)[i], indicating that the ith
coefficient of a rotates t positions cyclically. The Rotr(·) function is defined as [8]:

Rotr(a, t)[i] =
{

a[n− t + i], for 0 ≤ i< t
a[i− t], for t ≤ i ≤ n−1

, (5)

Some other schemes, such as CRYSTAL-Kyber, Saber, LAC, and NewHopeKEM,
utilize an anti-cyclic polynomial ring Rq = Zq[x]/(xn + 1), where (xn + 1) is an irreducible
polynomial. So the product of a and ft(x) in the anti-cyclic polynomial ring is at[i] =
Anti_Rotr(a, t)[i], indicating an anti-cyclic rotation of a by t positions. The Anti_Rotr(·)
function is defined as:

Anti_Rotr(a, t)[i] =
{
−a[n− t + i], for 0 ≤ i< t
a[i− t], for t ≤ i ≤ n−1

, (6)

We further analyze this property on CRYSTAL-Kyber, while this property is also
adaptable to other schemes. In CRYSTAL-Kyber, the message bit mi is only related to one
message polynomial coefficient x[i], which is generated by the ciphertext c and the private
key sk in the decryption phase in poly2msg of CRYSTAL-Kyber (see Algorithm 5). The
ciphertext c consists of two polynomials denoted as u and v, so the decoding operation on
the first bit of message m0 can be expressed as:

m0 = Decode(x[0])
= Decode(v[0]− u[0] · sk)

(7)
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where Decode(·) is to determine whether mi is 0 or 1, based on the distance of x[i] and the center
of a ring. We then create special ciphertexts ci

′ = (ui
′, vi
′) where ui

′ = Anti_Rotr(u, i) and vi
′ =

Anti_Rotr(v, i). The first bit of message with cyclic message rotation m0′ is given as:

m0
′ = Decode(xi

′[0]) = Decode(vi
′[0]− ui

′[0] · sk)
= Decode(−v[k] + u[k] · sk)
= Decode(−x[k])
= mk

(8)

where k = (n − i) mod n. Thus, we can simply change i to complete the cycling of the given
ciphertext to obtain special ciphertexts, and the complete message can be recovered with
the templates constructed in the preprocessing stage. Although these special ciphertexts
are invalid, meaning that they cannot pass the final polynomial comparison, they can still
be decapsulated on the device, creating the possibility of power analysis.

4.2.2. Template Matching

The same public-private key pair as that in the preprocessing stage is not required in
the template-matching stage since we construct the templates for the possible HW value
of the messages. The special ciphertexts are constructed with the method in Section 4.2.1,
and the message is recovered using the templates constructed in Section 4.1.2. Then the
matching process is described as follows:

1. Decapsulate the given ciphertext c and collect the corresponding power trace denoted
as tr. Normalize tr according to the template-construction process (see Setp2 in
Section 4.1.1) and establish the reduced traces denoted as trj

′ according to the p(0, j)
for j ∈ [0, 7].

2. Calculate the sum of squared difference (SOSD) between trj
′ and the reduced templates

of each class rtk
(0,j), denoted as SOSDk:

SOSDk =
(

trj
′ − rtk

(0,j)

)
×
(

trj
′ − rtk

(0,j)

)T
, (9)

We can assign HW(m[0, j]) = k based on the smallest value of SOSDk and then derive
mj according to Equation (4).

3. Construct different ciphertexts denoted as cti for i ∈ [1, n−1] for a given valid cipher-
text ct with cycle message rotation and repeat Step1 and Step2 to obtain HW(m[i, j])
and then derive m[i].

The complete procedure of the message recovery attack proposed is shown in
Algorithm 6, in which Construct utilizes the cycle message rotation to construct special
ciphertexts that satisfy the requirements, and F uses the Equation (4) to determine the value
of the message bits by simply subtracting two adjacent HW values. After recovering the
message, the shared key can be recovered with Algorithm 3.
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Algorithm 6 Our Message Recovery Attack

1 Preprocessing Stage
2 for j = 0 to 7 do
//collect traces for template construction
3 for k = 0 to j + 1 do
4 Tk

(0,j)= IND-CCA KEM Decapsulation(CTk
(0,j))

5 end for
//leakage detection
6 Wj = TVLA(T0

(0,1),T
1
(0,1))

//choose PoIs
7 p(0, j) = NICV(Wj, T0

(0,j), . . . , T j+1
(0,j))

//template construction
8 for k = 0 to j + 1 do
9 Tk

(0,j)
′=Tk

(0,j)(p(0, j))

10 rk
P= mean(Tk

(0,j)
′)

11 end for
12 end for

13 Template Matching Stage
14 for i = 0 to n -1 do
//construct special ciphertexts
15 cti = Construct(ct, i)
//collect traces for attack
16 tri = IND-CCA KEM Decapsulation(cti)
17 for j = 0 to 7 do
//reduced traces
18 tr(i, j)

′ = tri(p(0, j))
19 for k = 0 to j + 1 do
20 Γk

(i,j)= SOSD(tr(i, j)
′, rk

P)
21 end for
//calculate the HW of intermediate value
22 HW(m[i, j]) = min(Γk

(i,j))
//recover the message byte
23 m[i]j = F(HW(m[i, j]), HW(m[i, j] − 1))
24 end for
25 end for

5. Experiments and Evaluation

In this section, we verify the proposed message recovery attack with CRYSTAL-Kyber
and evaluate the accuracy and efficiency.

5.1. Experimental Setup

Our experimental setup is shown in Figure 3. The target device (DUT) was an STM32F3
target board equipped with an ARM Cortex-M4 microcontroller, plugging in a ChipWhis-
perer 308 UFO board [22]. The PC sent and received plaintexts/ciphertexts, while the
ChipWhisperer-Lite controlled the communication between the DUT and the PC. A LeCroy
9404 oscilloscope was used to collect and save the power traces at a sampling rate of
29.48 MS/s. The implementation of CRYSTAL-Kyber was optimized for the Cortex-M4
microcontroller taken from pqm4, an open-source library for PQC schemes on the ARM
Cortex-M4 microcontroller. We used arm-none-eabi-gcc to compile the implementation
with the compiler options – mthumb – mfloat-abi = hard – mfpu = fpv4-sp-d16 and the
highest compiler optimization level -O3 as it is the hardest to break by SCA. The STM32F303
target board ran at 7.37 MHz. Triggers were added before and after target operation to help
align the power traces.
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5.2. Leakage Detection

According to the analysis in Section 3, the STRB instruction leaks information about the
intermediate value of the message bytes in the decoding phase, so the first step in the message
recovery attack is to identify corresponding features of decoding in traces. Figure 4 shows a
partial power trace of decapsulating CRYSTAL-Kyber. We can roughly identify the different
features corresponding to different operations during the decapsulation phase and then locate
the time window containing the target operation. The target operation poly2msg corresponds to

10 and we only consider this part of the trace in the following experiments.
Entropy 2022, 24, x FOR PEER REVIEW 12 of 17 
 

 

1 2 4 5 6 7 8 10

  ① mp = poly_unpackdecompress(ct) ④ iteration(including①②③, get bp) ⑦ v = poly_decompress(ct) ⑩ m = poly2msg(mp)
  ② mp = poly_ntt(mp) ⑤ mp = poly_add(mp, bp) ⑧ mp = poly_sub(mp, v)          
  ③ mp = poly_frombytes_mul(mp, sk)    ⑥ mp = poly_invntt(mp) ⑨ mp = poly_reduce(mp)                                       

93

 
Figure 4. Partial power consumption of CRYSTAL-Kyber KEM decapsulation. 

We performed leakage detection on CRYSTAL-Kyber KEM according to the process 
represented in Section 4.1.1 and chose 4.5 as the threshold to reduce the influence of other 
irrelevant instructions. We collected and normalized two measurement sets and calcu-
lated the TVLA of these measurement sets according to Equation (1). Since the measure-
ment sets have different m[0], it can be inferred that there will be some sample points that 
are over the threshold, indicating the leakage of storing m[0]. Refer to Figure 5a for the 
TVLA result, where it is observed that eight obvious peaks are greater than the threshold 
of 4.5. These peaks correspond to the storage of m[0]j for j ∈ [0, 7]; we can identify the time 
window Wj in which each intermediate value is updated based on these peaks. We also 
repeated the same detection with ciphertext sets CT0 (m[0] = 0) and CT2 (m[0] = 2) for vali-
dation; the corresponding results are shown in Figure 5b, which shows only seven obvi-
ous peaks. Compared with the result in Figure 5a, the peak in W0 is missing since m[0, 0] 
= 0 for both CT0 and CT2. Thus, no significant difference can be found in the decoding 
operation between these two ciphertext sets in the first iteration. 

 
(a) (b) 

Figure 5. TVLA results for CRYSTAL-Kyber targeting different m[0]. (a) TVLA between m[0] = 0 and 
m[0] = 1; (b) TVLA between m[0] = 0 and m[0] = 2. 

5.3. Template Construction and Matching 
After identifying the time window of each iteration, we constructed ciphertext sets 

denoted as CTk for k ∈ [0, 8], where ciphertexts in set CTk corresponding to message m 
satisfied HW(m[0, j]) = k for j ∈ [0, 7]. We chose the ciphertexts corresponding to message 
m that satisfied m0 = 0 and mk = 2 mk−1 + 1 for k ∈ [1, 8] in our experiments; the template 
construction could be performed with fewer power traces in this way and we only needed 
to construct nine ciphertext sets in total. We collected 100 power traces for each ciphertext 
set; a total of 900 power traces was sufficient to complete the construction of templates 
required to recover m[0]. 

0W 1W 2W 3W 4W 5W 6W 7W

5600 5700 5800 5900 6000 6100
Time Samples

-5

0

5

10

15

m=0&2
Threshold0W 1W 2W 3W 4W 5W 6W 7W

Figure 4. Partial power consumption of CRYSTAL-Kyber KEM decapsulation.

We performed leakage detection on CRYSTAL-Kyber KEM according to the process repre-
sented in Section 4.1.1 and chose 4.5 as the threshold to reduce the influence of other irrelevant
instructions. We collected and normalized two measurement sets and calculated the TVLA of
these measurement sets according to Equation (1). Since the measurement sets have different m[0],
it can be inferred that there will be some sample points that are over the threshold, indicating the
leakage of storing m[0]. Refer to Figure 5a for the TVLA result, where it is observed that eight
obvious peaks are greater than the threshold of 4.5. These peaks correspond to the storage of m[0]j
for j ∈ [0, 7]; we can identify the time window Wj in which each intermediate value is updated
based on these peaks. We also repeated the same detection with ciphertext sets CT0 (m[0] = 0)
and CT2 (m[0] = 2) for validation; the corresponding results are shown in Figure 5b, which shows
only seven obvious peaks. Compared with the result in Figure 5a, the peak in W0 is missing since
m[0, 0] = 0 for both CT0 and CT2. Thus, no significant difference can be found in the decoding
operation between these two ciphertext sets in the first iteration.
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Figure 5. TVLA results for CRYSTAL-Kyber targeting different m[0]. (a) TVLA between m[0] = 0 and
m[0] = 1; (b) TVLA between m[0] = 0 and m[0] = 2.

5.3. Template Construction and Matching

After identifying the time window of each iteration, we constructed ciphertext sets
denoted as CTk for k ∈ [0, 8], where ciphertexts in set CTk corresponding to message m
satisfied HW(m[0, j]) = k for j ∈ [0, 7]. We chose the ciphertexts corresponding to message
m that satisfied m0 = 0 and mk = 2 mk−1 + 1 for k ∈ [1, 8] in our experiments; the template
construction could be performed with fewer power traces in this way and we only needed
to construct nine ciphertext sets in total. We collected 100 power traces for each ciphertext
set; a total of 900 power traces was sufficient to complete the construction of templates
required to recover m[0].

We then constructed templates for HW(m[0, j]) for j ∈ [0, 7] according to Section 4.1.2; the
partial results of NICV between each class are shown in Figure 6, where Figure 6a shows the
result of NICV for j ∈ [0, 7], while Figure 6b–e shows the results for different iterations.
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It can be seen that the peaks are all distributed in Wj for j ∈ [0, 7]; the threshold 0.2
was assigned for PoIs selection. Refer to Figure 7 for reduced templates of HW(m[0, j])
when j = 7.
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5.4. Experimental Results

In power analysis, SNR is an important factor affecting the success rate of the attack.
There are many ways to boost the SNR, such as using high-precision probes, analog/digital
filters, etc. We used averaging of multiple repeated measurements as an SNR-boosting
technique, which depends on use of an oscilloscope; the experimental results of our method
and some previous implementations are shown in Table 1.

Table 1. Results of Different Methods.

Target Method

Number of
Traces

in
Preprocessing

Number of
Traces for
Attacking

Sum of Traces Success Rate
(Best Case)

[6] NTT Belief
Propagation 1900 100 2000 ≥95%

[11] * Decode
EM

200 256 456 ≈100%
25,600 32 25,856 ≈100%

EM + FIA 12,800 1280 14,080 ≈100%
[12] Encode EM 25,600 1 (32 segments) 25,601 ≥96%

This Work Decode Power 900 32 932 ≈99.6%

* FIA here refers to fault injection attack. The results of the EM method are to recover secret message bit-by-bit
and byte-by-byte, respectively. We repeat the EM experiments in [11] for comparison.

Traces needed in the preprocessing stage: A total of 900 power traces were needed in
the preprocessing phase for constructing templates using our method, which was more
than the traces needed in the bit-by-bit method of [11] but much less than needed by other
methods. Since the preprocessing stage is one-time, the preprocessing cost of our method
is acceptable.

Traces needed in the attacking stage: The number of power traces used in the attacking
phase was 32, which was slightly larger than the traces needed in [12]. We recovered a
message byte each time and CRYSTAL-Kyber had 32 message bytes in total, while [12]
divided a single attack trace into 32 sub-segments and performed template matching with
256 templates, respectively, to recover the whole message. Our method can also retrieve
the entire message in a single power trace as long templates are constructed for all message
bytes at the same time. Although the bit-by-bit method in [11] has an advantage at the
preprocessing stage, it needs 256 power traces for attacking, which is eight-times greater
than our method.

The success rate of recovering message: Without SNR enhancement, the success
rate of our method reached 71.4%, but quickly grew to 96.5%, with only four averaged
measurements taken. The final success rate was about 99.6%, as shown in Figure 8. We
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could achieve a complete message recovery by a brute-force attack on the wrong message
bits with the complexity of 21 (256 × 0.004 ≈ 1). The success rate of our message recovery
attack was higher than [6] and [12] and almost the same as [11]. With lower SNR (fewer
traces for averaging), our method had a higher success rate compared with the byte-by-
byte method in [11], implying better performance with lower recovery cost. Compared
with [11], our method with NICV can focus on each input bit or byte. From [18], we know
that NICV = 1/(1 + 1/SNR), indicating that a higher SNR will result in a larger NICV. The
closer the value of NICV is to one, the easier it is to implement SCA.
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Although we studied the instantiation of CRYSTAL-Kyber, the proposed attack could
be applied to other LWE/LWR-based schemes. This is because the Single_Bit_Update ex-
ists in the vast majority of LWE/LWR-based schemes and most LWE/LWR-based schemes
satisfy the cycle message rotation property. So, the construction of special ciphertexts can
be realized through this property. Therefore, the message recovery attack proposed in this
paper has good generality in terms of LWE/LWR-based schemes.

6. Possible Countermeasures

In the previous sections, we established that the proposed attack is feasible, indicating
that countermeasures are needed to prevent similar attacks. We then considered possible
countermeasures for our attacks. These include:

• Masking: Masking splits the secret information into multiple independent variables
to achieve security. Masking the decapsulation stage can protect against our attack.
However, masking the decapsulation stage may be costly in performance, so low-cost,
but efficient, masking strategies are needed.

• Shuffling: Shuffling uses a random permutation of a finite sequence to scramble the
order of process, which removes the linear correlation between the process sequence
and time.

• Dummy Steps or Random Jitter: Adding dummy steps or random jitter will disturb
the alignment of PoIs, thus, more attack costs are implied.

• Combination of above methods: A combination of methods increases the trace require-
ment for the attack and may result in a better protection effect.

7. Conclusions

This paper proposes a template attack based on cyclic message rotation aimed at
message decoding for LWE/LWR-based schemes. We constructed templates for the possible
Hamming weight of the intermediate value in decoding during the decapsulation stage
and applied cyclic message rotation to construct special ciphertexts to recover the message
and shared key, which are suitable for most LWE/LWR-based schemes. We compared
our results with other findings in the literature and provided targeted explanations. Our
method reduced the power traces used for data preprocessing and needed 32 attack power
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traces to recover the CRYSTAL-Kyber message. With sufficient SNR, the success rate for
recovering the message can reach 99.6%, which is very advantageous for the preprocessing
stage and for balancing the success rate and recovery cost.
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