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Abstract: When choosing between two candidate models, classical hypothesis testing presents two
main limitations: first, the models being tested have to be nested, and second, one of the candidate
models must subsume the structure of the true data-generating model. Discrepancy measures have
been used as an alternative method to select models without the need to rely upon the aforementioned
assumptions. In this paper, we utilize a bootstrap approximation of the Kullback–Leibler discrepancy
(BD) to estimate the probability that the fitted null model is closer to the underlying generating
model than the fitted alternative model. We propose correcting for the bias of the BD estimator either
by adding a bootstrap-based correction or by adding the number of parameters in the candidate
model. We exemplify the effect of these corrections on the estimator of the discrepancy probability
and explore their behavior in different model comparison settings.

Keywords: bootstrap discrepancy comparison probability (BDCP); discrepancy comparison probabil-
ity (DCP); likelihood ratio test (LRT); model selection; p-value

1. Introduction

Hypothesis testing and p-values are routinely used in applied, empirically oriented
research. However, practitioners of statistics often misinterpret p-values, particularly in
settings where hypothesis tests are used for model comparisons. Riedle, Neath and Ca-
vanaugh [1] attempt to address this issue by providing an alternate conceptualization of the
p-value. The authors introduce and investigate the concept of the discrepancy comparison
probability (DCP) and its bootstrapped estimator, called the bootstrap discrepancy com-
parison probability (BDCP). The authors establish a clear connection between the BDCP
based on the Kullback–Leibler discrepancy (KLD) and the p-values derived from likelihood
ratio tests. However, this connection only exists when using the bootstrap discrepancy
(BD) that arises from the “plug-in” principle, which yields a biased approximation to the
KLD. Similarly to complexity penalization of the Akaike Information Criterion (AIC), we
establish that an intuitive bias correction to the BD is the addition of k, the number of
functionally independent parameters in the candidate model. We also propose utilizing a
bootstrap-based correction, which can be justified under less stringent assumptions. We
analyze how well the bootstrap approach corrects the bias of the BDCP and the BD, and we
show that, in most settings, its performance is comparable to simply adding k.

2. Methodological Development
2.1. Background

When faced with the task of choosing amongst competing models, statisticians of-
ten use discrepancy or divergence functions. One of the most flexible and ubiquitous
divergence measures is the Kullback–Leibler information. To introduce this measure in
the present context, consider a vector of independent observations y = (y1, y2, . . . , yn)T

such that y is generated from an unknown distribution g(y). Suppose that a candidate
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model f (y|θ) is proposed as an approximation for g(y), and that this model belongs to the
parametric class of densities

F = [ f (y|θ) : θ ∈ Θ],

where Θ is the parameter space for θ. The Kullback–Leibler information, given by

IKL(g, θ) = Eg

[
log

g(y)
f (y|θ)

]
,

captures the separation between the proposed model f (y|θ) and the true data-generating
model g(y).

Although not a formal metric, IKL(g, θ) is characterized by two desirable properties.
First, by Jensen’s inequality, IKL(g, θ) ≥ 0 with equality if and only if g(y) = f (y|θ). Second,
as the dissimilarity between g(y) and f (y|θ) increases, IKL(g, θ) increases accordingly.

Note that we can write

2IKL(g, θ) = Eg[−2 log( f (y|θ))]− Eg[−2 log(g(y))]

= Eg[−2`(θ|y))]− Eg[−2 log(g(y))],

where log( f (y|θ)) = `(θ|y). In the preceding relation, for any proposed candidate model,
the quantity Eg[−2 log(g(y))] is constant. Only the quantity Eg[−2`(θ|y)] changes across
different models, which means it is the only quantity needed to distinguish among various
models. The expression

d(g, θ) = Eg[−2`(θ|y))]

is known as the Kullback–Leibler discrepancy (KLD) and is often used as a substitute
for IKL(g, θ).

In practice, the goal is to determine the propriety of fitted models of the form f (y|θ̂),
where θ̂ = argmaxθ∈Θ `(θ|y). The KL discrepancy for the fitted model is given by

d(g, θ̂) = Eg[−2`(θ|y)]|θ=θ̂ .

2.2. The Discrepancy Comparison Probability and Bootstrap Discrepancy Comparison Probability

Suppose that we have two nested models that are formulated to characterize the sam-
ple y, and we designate one of the models the null, represented by θ1, and the other model
the alternative, represented by θ2. The discrepancies under the fitted null and alternative
models are given by d(g, θ̂1) and d(g, θ̂2), respectively. We can use these discrepancies
to define the Kullback–Leibler discrepancy comparison probability (KLDCP), which is
given by

P = Pr[d(g, θ̂1) < d(g, θ̂2)].

The KLDCP evaluates the probability that the fitted null model is closer to the true
data-generating model than the fitted alternative. The values of d(g, θ̂1) and d(g, θ̂2) are
calculated from the same sample. For example, a KLDCP of 0.8 means that the fitted null
has a smaller discrepancy than the fitted alternative in 80% of the samples drawn from the
same distribution and of the same size. The development and interpretation of the KLDCP
is presented in depth by Riedle, Neath and Cavanaugh [1].

We can estimate the KLDCP using the bootstrap approximation of the joint distribu-
tion of d(g, θ̂1) and d(g, θ̂2). The bootstrap joint distribution is based on the discrepancy
estimators that arise from the “plug-in” principle, as described by Efron and Tibshirani [2] ,
which replaces all the elements of the KLD by their bootstrap analogues. Specifically, we
replace g by the empirical distribution ĝ; y by the bootstrap sample from ĝ, which we call
y∗; and finally, θ̂ by the maximum likelihood estimate (MLE) derived under the bootstrap
sample y∗, which we call θ̂∗. With these replacements, the bootstrap version of the KLD is
given by
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d(ĝ, θ̂∗) = Eĝ[−2`(θ|y)]|θ=θ̂∗

=
n

∑
i=1
−2`i(θ̂

∗|yi) (because each yi is independent.)

= −2`(θ̂∗|y),

where `i represents the contribution to the likelihood based on the ith response yi.
Now, in order to build a bootstrap distribution, we must draw various bootstrap

samples from y. Suppose that we draw j = 1, 2, . . . , J bootstrap samples, and for each of
these samples, we calculate the MLE of θ, which we denote as θ̂∗(j). This allows us to
obtain a set of J different bootstrap discrepancies; this set is defined as{

d(ĝ, θ̂∗(j)) : j = 1, . . . , J
}

,

and these variates can be used to construct the bootstrap analogue of the discrepancy
distribution.

Finally, we can extend this procedure to the setting of the null and alternative models.
For each bootstrap sample, we calculate θ̂∗2 (j) and θ̂∗1 (j), which are the bootstrap sam-
ple MLEs of θ2 and θ1, respectively. We then compute the discrepancies d(ĝ, θ̂∗2 (j)) and
d(ĝ, θ̂∗1 (j)) for the null and alternative models, respectively. This collection of J pairs of null
and alternative bootstrap discrepancies defines the set{

(d(ĝ, θ̂∗1 (j)), d(ĝ, θ̂∗2 (j))) : j = 1, . . . , J
}

,

which characterizes the bootstrap analogue of the joint distribution of d(ĝ, θ̂1) and d(ĝ, θ̂2)).
The bootstrap distribution can be utilized to estimate the bootstrap analogue of the DCP,
given by

P∗ = Pr∗[d(ĝ, θ̂∗1 ) < d(ĝ, θ̂∗2 )].

By the law of large numbers, we can approximate P∗ by calculating the proportion of
times when d(ĝ, θ̂∗1 (j)) < d(ĝ, θ̂∗2 (j)) in the J bootstrap samples that were drawn. Thus, if I
is an indicator function, we can define an estimator of the DCP, which we call the bootstrap
discrepancy comparison probability (BDCP), as follows:

BDCP =
1
J

J

∑
j=1

I[d(ĝ, θ̂∗1 (j)) < d(ĝ, θ̂∗2 (j))]. (1)

3. Bias Corrections for the BDCP

An important issue that arises in the bootstrap estimation of the KLD is the negative
bias of the discrepancy estimators that materializes from the “plug-in” principle. The
following lemma establishes and quantifies this bias for large-sample settings under an
appropriately specified candidate model.

Lemma 1. For a large sample size, assuming that the candidate model subsumes the true model,
we have

Eg
{

E∗[−2`(θ̂∗|y)]
}
≈ Eg[d(g, θ̂)]− k,

where E∗ is the expectation with respect to the bootstrap distribution, and k is the dimension of
the model.

Proof. For a maximum likelihood estimator θ̂, it is well known that for a large sample size
and under certain regularity conditions, we have

(θ̂ − θ)T I(θ|y)(θ̂ − θ) ∼ χ2
k , (2)
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provided that the model is adequately specified. In the preceding, χ2
k denotes a centrally

distributed chi-square random variable with k degrees-of-freedom.
Now, consider the second-order Taylor series expansion of −2`(θ̂∗|y) about θ̂, which

results in
− 2`(θ̂∗|y) ≈ −2`(θ̂|y) + (θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂). (3)

By taking the expected value of both sides of (3) with respect to the bootstrap distribu-
tion of θ̂∗, we obtain

E∗
(
−2`(θ̂∗|y)

)
≈ −E∗

(
2`(θ̂|y)

)
+ E∗

(
(θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂)

)
≈ −2`(θ̂|y) + k (by the approximation in (2)),

= AIC− k,

where AIC denotes the Akaike information criterion.
Finally, it has been established that if the true model is contained in the candidate

class at hand, and if the large sample properties of MLEs hold, then AIC serves as an
asymptotically unbiased estimator of the KLD. Thus,

Eg
(
E∗
(
−2`(θ̂∗|y)

))
≈ Eg(AIC)− k

≈ Eg(d(g, θ̂))− k.

The preceding expression can be re-written as

Eg(d(g, θ̂)) ≈ Eg
(
E∗
(
−2`(θ̂∗|y)

))
+ k,

which implies that the bias correction k must be added to the bootstrap discrepancy in the
estimation of the KLD. The BD estimator corrected by the addition of k will be called BDk.

Now, focus again on Equation (3). By subtracting (−2`(θ̂|y)) from both sides of the
equation, we obtain

− 2`(θ̂∗|y)− (−2`(θ̂|y)) ≈ (θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂). (4)

As mentioned previously, if the candidate model is adequately specified, then the
distributional approximation in (2) holds true. However, if this model specification as-
sumption is not met, then we can utilize the approximation in (4) to find a suitable bias
correction via the bootstrap. The bootstrap has been used for bias corrections in similar
problem contexts [3,4].

By applying the expected value with respect to the bootstrap distribution of θ̂∗ to both
sides of (4), we obtain

E∗
(
−2`(θ̂∗|y)

)
− (−2`(θ̂|y)) ≈ E∗

(
(θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂)

)
. (5)

The goal is then to find an approximation of E∗
(
−2`(θ̂∗|y)

)
− (−2`(θ̂|y)). Note that

by the law of large numbers, we have that when J → ∞,

1
J

J

∑
j=1
−2`(θ̂∗(j)|y) −→ E∗(−2`(θ̂∗|y)).

Thus, for J → ∞, we can assert

1
J

J

∑
j=1
−2`(θ̂∗(j)|y)− (−2`(θ̂|y)) −→ E∗(−2`(θ̂∗|y))− (−2`(θ̂|y)).
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The preceding result shows that 1
J ∑J

j=1−2`(θ̂∗(j)|y)− (−2`(θ̂|y)) serves as an asymp-

totically unbiased estimator of E∗(−2`(θ̂∗|y))− (−2`(θ̂|y)). We therefore propose using

kb =
1
J

J

∑
j=1
−2`(θ̂∗(j)|y)− (−2`(θ̂|y))

as a bootstrap-based correction of the BD. A more in-depth derivation and exploration of
the kb correction can be found in Cavanaugh and Shumway [5].

Subsequently, the bootstrap approximation of the KLD with a bootstrap-based bias
correction is expressed by E∗(−2`(θ̂∗|y)) + kb, and is estimated by

BDb =
1
J

J

∑
j=1
−2`(θ̂∗(j)|y) + kb.

It follows that the bootstrap bias-corrected BDCP would be defined as

BDCPb =
1
J

J

∑
j=1

I

[
d(ĝ, θ̂∗1 (j)) + k1b < d(ĝ, θ̂∗2 (j)) + k2b

]
, (6)

where k1b and k2b correspond to the bootstrap-based corrections for the null and alternative
models, respectively.

Similarly, the k bias-corrected BD is expressed as

BDk =
1
J

J

∑
j=1
−2`(θ̂∗(j)|y) + k,

and the k bias-corrected BDCP is given by

BDCPk =
1
J

J

∑
j=1

I

[
d(ĝ, θ̂∗1 (j)) + k1 < d(ĝ, θ̂∗2 (j)) + k2

]
, (7)

where k1 and k2 are the number of functionally independent parameters that define the
null and alternative models, respectively.

4. Simulation Studies

The following simulation sets are designed to explore the bias when estimating both
the DCP based on the Kullback–Leibler discrepancy (KLDCP) and the expected value of the
KLD. We present different hypothesis testing scenarios, not all of which are conventional,
under a linear data-generating model and for varying sample sizes. Each setting exhibits
three different approaches to formulating the BD: adding the bootstrap-based correction
(BDb), adding k (BDk), and leaving the estimator uncorrected.

4.1. Settings for Simulation Sets

For Sets 1 to 5, the true data-generating model is of the form

yi = xT
i β0 + εi,

with βT
0 =

[
β0,1 β0,2 · · · β0,p

]
, xT

i =
[
1 xi2 · · · xip

]
, and[

xi2 · · · xip
]T ∼ Np−1(µ, Σ), (8)

where the entries of µ are chosen from {−1, 1}with equal probability, and Σ = diagp−1(100).
For Sets 1 to 4, we have εi ∼ N(0, σ2

0 ); for Set 5, we have that εi ∼ td f=5, where td f denotes
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the Student’s t distribution based on d f degrees of freedom; and for Set 6, we have that
εi ∼ Z · N(0, 1) + (1− Z) · N(0, 50), where Z ∼ Bernoulli(π) with π = 0.85.

In the setting at hand, the true data-generating model g has parameters θ = (βT
0 , σ2

0 )
T .

Hurvich and Tsai [6] showed that for the family of approximating models y = Xβ + ε,
where X is the design matrix and ε ∼ N(0, σ2 In), with maximum likelihood estimators
given by

β̂ = (XTX)−1XTy

and

σ̂2 =
(y− Xβ̂)T(y− Xβ̂)

n
,

the KLD measure d(g, θ̂) is given by

d(g, θ̂) = n log(2πσ̂2) +
nσ2

0
σ̂2 +

(Xβ0 − Xβ̂)T(Xβ0 − Xβ̂)

σ̂2 . (9)

The expected value of the KLD for the null and the alternative models was approxi-
mated by averaging the KLD over 5000 samples generated from g. These 5000 KLD values,
computed using (9), approximate the joint distribution of d(g, θ̂1) and d(g, θ̂2); hence, the
simulation-based estimator of the KLDCP is given by

P̂ =
1

5000

5000

∑
i=1

I[d(g, θ̂1(i)) < d(g, θ̂2(i))]. (10)

This KLDCP estimate is calculated 100 times in order to estimate the KLDCP distribu-
tion and its expected value.

Finally, for each of the 5000 samples, we calculate the BD and the BDb using 200 boot-
strap samples. However, to attenuate the simulation variability incurred by the mixture
distribution, the number of bootstrap samples in Set 6 was increased to 500. The results
displayed in the tables are based on averages over the 5000 samples.

Set 1: Null hypothesis is correctly specified, and alternative hypothesis is overspecified.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + εi,

where εi ∼ N(0, 50), β0,1 = 1, β0,2 = β0,3 = 0.5 and
[
xi2 xi3

]T is sampled as indicated
in (8).

For the hypothesis testing setting in Set 1, the null and alternative models are defined as

H1 : yi = β1 + β2x2i + β3xi3,

H2 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7.

Note that the null model is adequately specified, while the alternative model contains
the true model plus four additional explanatory variables. These extra explanatory vari-
ables are generated from the distribution indicated in (8).

Set 2: Null hypothesis is underspecified, and alternative hypothesis is correctly specified.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + β0,4xi4 + β0,5xi5 + εi,

where εi ∼ N(0, 45), β0,1 = 1, β0,2 = 0.11, β0,3 = 0.13, β0,4 = 0.12, β0,5 = −0.11, and[
xi2 xi3 · · · xi5

]T is sampled as indicated in (8).
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For the hypothesis testing setting in Set 2, the null and alternative models are

H1 : yi = β1 + β2x2i + β3xi3 + β4xi4,

H2 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5.

Here, the alternative model has the same structure as the data-generating model, but
the null model is missing one of the explanatory variables in the true model, namely x5.

Set 3: Both null and alternative models are underspecified, but the null is closer to the data-generating
model.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + β0,4xi4 + β0,5xi5 + β0,6xi6 + εi,

where εi ∼ N(0, 50), β0,1 = 1, β0,2 = β0,3 = 0.5, β0,4 = β0,5 = −0.5, β0.6 = 0.1, and[
xi2 xi3 · · · xi6

]T is sampled as indicated in (8).
For the hypothesis testing setting in Set 3, the null and alternative models are

H1 : yi = β1 + β2x2i + β3xi3,

H2 : yi = β1 + β4xi4 + β6xi6.

In this setting, both the null and alternative candidate models have the same number
of explanatory variables, and they are both missing variable x4. However, there is a slight
difference in the effect sizes of the variables for these models. For the alternative, the effect
sizes are −0.5 and 0.1 for x4 and x6, respectively. On the other hand, the effect size for the
null model is 0.5 for both x2 and x3. When comparing the null and alternative models, the
smaller effect size on x6 sets the alternative further away from the true model.

Set 4: Both null and alternative models are equally underspecified.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + β0,4xi4 + β0,5xi5 + β0,6xi6 + β0,7xi7 + εi,

with εi ∼ N(0, 50), β0,1 = 1, β0,2 = β0,3 = β0,6 = β0,7 = 0.5, β0,4 = β0,5 = −0.5, and[
xi1 xi2 · · · xi7

]T is sampled as indicated in (8).
For the hypothesis testing setting in Set 4, the null and alternative models are

H1 : yi = β1 + β2x2i + β3xi3,

H2 : yi = β1 + β4xi4 + β5xi5.

Here, the null and alternative candidate models are equally underspecified because
they have the same number of explanatory variables with the same effect sizes, and neither
model captures the true data-generating model.

Set 5: Null model has correct mean specification and alternative model is overspecified, but both are
misspecified with respect to the error distribution, which is a Student’s t distribution.

Consider the true data generating model given by

yi = β0,1 + εi,

with εi ∼ td f=5 and β0,1 = 1. Therefore, σ2
0 = 5

3 .



Entropy 2022, 24, 1483 8 of 18

For the hypothesis testing setting in Set 5, the null and alternative models are

H1 : yi = β1,

H2 : yi = β1 + β2xi2,

where xi2 ∼ N(1, 100). This setting is similar to the one displayed in Set 1, where the null
is properly specified while the alternative is overspecified. However, the models in the
setting at hand inadequately specify the distribution of the errors.

Set 6: Null model has correct mean specification, and the alternative model is overspecified, but both
are misspecified with respect to the error distribution, which is a mixture of normals.

Consider the true data-generating model given by

yi = β0,1 + εi,

with εi ∼ Z ·N(0, 1) + (1− Z) ·N(0, 50), where Z ∼ Bernoulli(π) with π = 0.85. Therefore,

σ2
0 = 0.85(1) + 0.15(50)

= 8.35.

For the hypothesis testing setting in Set 6, the null and alternative models are

H1 : yi = β1,

H2 : yi = β1 + β2xi2,

where xi2 ∼ N(1, 100). This setting is similar to the one featured in Set 5. However, the
errors in the setting at hand are generated from a mixture of normal distributions.

4.2. KLDCP Estimates From Simulations

For the tables showing the KLDCP simulation results, the columns are labeled
as follows.

(1) KLDCP corresponds to results based on the distribution of 100 replicates of KLDCP,
where each KLDCP is calculated using (10). Note that the null and alternative KLD
joint distribution is characterized based on discrepancy replicates obtained through (9).

(2) BDCPb corresponds to results based on the distribution of 5000 replicates of BDCPb.
Each BDCPb is computed using (6) with 200 bootstrap samples for Sets 1–5 and
500 bootstrap samples for Set 6.

(3) BDCPk corresponds to results based on the distribution of 5000 replicates of BDCPk.
Each BDCPk is computed using (7) with 200 bootstrap samples for Sets 1–5 and
500 bootstrap samples for Set 6.

(4) BDCP corresponds to results based on the distribution of 5000 replicates of the un-
corrected BDCP. Each BDCP is computed using (1) with 200 bootstrap samples for
Sets 1–5 and 500 bootstrap samples for Set 6.

4.3. Estimates of the Expected KLD From Simulations

For the tables showing the KLD results, the columns are labeled as follows.

(1) E(KLD) corresponds to the average of 5000 discrepancies calculated using (9).
(2) E(BD) corresponds to the average of 5000 replicates of BD, where each BD is calcu-

lated by
1
M

M

∑
m=1
−2`(θ̂∗(m)|y).

We have that M = 200 for Sets 1–5 and M = 500 for Set 6.
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(3) ∆BDb corresponds to the difference between the estimate of E(BD), with each BD
corrected by kb and the estimate of E(KLD) described in (1). In other words, if we let
j ∈ {1, 2 . . . , 5000} be the number of simulated data sets, B̃Dj be the BD estimate for
each data set j, and k jb be the kb correction for data set j, then

∆BDb =
1

5000

5000

∑
j=1

[
B̃Dj + k jb

]
− E(KLD).

(4) ∆BDk shows the same difference described in (3), but using k instead of kb, which
results in

∆BDk =
1

5000

5000

∑
j=1

[
B̃Dj + k

]
− E(KLD).

4.4. Discussion of Simulation Results

As mentioned previously, in the conventional hypothesis testing scenario for com-
paring nested models, Riedle, Neath and Cavanaugh [1] established that the uncorrected
BDCP approximates the p-value derived from the likelihood ratio test. Therefore, in the
case where the null candidate model is correctly specified, both the uncorrected BDCP and
the p-value have a Uni f orm(0, 1) distribution. This behavior is displayed in Table 1, where
for large sample sizes, the mean and median of the BDCP distribution are around 0.5. This
is a problematic feature of the uncorrected BDCP and p-values because the measure does
not reliably favor the null model in those settings where the null is true. However, we see
that for large sample sizes, both the BDCPk and the BDCPb values are close to 1, which
clearly favors the null model.

Table 2 shows the results from the setting where the alternative hypothesis is correctly
specified, while the null is underspecified. Here, we would expect all the discrepancy prob-
abilities to be close to 0, as seen in the case where the sample size is N = 500. However, for
smaller sample sizes, i.e., N = 25 and N = 50, we observe larger values for the discrepancy
probabilities. In fact, for N = 25, the BDCPb is 0.89 and, with a mean and median close
to 0.5, the uncorrected BDCP exhibits similar behavior to the case where the null is true.
This phenomenon is expected within the framework of model selection, where additional
explanatory variables are favorable if there is a sufficient sample size to adequately estimate
their effects. If the sample size is too small to construct reliable estimates, then it is best to
choose smaller models, even at the expense of model misspecification.

The results from Tables 1, 3–6 show that when estimating the KLDCP with a small sample
size (N = 25 to N = 100), the BDb performs either better than or as well as the BDk. For large
sample sizes, all simulation sets exhibit a similar performance for both corrections.

For discrepancy estimation, Tables 7–10 show that across all sample sizes, kb over-
corrects for the bias of the discrepancy approximation, and the over correction is more
prominent for small sample sizes. It is worth noting that this evident over-estimation
from the BDb is accompanied by a superior bias reduction of the corresponding KLDCP
estimator. For instance, Table 7 shows a significant over-estimation by BDb compared to
BDk, especially in the small sample settings. However, the corresponding estimator of the
KLDCP, displayed in Table 1, exhibits less bias for BDCPb than for BDCPk.

Finally, Tables 11 and 12 show that, across all sample sizes, the correction by kb markedly
reduces the bias compared to the correction by k. This means that in the setting where the
mean structure is correctly specified for the null and overspecified for the alternative, but both
models are incorrectly specified with respect to the error distribution, the bootstrap-based
correction evidently outperforms the simple correction of k.

In most cases, however, the bias reductions resulting from the kb and the k corrections
are comparable. Therefore, our simulation studies suggest that if the null and/or the
alternative models are misspecified, then correcting by either kb or k will generally yield
comparable estimators of the expected KLDCP.
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Table 1. Distribution approximations for Set 1, where the null model is correctly specified, while the
alternative model is overspecified.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 0.878 0.868 0.515

Median 1.000 1.000 1.000 0.515

SD 0.000 0.233 0.241 0.282

N = 100

Mean 1.000 0.918 0.864 0.564

Median 1.000 1.000 0.995 0.580

SD 0.000 0.186 0.225 0.256

N = 50

Mean 1.000 0.966 0.875 0.631

Median 1.000 1.000 0.980 0.650

SD 0.000 0.111 0.193 0.220

N = 25

Mean 1.000 0.999 0.886 0.739

Median 1.000 1.000 0.955 0.755

SD 0.000 0.012 0.144 0.156

Table 2. Distribution approximations for Set 2, where the null model is underspecified, while the
alternative model is correctly specified.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 0.001 0.022 0.021 0.011

Median 0.001 0.000 0.000 0.000

SD 0.000 0.088 0.085 0.043

N = 100

Mean 0.156 0.470 0.428 0.264

Median 0.156 0.340 0.280 0.170

SD 0.005 0.390 0.378 0.257

N = 50

Mean 0.372 0.691 0.597 0.409

Median 0.372 0.905 0.630 0.360

SD 0.007 0.350 0.354 0.266

N = 25

Mean 0.617 0.890 0.698 0.536

Median 0.617 0.990 0.785 0.535

SD 0.006 0.213 0.280 0.222
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Table 3. Distribution approximations for Set 3, where the null and alternative models are underspec-
ified, but the null model is closer to the true data-generating model.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 1.000 1.000 1.000

Median 1.000 1.000 1.000 1.000

SD 0.000 0.013 0.013 0.013

N = 100

Mean 0.979 0.910 0.910 0.910

Median 0.979 1.000 1.000 1.000

SD 0.002 0.244 0.244 0.244

N = 50

Mean 0.916 0.807 0.808 0.808

Median 0.916 0.970 0.970 0.970

SD 0.004 0.311 0.309 0.309

N = 25

Mean 0.804 0.692 0.699 0.699

Median 0.805 0.845 0.840 0.840

SD 0.005 0.314 0.303 0.303

Table 4. Distribution approximations for Set 4, where the null and alternative models are equally
underspecified.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 0.498 0.507 0.507 0.507

Median 0.498 0.570 0.580 0.580

SD 0.007 0.478 0.478 0.478

N = 100

Mean 0.500 0.510 0.509 0.509

Median 0.500 0.562 0.567 0.567

SD 0.007 0.442 0.442 0.442

N = 50

Mean 0.500 0.502 0.502 0.502

Median 0.500 0.505 0.515 0.515

SD 0.007 0.407 0.406 0.406

N = 25

Mean 0.501 0.501 0.501 0.501

Median 0.501 0.490 0.495 0.495

SD 0.007 0.353 0.345 0.345
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Table 5. Distribution approximations for Set 5, where the null and alternative models are misspecified
with respect to the error distribution. Here, the errors are generated from a Student’s t distribution.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 0.794 0.794 0.499

Median 1.000 1.000 1.000 0.500

SD 0.000 0.329 0.328 0.289

N = 100

Mean 1.000 0.807 0.794 0.507

Median 1.000 1.000 1.000 0.515

SD 0.000 0.318 0.323 0.284

N = 50

Mean 1.000 0.825 0.790 0.508

Median 1.000 1.000 0.995 0.505

SD 0.000 0.301 0.315 0.273

N = 25

Mean 1.000 0.862 0.790 0.525

Median 1.000 1.000 0.985 0.530

SD 0.000 0.270 0.306 0.261

Table 6. Distribution approximations for Set 6, where the null and alternative models are misspecified
with respect to the error distribution. Here, the errors are generated from a mixture of normal distributions.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 0.783 0.786 0.487

Median 1.000 1.000 1.000 0.484

SD 0.000 0.338 0.335 0.289

N = 100

Mean 1.000 0.808 0.793 0.495

Median 1.000 1.000 0.998 0.496

SD 0.000 0.322 0.325 0.283

N = 50

Mean 1.000 0.851 0.793 0.502

Median 1.000 1.000 0.994 0.494

SD 0.000 0.286 0.311 0.269

N = 25

Mean 1.000 0.906 0.787 0.509

Median 1.000 1.000 0.986 0.490

SD 0.000 0.229 0.300 0.246
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Table 7. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 1. Here, the null model is correctly specified,
while the alternative model is overspecified.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 500

Null 3378.949 3375.407 0.488 0.411

Alternative 3383.138 3375.578 0.686 0.362

N = 100

Null 679.282 675.291 0.385 −0.030

Alternative 684.115 676.667 2.518 0.521

N = 50

Null 342.167 338.498 1.267 0.268

Alternative 348.245 342.348 7.476 2.065

N = 25

Null 174.334 171.169 3.657 0.910

Alternative 183.828 193.249 43.328 17.290

Table 8. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 2. Here, the null model is underspecified, while
the alternative model is correctly specified.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 500

Null 3340.491 3335.733 0.410 0.290

Alternative 3328.467 3322.581 0.319 0.143

N = 100

Null 672.373 667.928 1.210 0.520

Alternative 671.137 665.628 1.493 0.454

N = 50

Null 339.515 334.726 1.891 0.226

Alternative 339.923 334.181 2.888 0.305

N = 25

Null 174.136 171.376 7.446 2.223

Alternative 176.073 174.320 13.270 4.106

Table 9. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 3. Here, the null and alternative models are
underspecified, but the null model is closer to the true data-generating model.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 500

Null 3726.902 3726.159 3.401 3.332

Alternative 3832.770 3832.395 3.704 3.626



Entropy 2022, 24, 1483 14 of 18

Table 9. Cont.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 100

Null 745.967 745.809 4.358 3.943

Alternative 766.212 766.813 4.947 4.528

N = 50

Null 373.419 373.704 5.309 4.325

Alternative 383.156 384.020 5.843 4.858

N = 25

Null 187.563 188.745 8.082 5.245

Alternative 191.924 194.082 8.878 6.088

Table 10. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 4. Here, the null and alternative models are
equally underspecified.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 500

Null 3923.423 3923.908 5.022 4.948

Alternative 3923.580 3924.705 5.475 5.399

N = 100

Null 784.021 784.917 5.080 4.670

Alternative 784.042 785.026 5.241 4.823

N = 50

Null 391.751 393.155 6.335 5.343

Alternative 391.753 393.131 6.222 5.239

N = 25

Null 195.732 198.616 9.602 6.821

Alternative 195.862 198.690 9.598 6.804

Table 11. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 5. Here, the null and alternative models are
misspecified with respect to the error distribution, and the errors are generated from a Student’s
t distribution.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 500

Null 1678.652 1672.369 −2.224 −4.178

Alternative 1679.695 1672.387 −2.248 −4.231

N = 100

Null 338.728 334.154 −0.920 −2.471

Alternative 339.866 334.300 −0.728 −2.438
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Table 11. Cont.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 50

Null 171.377 167.500 −0.231 −1.839

Alternative 172.640 167.847 0.283 −1.714

N = 25

Null 87.689 83.577 −0.434 −2.077

Alternative 89.311 84.495 0.869 −1.785

Table 12. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 6. Here, the null and alternative models are
misspecified with respect to the error distribution, and the errors are generated from a mixture of
normal distributions.

Hypothesis E(KLD) E(BD) ∆BDb ∆BDk

N = 500

Null 2488.932 2480.154 −0.389 6.554

Alternative 2490.012 2480.141 −0.310 6.659

N = 100

Null 508.122 497.000 −0.383 8.404

Alternative 509.426 497.237 −0.597 8.459

N = 50

Null 263.382 252.424 −2.852 8.590

Alternative 264.974 253.245 −3.930 8.361

N = 25

Null 144.895 131.870 −4.361 10.842

Alternative 147.551 134.298 −7.782 9.956

5. Application: Creatine Kinase Levels during Football Preseason

In this section, we apply the BDCP to a data set from a biomedical setting. The goal
of this application is to understand the changes in creatine kinase (CK) levels observed
on the blood samples of college football players during preseason training. In order to
properly explain the variation of CK, we must select between competing models that use
different demographic and clinical variables. We will analyze the models selected by the kb
corrected, the k corrected and the uncorrected BDCP, and we will compare the results to
the selection of models via the more conventional p-value approach.

5.1. Overview of Application

During strenuous exercise, skeletal muscle cells break down and release a variety of
intracellular contents. When in excess, a condition known as exertional rhabdomyolysis
(ER) can occur, which may result in life-threatening complications such as renal failure,
cardiac arrhythmia and compartment syndrome. Creatine kinase (CK) is one of the proteins
released during muscle breakdown, and measuring its levels is the most sensitive test for
assessing muscular damage that could lead to ER [7].

During the off-season workouts in January 2011, a group of 13 University of Iowa
football players developed ER. This event led to a prospective study where 30 University of
Iowa football athletes were followed during a 34-day preseason workout camp. Variables
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such as body mass index (BMI) and CK levels were obtained from blood samples that were
drawn at the first, third, and seventh day of the camp. Other demographic and clinical
variables such as age, number of semesters in the program and history of rhabdomyolysis
were also collected.

The initial results of the study, published by Smoot et al. [8], show that the CK levels at
later time points were significantly different than the levels at earlier times. However, most
of the clinical and demographic variables were not significant in explaining the levels of
CK. One of the underlying issues with this type of modeling analysis is that the significance
of each variable can only be assessed by hypothesis tests with nested models. For example,
suppose that we wish to determine the significance of BMI in the presence of semesters in
the program. To obtain a p-value for BMI, we need to formulate a hypothesis test where the
null model only contains semesters in the program, while the alternative model contains
both BMI and semesters in the program.

Although this setting may be useful in some scenarios, it is too limiting. For instance,
suppose that we wish to choose between two non-nested models where one contains BMI
and the other contains semesters in the program. Although a conventional test based on
linear regression models would not be able to answer this question, the BDCP approach
could indeed determine the propriety of either model in this type of non-nested setting.

In the analysis of this data set, we let CK3 be the log of CK levels measured at the
seventh day of the camp, CK1 be the log of CK levels measured at the first day of the camp,
and Semesters be the number of semesters at the program. Of note, the log transformation
is routinely applied in studies involving CK levels in order to justify approximate normality,
as the raw levels tend to have heavily right-skewed distributions.

Now, consider the following hypothesis testing settings.

Setting 1: Testing the propriety of the model containing CK1.

H1 : CK3 = β1,

H2 : CK3 = β1 + β2 CK1.

Setting 2: Testing the propriety of the model containing CK1 and Semesters over the model
containing only CK1.

H1 : CK3 = β1 + β2 CK1,

H2 : CK3 = β1 + β2 CK1 + β3 Semesters.

Setting 3: Head-to-head comparison of non-nested models.

H1 : CK3 = β1 + β2 CK1 + β3 BMI,

H2 : CK3 = β1 + β2 CK1 + β3 Semesters.

5.2. Results of Application

The results for the application are summarized in Table 13. Settings 1 and 2 illustrate
the congruence between BDCP and p-values in the case of hypothesis testing based on
nested models. Setting 1 assesses the propriety of a model that includes only the intercept
against a model that includes both the intercept and the levels of CK1. The p-value for
CK1 in this setting is 0.001, which means that, using a level α of 0.05, CK1 is significant in
explaining the variation in CK3 levels. Both the BDCPk and BDCPb are 0.075, which means
that there is a 7.5% chance that the null model is preferred over multiple bootstrap samples,
indicating that the model containing CK1 is superior.

Once we establish that CK1 is an important variable to include in our model, the next
step is to determine if additional variables can improve our model fit. Setting 2 displays a
hypothesis test where the null model only contains CK1, while the alternative contains both
CK1 and Semesters. The p-value for Semesters is 0.734, which means that Semesters is not
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statistically significant, and a reasonable investigator would choose to exclude Semesters
from the final model. The corrected BDCP values arrive at the same conclusion. For
instance, the BDCPb is 0.995, which indicates that the across multiple bootstrap samples,
the null model is chosen 99.5% of the time; therefore, the BDCP encourages us to choose
the model that excludes Semesters.

Table 13. From left to right: results for Setting 1, Setting 2, and Setting 3. BDCPk is the BDCP corrected
by k, BDCPb is the BDCP corrected by kb, and BDCP is the uncorrected BDCP. Results are based on
200 bootstraps samples.

BDCP

BDCPk 0.075 BDCPk 0.990 BDCPk 0.815

BDCPb 0.075 BDCPb 0.995 BDCPb 0.780

BDCP 0.055 BDCP 0.495 BDCP 0.815

p-Value

CK1 0.001 CK1 0.001 CK1 0.001

Semesters 0.734 BMI 0.176

Semesters 0.936

The rationale for testing Semesters is based on the idea that more senior athletes
tend to rigorously maintain their workout habits during the off season, mostly because of
experience and maturity. Therefore, Semesters is a variable that may confound the effects
of CK1 on the variation of CK3. Additionally, medical literature has shown that BMI highly
correlates with CK levels and the development of ER [9], which means that one should also
test for the propriety of models that include BMI. Thus, one could ask if a model featuring
BMI would be better than a model featuring Semesters. This results in a hypothesis testing
scenario where the null and alternative models are non-nested, as exhibited in Setting 3.

First, note that the p-values displayed in the table for Setting 3 do not answer the
question at hand. These p-values are obtained from partial tests applied to the full model
containing both variables. On the other hand, the BDCP gives us meaningful information
about the performance of adding BMI versus adding Semesters. The BDCPb tells us that
there is a 78% probability that the model containing BMI is a better fit than the model
containing Semesters. If we use the BDCPk instead, the probability increases to 81.5%. In
both cases, if we are debating weather to include BMI or Semesters as an adjusting variable,
the BDCP clearly favors the inclusion of BMI.

6. Conclusions

When deciding between two competing models, practitioners of statistics normally
utilize traditional hypothesis testing methods that rely on the assumption that one of
the candidate models is properly specified. This approach is problematic because it is
unreasonable to assume that one of the proposed models is precisely true. In addition,
these methods are only applicable for nested models. To avoid any underlying assumptions
and model structure limitations, Riedle, Neath and Cavanaugh [1] propose the use of the
bootstrap discrepancy probability (BDCP) to assess the propriety of the fit of two candidate
models. However, the bootstrap discrepancy (BD) utilized in this work provides a biased
estimator of the Kullback–Leibler discrepancy (KLD).

When hypothesis testing assumptions are met, the BDCP asymptotically approximates
the likelihood ratio test p-value. Therefore, similarly to p-values, the distribution of the
BDCP is uniform if the null hypothesis is true. Hence, in settings when the null is true, the
BDCP would be of limited value in choosing the appropriate model.

In this paper, we proposed utilizing the kb or the k corrected BDCP, namely BDCPb and
BDCPk, respectively. The BDCPb employs the BDb, a bootstrap corrected estimator of the
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KLD, while the BDCPk uses the BDk, a BD corrected by adding the number of functionally
independent parameters in the candidate model. We showed that for most settings, the
BDb serves as an over-corrected estimator of the KLD, but the corresponding BDCPb is
less biased than the BDCPk for the estimation of the KLDCP. However, in the case when
there is distributional misspecification, we showed that the BDb has negligible bias for the
estimation of expected value of the KLD.

Moreover, the estimation of the bootstrap correction kb utilizes the same bootstrap
samples that were used to calculate the BD; therefore, we argue that the computational
requirements of estimating kb are not too burdensome. However, if the sample size is
moderately large compared to the number of parameters in the model, then we showed that
using k to correct the bias generally results in comparable values of the KLDCP estimates.
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