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Abstract: Problems such as insufficient key space, lack of a one-time pad, and a simple encryption
structure may emerge in existing encryption schemes. To solve these problems, and keep sensitive
information safe, this paper proposes a plaintext-related color image encryption scheme. Firstly,
a new five-dimensional hyperchaotic system is constructed in this paper, and its performance is
analyzed. Secondly, this paper applies the Hopfield chaotic neural network together with the novel
hyperchaotic system to propose a new encryption algorithm. The plaintext-related keys are generated
by image chunking. The pseudo-random sequences iterated by the aforementioned systems are used
as key streams. Therefore, the proposed pixel-level scrambling can be completed. Then the chaotic
sequences are utilized to dynamically select the rules of DNA operations to complete the diffusion
encryption. This paper also presents a series of security analyses of the proposed encryption scheme
and compares it with other schemes to evaluate its performance. The results show that the key
streams generated by the constructed hyperchaotic system and the Hopfield chaotic neural network
improve the key space. The proposed encryption scheme provides a satisfying visual hiding result.
Furthermore, it is resistant to a series of attacks and the problem of structural degradation caused by
the simplicity of the encryption system’s structure.
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1. Introduction

From the modification of hieroglyphics to post-quantum ciphers, cryptography has
gradually taken shape and developed along with human civilization. With the development
of technology, information has had a dramatic explosion. A great deal of privacy has been
loaded onto the Internet. The development of tools such as streaming media and instant
messaging has made it possible for social networks to connect countless individuals. Users
of any status can share what they see online as they wish. Therefore, the security of
various information carriers, especially digital images that carry abundant information, has
received increasing attention.

Chaos is one of the major discoveries of the 20th century and its importance can be
compared with relativity and quantum mechanics. Chaos is the unpredictable, pseudo-
random motion exhibited by deterministic dynamical systems due to their sensitivity to
initial values. The complex dynamical behavior in chaotic systems makes them widely ap-
plicable in communication, signal processing, and other fields. Compared with text, digital
images are characterized by a larger information load, a stronger correlation of adjacent
pixels, and higher redundancy. These characteristics lead to the unfitness of traditional
encryption algorithms for image encryption [1]. Chaotic cryptography is a newly develop-
ing interdisciplinary science combining nonlinear science and cryptography. Researchers
have taken advantage of chaotic systems in aspects such as pseudo-randomness, ergodicity,
and utmost sensibility to initial values. These characteristics are beneficial for conducting
efficient information hiding.
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A low-dimensional chaotic system has the advantage of being simple to implement.
Therefore, it is widely used in image encryption [2]. The low-dimensional chaotic system
usually performs iteration to yield initial values of a high-dimensional chaotic system,
and researchers have proposed schemes that combine low-dimensional chaos and high-
dimensional chaos for encryption [3,4]. Some researchers also chose to improve on the
existing low-dimensional chaotic systems to propose new chaotic mappings. Then, they ap-
plied the new mappings to encryption in combination with high-dimensional systems [5,6].
Existing experiments have shown that using high-dimensional chaotic systems for en-
cryption can obtain a larger key space and improve the complexity of the algorithm.
High-dimensional systems and multi-system cascades can achieve better encryption per-
formance and also provide ideas for multi-image encryption [7–9]. In recent years, as
DNA coding has advanced, it has gradually been used to implement image encryption in
combination with chaotic systems. In [10], a new 4-D conservative hyperchaotic system
was constructed. The authors conducted various evaluations of the chaotic system and
the corresponding chaotic sequences. An image encryption scheme combining line-wise
permutation with the DNA method in the process of diffusion was proposed. In [11],
a chaotic-related image encryption algorithm composed of chunking permutation and
DNA operations was proposed. Plaintext-related initial keys are yielded for the system
iterations. The pseudo-random sequences are applied to shuffle pixels inside and between
blocks. The pixel values are changed using DNA operations controlled by the sequences.
In [12], a multidimensional image encryption scheme combining the DNA method and
chaos was proposed. The authors utilized MD5 to collect the image features and then
yield a user-related key. In this way, improvements to the traditional 3-D Lorenz system
are made to construct a novel 4-D hyperchaotic Lorenz system. Then, plaintext images
accomplish encoding with the DNA method. Most of the current DNA coding methods
used in encryption choose three encoding rules of addition, subtraction, and XOR, while
scholars have also designed some new DNA computing rules such as cycle shift [13].

Neural networks have been a popular topic in recent years. Aihara et al. [14] found rich
nonlinear dynamical behaviors in neural networks in their research and creatively proposed
the concept of chaotic neural networks. Chaotic neural networks possess associative
memory and highly parallel properties of neural networks, as well as chaotic properties.
Therefore, combining chaotic neural networks with cryptography can theoretically yield
considerable encryption results. In 1982, the physicist Hopfield introduced the classical
discrete Hopfield neural network model in [15]. Two years later, Hopfield designed a
circuit to implement a continuous Hopfield neural network by simulating the connections
between neurons through electronic circuits [16]. Modification based on the classical model
of the Hopfield neural network is one of the main ideas for implementing chaotic neural
networks. Combining chaos theory and neural networks to achieve secure and efficient
image encryption is becoming a hot research topic in this field. A new chaos generator
implementation using artificial neural networks was proposed by Ali et al. [17]. They use
neural networks as the scrambling part of the chaos generator in image encryption systems
to increase the cycle length while simultaneously avoiding the degradation problem of
dynamical properties associated with the use of finite-dimensional spaces. The application
of neural networks allows the chaotic sequence generator to have a larger key space.
Liu et al. [18] applied the plaintext-dependent matrix generated by the Hopfield chaotic
neural network to the second-round diffusion of the encryption process. This not only
improves the sensitivity of the key but also makes it able to resist the common selective
plaintext attack. Chaotic neural networks have also been widely used in the optimization of
image encryption algorithms. Lakshmi et al. [19] proposed an encryption algorithm on the
basis of Hopfield attractors without using other chaotic graphs. The results show suitable
statistical properties and security, especially against the widely adopted chaotic graph
attacks. In recent years, some researchers have launched studies on image encryption using
Hopfield chaotic neural networks based on the chaotic properties of Hopfield neurons.
Wang et al. [20] proposed a color image encryption algorithm based on Hopfield chaotic
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neural networks. Hu deciphered the CIEA-HCNN proposed by Wang et al. and pointed
out that the chaotic pseudo-random sequences in this scheme are independent of the
plaintext image. The scrambling–diffusion encryption structure will degenerate into a pure
scrambling structure after the diffusion encryption structure with bit-XOR as the main
operation is deciphered. The encryption structure is simple and cannot effectively resist the
selective plaintext attack in a comprehensive view [21]. Tirdad et al. [22] used the Hopfield
neural network as a pseudo-random number generator, but its randomness performed
poorly. In terms of cross-integration with cryptography, Hopfield chaotic neural networks
mostly act as chaotic sequence generators, and the randomness of the chaotic sequences
they generate has been tested by NIST test suites in some recent papers [23], which showed
that using Hopfield chaotic neural networks as sequence generators provides inspiration for
the development of cryptography, but in terms of plaintext association, topology selection
(related to randomness, sensitivity) and other aspects need to be improved. In addition,
most encryption schemes use a combination of chaotic systems and DNA coding, and there
are relatively few schemes combined with Hopfield neural networks. Moreover, chaotic
systems and Hopfield chaotic neural networks can be implemented in hardware [24,25]
that can be deployed to hardware platforms such as FPGAs and have the potential for a
wide range of applications in engineering.

There are also some new directions, such as compressive sensing combined with DNA
coding, compressive sensing combined with Hopfield chaotic neural networks for image
encryption, quantum cryptography and DNA coding applied together in the design of
encryption schemes, and memristive chaotic systems and DNA operations jointly applied
in encryption [26–30]. These approaches can be applied to text, audio, and video encryption
as well [31,32]. There are works concerned with cryptanalysis among encryption meth-
ods based on DNA operations. Researchers enhanced the scheme based on deciphering
algorithms adopting the Feistel network and hyperchaotic system [33,34].

Based on the above, the main contributions of this paper are as follows:

(1) Considering the key space, this paper first constructs a novel 5-D hyperchaotic system,
which is then combined with the existing 3-D Hopfield chaotic neural network to
iteratively generate eight chaotic sequences, all of which are represented with double
precision. Thus, a very large key space can be obtained to resist brute attacks.

(2) To obtain plaintext-related keys, this paper intends to generate the initial condition
keys and the selection keys by image chunking. In the case of building a key table
of all possible combinations, the selection key is used to select the condition key.
Therefore, the initial conditions of the 5-D hyperchaotic system and the Hopfield
chaotic neural network will be yielded. The scrambling matrix is generated according
to the chaotic sequences to shuffle pixels of R, G, and B channels. That is, different
images correspond to different keys and scrambling coordinates.

(3) A new image encryption scheme combining the hyperchaotic system and chaotic neu-
ral network is proposed. A simple structure of diffusion will lead to the degradation
of the encryption system into a permutation-only structure. Therefore, this paper
introduces DNA coding and dynamically selects the coding rules and computing
rules through chaotic sequences to ensure the complexity of the encryption structure.

The paper is organized as follows: The basic methodology description of the proposed
scheme is given in Section 2, including the new five-dimensional hyperchaotic system,
Hopfield chaotic neural network, and DNA coding. Section 3 gives a detailed explanation
of the proposed method, including pixel-level scrambling encryption, diffusion encryption
combined with DNA operations, and chaotic sequences. In Section 4, the obtained results
and the security analysis are discussed. At last, Section 5 gives the conclusion of this paper.

2. Preliminaries
2.1. A New 5-D Hyperchaotic System

Chaotic phenomena are widely found in deterministic nonlinear systems with pseudo-
random behavior and extreme sensitivity to initial value parameters. Although low-



Entropy 2022, 24, 1474 4 of 21

dimensional chaotic systems are widely used in image encryption systems in view of
their simplicity of implementation and low computing complexity, high-dimensional
chaotic systems present stronger nonlinear properties compared to low-dimensional chaotic
systems and can achieve better encryption performance. Chaotic systems with two or more
positive Lyapunov exponents are defined as hyperchaotic systems [35], implying better
confidentiality, larger key space, and more complex unpredictable nonlinear behavior,
which helps to generate keys with better randomness. Therefore, a new 5-D hyperchaotic
system (HC5D) is constructed in this paper, and its state equation is shown in Equation (1):

.
x = −40x + 40y + 0.35w2
.
y = 23.4y− xz− v
.
z = xy− 3z
.

w = −0.2zy− 10w
.
v = cy

(1)

where x, y, z, w, v are the state variables of the proposed system and c is the control pa-
rameter. When the control parameter c is in the range of −0.9 to 41.5, the system exhibits
chaotic behavior. The chaotic sequences and chaotic attractors generated by the proposed
hyperchaotic system are shown in Figure 1. According to the following phase figures, the
chaotic characteristics of the system can be observed.

The Lyapunov exponents of the hyperchaotic system can be calculated as LE1 = 1.575,
LE2 = 0.142, LE3 = 0.001, LE4 = −10.361, and LE5 = −21.736. There are two positives,
implying a hyperchaotic system. The Lyapunov calculation plot is shown in Figure 2a.
The bifurcation diagram indicating a state transition from non-chaos into chaos with a
0.00005 step of c is shown in Figure 2b. It is demonstrated that the chaotic system exhibits a
disorderly uniform distribution.

NIST can evaluate the randomness of data by providing a set of determination criteria.
To guarantee the random performance of the generated chaotic sequences, the NIST SP 800-
22 for the quantitative description of sequence randomness has been employed. The results
are shown in Table 1. The data in the table show that the chaotic sequences successfully
pass the test. That is, the chaotic sequences generated by the constructed HC5D in this
paper are equipped with suitable randomness.

Table 1. Results of the NIST randomness test for the proposed hyperchaotic system.

Test p-Value Result

Approximate Entropy 0.933528 Pass
Block Frequency 0.557129 Pass

Cumulative Sum 1 0.974025 Pass
Cumulative Sum 2 0.974025 Pass

FFT 0.639925 Pass
Frequency 0.818524 Pass

Linear Complexity 0.889224 Pass
Longest Run 0.243165 Pass

Nonoverlapping Template 0.326447 Pass
Overlapping Template 0.326447 Pass

Random Excursion 0.416631 Pass
Random Excursions Variant 0.446108 Pass

Rank 0.867239 Pass
Runs 0.363268 Pass

Serial 1 0.324486 Pass
Serial 2 0.181049 Pass

Universal 0.125123 Pass
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2.2. Hopfield Chaotic Neural Network

The Hopfield chaotic neural network (HCNN) is a single-layer fully interconnected
feedback network with recurrent and recursive properties and has been adopted in secure
communication and signal processing. The fully connected structure of HCNN introduces
self-feedback, and recurrent neural networks produce constant state changes as the network
is activated by the input due to the feedback from its output to its input. This topology is
consistent with the neural feedback loops that are abundantly present in biological nervous
systems. The classical HCNN can be modeled by Equation (2):

.
xi = −kxi + W f (xi)
f (xi) = tanh(xi)

(2)

where xi is a column vector of the neuron state variable; k is the scale factor, which is
usually taken as 1; and W is the weight matrix, and its elements wij are the weights between
xi and xj, representing the strength of the connections between neurons. The activation
function f is supposed to be a nonlinear continuous sigmoid-type function. The time-
dependent hyperbolic tangent function is chosen as the activation to update the neuron
states. The nonlinearity of the activation function is the origin of the nonlinear behavior of
the neural network.

The feedback process continues until the network reaches a certain state. The net-
work may present a steady state, a periodic state, or a chaotic state, and the key is to
determine its weight coefficients, that is, the topology of the network. According to the
literature [36], when W takes the value shown in Equation (3), the 3-D HCNN can be
modeled by Equation (4):

W =

 2 −1.2 0
1.9 + p 1.71 1.15
−4.75 0 1.1

 (3)

 .
x1.
x2.
x3

 = −

 x1
x2
x3

+ W

 tanh(x1)
tanh(x2)
tanh(x3)

 (4)

The corresponding neural network topology is shown in Figure 3.
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Figure 3. Topology of 3-D Hopfield chaotic neural network.

The neural network exhibits satisfying chaotic properties when p = 0.0997. The
HCNN can be regarded as a complex chaotic mapping, and therefore it has the properties
of chaos such as initial value sensitivity, pseudo-randomness, and ergodicity. These charac-
teristics are inextricably linked to the principles of cryptography designed by Shannon in
conjunction with the basic properties of chaos, “diffusion and confusion“ [37].

2.3. DNA Coding

DNA is composed of nucleotides, whose nucleobases are named adenine (A), cytosine
(C), guanine (G), and thymine (T). Due to the natural mechanism, there is a basic comple-
mentarity theorem, where A is complementary to T and G is complementary to C [38].
The mechanism is similar to the complementarity of 1 and 0 in binary. The pixel values
of grayscale images range from 0 to 255, which means the expression of an 8-bit binary
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number. According to the rules of DNA coding, eight valid coding rules are available to
use in encryption, as shown in Table 2.

Table 2. DNA coding rules.

Rule 1 2 3 4 5 6 7 8

00 A A T T G G C C
01 G C G C A T A T
10 C G C G T A T A
11 T T A A C C G G

With the progress of DNA cryptology, some scholars have proposed algorithms such
as addition and subtraction operations based on DNA sequences inspired by the basic
principles of binary. In this paper, we use four common DNA computing rules, which are
addition (+), subtraction (−), XOR (⊕), and XNOR (�), as shown in Tables 3–6. The security
of a single DNA coding or computing rule is low, and the security of the system can be
further improved by controlling the dynamic selection of rules through chaotic sequences.

Table 3. DNA addition rules.

+ A G C T

A A G C T
G G C T A
C C T A G
T T A G C

Table 4. DNA subtraction rules.

− A G C T

A A T C G
G G A T C
C C G A T
T T C G A

Table 5. DNA XOR rules.

⊕ A G C T

A A G C T
G G A T C
C C T A G
T T C G A

Table 6. DNA XNOR rules.

A G C T

A T C G A
G C T A G
� C G A T C

T A G C T
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Therefore, the proposed scheme works by controlling the dynamic selection of eight
DNA encoding and decoding rules and four computing rules through chaotic sequences
generated by HC5D.

wq = floor(mod(w0 × 1015, 8)) + 1 (5)

W0 = reshape(wq, M, N) (6)

vq = floor(mod(v0 × 1015, 4)) + 1 (7)

V0 = reshape(vq, M, 4N) (8)

where w0 and v0 are the chaotic sequences generated by the hyperchaotic system, and wq
and vq are the quantized sequences. After quantization, the elements of wq will be integers
in the range of [1, 8], and elements of vq will be integers in the range of [1, 4]. W0 and V0 are
the matrices for reshaping the quantized sequences with the sizes of M× N and M× 4N,
respectively. W0 is used to control the selection of DNA coding rules, and V0 controls the
selection of DNA computing rules.

3. The Proposed Scheme
3.1. Key Generation

This section proposes the method of plaintext-related key generation for resisting
plaintext attacks, including the initial conditional key required by HC5D and HCNN and
the selection key that controls the key-picking process.

For a plaintext image I of size M × N, expect to satisfy M ≥ 4 and N ≥ 2, and
assume that M is an even number (if not, pad zero to the bottom row of the image matrix).
Convert I into a grayscale image I0 as shown in Figure 4 and then divide it into two parts
to obtain the image I00, I01 of M′ × N, where M′ = M/2. Then, the image is subdivided
into eight independent blocks, and they will produce the initial condition keys, where
m1 = (M −mod(M, 4))/4, m2 = M′ − m1, n1 = (N −mod(N, 2))/2, n2 = N − n1.
Finally, the initial conditional key associated with the plaintext is generated according to
Equation (9).

ki = double(sin(sumi)) (9)

where i = 1, 2, · · · , 8; sumi denotes the accumulation gray value of the i-th block, which
works as the input of the sine function; and ki is defined as a double type.
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Figure 4. Image chunking demonstration.

The selection keys are generated by I00, I01. Since eight keys are generated above,
five of them are needed for the initial conditions of the hyperchaotic system, and three
are needed for the HCNN, so according to the knowledge related to permutation and
combination, there are A5

8 ways to combine keys for the hyperchaotic system and A3
8 ways

to combine keys for the HCNN. That is, there are 56 combinations.
Thus, we build two key tables to list all possible combinations. The sums of the pixels

among the two image blocks are calculated separately. Then the index values s1 and s2 of
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the supposed combination are obtained according to Equation (10), which in turn generates
the plaintext-related selection keys used to control the initial conditional keys’ combination.

s = floor(mod(sum(I_pix), 56)) + 1 (10)

where I_pix is the pixel value of I00 and I01. The range of s is 1 to 56.

3.2. Scrambling Process

This section proposes the image scrambling method controlled by chaotic sequences
to effectively shuffle pixels’ positions.

The keys obtained in Section 3.1 are input into HC5D and HCNN, and the chaotic
sequence is generated by iterating the systems. The horizontal coordinate X table and
vertical coordinate Y table of the disordered pixels are constructed using the chaos matrix.
By finding values in the X table and Y table, the new position of the pixel is determined, and
thus the purpose of destroying the correlation of adjacent pixels is achieved. The specific
steps are as follows:

Step 1: The three channels of a color image Lena are separated according to Equation (11)
to obtain the Ir, Ib, Ib matrix of size M× N.

Ir = I(:, :, 1)
Ig = I(:, :, 2)
Ib = I(:, :, 3)

(11)

Step 2: The combination of the initial keys (x00, y00, z00, w00, v00) and (x10, y10, z10), which
are used as the initial conditions for HC5D and HCNN, respectively, is obtained
according to Section 3.1.

Step 3: The initial conditions are input into HC5D and HCNN, and the chaotic sequences
x0, y0, z0, w0, v0 and x1, y1, z1 are obtained by iteration according to Equations (1)
and (2).

Step 4: The former MN terms of the chaotic sequences x1 and x0 generated by the hyper-
chaotic system are reshaped using Equation (12), and the elements are sorted by
column, while the row sorting of y0 is performed. In this way, the values of x are in
the range [1, M] and the values of y are in the range [1, N], so the coordinate table
can be used as the index of the chaotic coordinates.{

X = reshape(x(1 : MN), M, N)
[Xup, Xind] = sort(X)

(12)

The new position matrix P can be obtained after obtaining the X table and Y-coordinate
table, and the matrix P can be expressed by Equation (13):

P(i, j) = (Xind(i, j), Yind(i, j)) (13)

where i = 1, 2, · · · , M; j = 1, 2, · · · , N. Xind, Yind is a table of the generated horizontal and
vertical coordinate indexes. After obtaining the position matrix, the R-channel of the image
is scrambled.

Step 5: The scrambling of the G channel is achieved by repeating Step 4 using the sequences
y0 and y1 of length MN.

Step 6: The B channel is scrambled using the sequences y0 and x1 of length MN, and Step 4
is repeated.

The scrambling process is shown in Figure 5. Three channels are shuffled pixel by
pixel with the control of the chaotic sequences, which are generated by HC5D and HCNN.
Position 1, Position 2, and Position 3 are scrambling matrices P(i, j) composed of elements
from quantized chaotic sequences. R, G, and B are channels of the image.
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Figure 5. Example: demonstration of the proposed scrambling method for a 4 × 4 image.

The scrambling effect is shown in Figure 6, and it can be seen that the proposed
scrambling method requires only one round to obtain a visually satisfying hiding result.
The scrambling coordinate matrix is also different for different images.
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Figure 6. The result of the proposed scrambling method on Lena image: (a) the plaintext image;
(b) the R, G, and B channels; (c) the scrambled R, G, and B channels for 1 round; (d) the scrambled
encrypted image.

The classical Arnold scrambling is restricted in image size. The unequal length and
width of an image may lead to distortion. In addition, due to the mechanism of the Arnold
algorithm, the scrambling is periodic with a transformation period of 60. Namely, the
scrambling will obtain the original image after reaching the period. The following figures
in Figure 7 show the effect of Arnold scrambling when a = 1, b = 1, and the round of
scrambling n is 1, 3, and 6. It can be observed that the scrambling effect is unsatisfying at
one round of scrambling. At three rounds, the image still shows obvious regularity. At six
rounds, the image exhibits a relatively acceptable result but still shows tiny regularity.



Entropy 2022, 24, 1474 11 of 21

Entropy 2022, 24, x FOR PEER REVIEW 12 of 24 
 

 

    

(a) (b) (c) (d) 

Figure 6. The result of the proposed scrambling method on Lena image: (a) the plaintext image; (b) 

the R, G, and B channels; (c) the scrambled R, G, and B channels for 1 round; (d) the scrambled 

encrypted image. 

The classical Arnold scrambling is restricted in image size. The unequal length and 

width of an image may lead to distortion. In addition, due to the mechanism of the Arnold 

algorithm, the scrambling is periodic with a transformation period of 60. Namely, the 

scrambling will obtain the original image after reaching the period. The following figures 

in Figure 7 show the effect of Arnold scrambling when a = 1, b = 1, and the round of scram-

bling n is 1, 3, and 6. It can be observed that the scrambling effect is unsatisfying at one 

round of scrambling. At three rounds, the image still shows obvious regularity. At six 

rounds, the image exhibits a relatively acceptable result but still shows tiny regularity. 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Lena with Arnold scrambling: (a) scrambled 1-round R, G, and B channels; (b) scrambled 

1-round encrypted image; (c) scrambled 3-round R, G, and B channels; (d) scrambled 3-round en-

crypted image; (e) scrambled 6-round R, G, and B channels; (f) scrambled 6-round encrypted image. 

3.3. Diffusion Process 

The method in this section applies chaotic sequences generated by HC5D and HCNN 

to DNA coding. Then, it completes the diffusion encryption of images to change their pixel 

values. Moreover, compared with the general diffusion structure simply accomplished by 

bit-XOR, the method in this paper can effectively resist the problem of degradation of the 

encryption structure caused by the simplicity of the algorithm. The process of implement-

ing this method is as follows: 

Figure 7. Lena with Arnold scrambling: (a) scrambled 1-round R, G, and B channels; (b) scrambled 1-
round encrypted image; (c) scrambled 3-round R, G, and B channels; (d) scrambled 3-round encrypted
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3.3. Diffusion Process

The method in this section applies chaotic sequences generated by HC5D and HCNN
to DNA coding. Then, it completes the diffusion encryption of images to change their pixel
values. Moreover, compared with the general diffusion structure simply accomplished
by bit-XOR, the method in this paper can effectively resist the problem of degradation
of the encryption structure caused by the simplicity of the algorithm. The process of
implementing this method is as follows:

Step 1: The former MN terms of w0 are quantized according to Equation (5) to obtain a
sequence of integers w0 with values of [1, 8], and then the sequence is quantized
and reshaped according to Equation (6) to obtain a control matrix W0(M, N) for
dynamic selection of the DNA coding rules of the three-channel matrix.

Step 2: According to Table 2, the three channels of the image are coded separately to obtain
the coded matrix Dr0, Dg0, Db0 of size M× 4N.

Step 3: Using Equation (14), the former MN terms of the key stream z0, z1, and the MN + 1
to 2MN elements of z0, are first quantized as integers in the range [0, 255] and then
reshaped into matrices Z0, Z1, Z2 of size M× N.{

zq = floor(mod(z× 1015, 256))
Z = reshape

(
zq, M, N

) (14)

where z denotes the z0 or z1 sequence, zq denotes the quantized sequence, and Z de-
notes the matrix after a reorganization of the zq sequence. Equation (14) corresponds
to extracting the 15 bits after the decimal point of the pseudo-random sequence and
then transforming them to values within the grayscale pixel range.

Step 4: Repeat Step 1 for the MN + 1 to 2MN terms of w0 to obtain the control matrix W1
of Z0, Z1, Z2 for the dynamic selection of DNA encoding rules. Repeat Step 2 to
achieve the DNA encoding of the Z0, Z1, Z2 matrices.

Step 5: Select the former 4MN terms of v0 for quantization according to Equation (7) to
obtain a sequence of integers vq in the range [1, 4]. Then, reshape the obtained vector
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into a matrix V0(M, 4N) according to Equation (8) to obtain the control matrix
V0 for the dynamic selection of DNA computing rules. The corresponding DNA
operations between Dr0, Dg0, Db0 and Z0, Z1, Z2 are implemented to obtain three
new DNA matrices Dr1, Dg1, Db1.

Step 6: Transform the 2MN + 1 to 4MN elements of w0, z0 into a vector of size 4MN and
then modularize it to the range [1, 8] according to Equation (5). The variant N in
Equation (6) is substituted into 4N to shape the vector into a matrix of M × 4N.
Therefore, the control matrix W2(M, 4N) for the dynamic selection of DNA decoding
rules can be obtained.

Step 7: DNA decoding is performed on Dr1, Dg1, Db1, to obtain the single-channel matrices
Cr, Cg, Cb of size M× N, after diffusion encryption.

Figure 8 demonstrates the basic process of DNA encoding and computing among
pixels and chaotic sequences, taking two pixels as an example. The chaotic sequence w
controls how the pixels and z sequence elements are encoded, chosen among eight rules
according to Equations (5) and (6). Sequence v controls the corresponding computing rules,
chosen among four rules according to Equations (7) and (8) in Section 2.3.
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Figure 8. Example: demonstration of the DNA coding operation for two pixels with chaotic sequence
elements.

3.4. Encryption Scheme

Step 1: Input plaintext image I(M, N), according to the method described in Section 3.1, to
obtain the grayscale image I0(M, N). Then, complete the chunking operation.

Step 2: According to Equations (9) and (10), the initial conditional keys and the selection
keys associated with the plaintext are updated.

Step 3: Input the initial keys and iterate Equations (1) and (4) D + L times each, where
L = 4MN. To avoid the transient effect and to ensure random performance, the
previous values are discarded to obtain the x0, y0, z0, w0, v0, x1, y1, and z1 key
streams described in Section 3.1.

Step 4: For the plaintext image I(M, N), separate its R, G, and B channels according to
Equation (11) to obtain three images, Ir, Ig, and Ib, and take the former MN terms
of x0, y0, x1, and y1 and the MN + 1 to 2MN terms of x0 and y1 to obtain the
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combination of (x0, y0), (x1, y1), and (x0, y1). According to Equations (12) and (13),
we can obtain the permutation matrix.

Step 5: According to the method described in Section 3.2, the pixel-level scrambling is
performed on Ir, Ig, and Ib, and the scrambled three channels are obtained simulta-
neously. Combine them to yield the scrambled image.

Step 6: w0, v0, z0, and z1 are quantized and recombined according to the scheme designed in
Section 3.3 to obtain the encoding matrices W0 and W1; the decoding matrix W2; the
V0 matrix, which controls the computing rules; and the Z1 and Z2 matrices, which
compute with the DNA images. The diffusion encryption of the three channels of
the permuted image is completed. The three channels are merged to gain the cipher
image C(M, N). The decryption process is the reverse process of encryption Z0.

Step 7: The complete encryption flow is shown in Figure 9.
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Figure 9. The encryption flowchart with Lena image as an example.

The encryption results are shown in Figure 10. It can be seen that all the ciphertext
images are evenly distributed like snowflakes, and no meaningful information can be
obtained visually. The results show that the proposed scheme can successfully hide the
plaintext image as well as obtain a satisfying encryption effect. In this paper, by processing
the image pixel by pixel, the time complexity calculation is M × N for an image of size M ×
N. Considering the DNA operation in diffusion, the coefficient should be 4. Calculating the
asymptotic time complexity without considering the constant term, the complexity of the
algorithm can be obtained as O (M × N); that is, the complexity keeps a linear relationship
with the input image size. Furthermore, taking Lena (512× 512) as an example, the running
time is 2.5182 s, as a result of the trade-off between complexity and running time.
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Figure 10. The results of the proposed scheme: (a) the plaintext images; (b) the permuted images;
(c) the ciphertext images; (d) the decrypted images.

4. Security Analysis of the Scheme

In this section, we evaluate the performance of the proposed scheme through compre-
hensive software simulations. All tests were performed on the MATLAB R2016a platform
using a computer equipped with an Intel i7-10875H processor with a CPU of 2.30 GHz and
memory of 16 GB.

4.1. Key Analysis
4.1.1. Key Space

In this paper, the key space consists of initial condition keys k1, k2, · · · , k8 yielded by
eight chunking blocks and selection keys s1, s2 yielded by two chunking blocks, from the
plaintext image. As mentioned before, eight initial keys are represented as double precision
types. That is, the computation precision is 10−15 for each initial condition key. While
the data type of s1, s2 is fixed-point, the key space excluding s1, s2 can be calculated as
1015 × 1015 × 1015 × 1015 × 1015 × 1015 × 1015 × 1015 = 10120 ≈ 2399 at least. It can be seen
from Table 7 that the key space of the proposed scheme is larger than the threshold 2128

and that of some of the other schemes. It is indicated that the key space benefiting from
multiple systems is adequately large to defend against brute attacks as well.

Table 7. Key space of the proposed scheme compared with other schemes from the literature.

Reference Key Space

Ours 10120

[3] 2250

[39] 6× 2192

[40] 1089

[41] 2260
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4.1.2. Key Sensitivity

When the key changes slightly, the corresponding encrypted and decrypted results
exhibit radical changes due to the sensitivity of the key. This kind of phenomenon is what
we expect in insecure communication channels in defense against eavesdroppers’ attacks.
Figure 11a shows the plaintext image, (b) shows the image encrypted with the incorrect
key with one decimal point change, and (c) shows the image decrypted with the incorrect
key with one decimal point change. It is implied that a tiny modification of the key results
in completely different corresponding images. Therefore, the key sensitivity of the system
allows resistance to the modified key attack.
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4.2. Statistical Analysis
4.2.1. Gray Histogram

Significant fluctuations in the histogram distribution of an encrypted image indicate
that it cannot resist ciphertext attacks. Therefore, we conduct a gray histogram analysis of
the proposed scheme to verify the quality of the encryption. A comparison of the histograms
of the R, G, and B channels of the Lena image and the encrypted Lena image is shown in
Figure 12. It can be visually seen that the channels of the original Lena image exhibit sharp
fluctuations, while the ciphertext’s channels are uniformly distributed, leading to better
performance in face of deciphering. Therefore, the system is highly resistant to statistical
attacks for the provided experimental analysis.

Entropy 2022, 24, x FOR PEER REVIEW 17 of 23 
 

 

   
(a) (b) (c) 

Figure 11. Key sensitivity test results: (a) the plaintext image; (b) the wrongly encrypted image; (c) 
the wrongly decrypted image. 

4.2. Statistical Analysis 
4.2.1. Gray Histogram 

Significant fluctuations in the histogram distribution of an encrypted image indicate 
that it cannot resist ciphertext attacks. Therefore, we conduct a gray histogram analysis of 
the proposed scheme to verify the quality of the encryption. A comparison of the histo-
grams of the R, G, and B channels of the Lena image and the encrypted Lena image is 
shown in Figure 12. It can be visually seen that the channels of the original Lena image 
exhibit sharp fluctuations, while the ciphertext’s channels are uniformly distributed, lead-
ing to better performance in face of deciphering. Therefore, the system is highly resistant 
to statistical attacks for the provided experimental analysis. 

  
(a) (b) 

  
(c) (d) 

Figure 12. Histogram tests of the Lena image: (a) the plaintext image; (b) the histograms of R, G, 
and B channels of the original image; (c) the encrypted image; (d) the histograms of R, G, and B 
channels of the encrypted image. 

4.2.2. Correlation Analysis of Adjacent Pixels 
Considering what is already known, an image as an information carrier is character-

ized by evident relevance between neighboring pixels. Therefore, eavesdroppers usually 
try to exploit this correlation to decipher encrypted images. This is why an encryption 
system should guarantee that the relevance of neighboring pixels is weakened as much as 
possible. In an encrypted image, the relevance among neighboring pixels is supposed to 
be close to zero as an ideal criterion. In this condition, it will be tough to infer the plaintext 
image while intercepting an encrypted image from an unsafe communication channel, 
such as the situation in satellite communications. The relevant equation for the neighbor-
ing pixels is defined as 

1

1( )
=

= 
N

i
i

E x x
N   

(15)

Figure 12. Histogram tests of the Lena image: (a) the plaintext image; (b) the histograms of R, G, and
B channels of the original image; (c) the encrypted image; (d) the histograms of R, G, and B channels
of the encrypted image.

4.2.2. Correlation Analysis of Adjacent Pixels

Considering what is already known, an image as an information carrier is characterized
by evident relevance between neighboring pixels. Therefore, eavesdroppers usually try to
exploit this correlation to decipher encrypted images. This is why an encryption system
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should guarantee that the relevance of neighboring pixels is weakened as much as possible.
In an encrypted image, the relevance among neighboring pixels is supposed to be close
to zero as an ideal criterion. In this condition, it will be tough to infer the plaintext image
while intercepting an encrypted image from an unsafe communication channel, such as the
situation in satellite communications. The relevant equation for the neighboring pixels is
defined as

E(x) =
1
N

N

∑
i=1

xi (15)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (16)

Cov(x, y) =
1
N

N

∑
i=1

(xi − E(x))(yi − E(y)) (17)

rxy =
|Cov(x, y)|√
D(x)× D(y)

(18)

where rxy represents the correlation coefficient of neighboring pixels x and y. E(x) denotes
the expectation. D(x) denotes the variance. Cov(x, y) denotes the covariance of x and y.

Figure 13 displays the pixel distributions of the original and encrypted Lena image.
Figure 13a shows that the adjacent pixels in the horizontal direction of the original image
cluster relatively densely around the diagonal of the figure. On the other hand, the pixels
of the ciphertext image erratically scatter throughout the figure. It is implied that the
proposed encryption method has efficiently reduced the relevance of the adjacent pixels of
the image. The distributions in horizontal and diagonal directions are also consistent with
the above description.
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Figure 13. Pixel distributions of the Lena image: (a) The distribution of the original image in the
horizontal direction. (b) The distribution of the encrypted image in the horizontal direction. (c) The
distribution of the original image in the vertical direction. (d) The distribution of the encrypted image
in the vertical direction. (e) The distribution of the original image in the diagonal direction. (f) The
distribution of the encrypted image in the diagonal direction.
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Meanwhile, a quantitative assessment has been conducted. The correlation metrics
of three original images and relative encrypted images in three directions are presented
in Table 8. It can be inferred from the data below that the applied encryption scheme has
gained satisfying performance. The correlation comparison between the proposed scheme
and other reference schemes is shown in Table 9. The proposed scheme achieved better
performance overall, as we can see. That is, the proposed scheme is equipped with a better
ability to resist statistical attacks, compared with the others.

Table 8. Relevance of the adjacent pixels: tests of the plaintext images and ciphertext images.

Image
Horizontal Vertical Diagonal

Plaintext Ciphertext Plaintext Ciphertext Plaintext Ciphertext

Lena
R 0.9756 0.0221 0.9864 0.0299 0.9639 −0.0120
G 0.9755 0.0017 0.9875 0.0001 0.9650 0.0265
B 0.9537 0.0073 0.9721 0.0116 0.9341 0.0077

Peppers
R 0.9625 −0.0123 0.9692 0.0077 0.9574 −0.0061
G 0.9799 −0.0119 0.9832 0.0110 0.9675 0.0011
B 0.9650 −0.0169 0.9609 −0.0201 0.9411 0.0244

Airplane
R 0.9717 0.0171 0.9515 −0.0075 0.9270 0.0011
G 0.9538 0.0049 0.9670 −0.0136 0.9270 0.0218
B 0.9619 0.0107 0.9311 0.0011 0.9102 0.0095

Table 9. The relevance of the encrypted Lena image compared with other references.

Reference Horizontal Vertical Diagonal

Ours 0.0037 0.0139 0.0074
[39] 0.0076 –0.0125 0.0101
[40] 0.0214 0.0465 −0.0090
[42] 0.0139 0.0073 0.0104

4.2.3. Information Entropy

Information entropy is derived from the concept of entropy in thermodynamics. This
metric describes the average information after eliminating redundancy. For images, it
provides a quantitative assessment of cluttered pixels. The ideal situation is that the
entropy is close to 8, implying a uniform distribution of the image to resist statistical
attacks. It is mathematically described as

H = −
L

∑
i=0

p(i) log2 p(i) (19)

where p(i) is the occurrence probability of the i-th pixel from the L-level gray image. The
information entropy of an image is proportional to its unpredictability. The entropy details
of the R, G, and B channels of before- and after-encryption images are listed in Table 10.
It is shown that the values quite closely approach the theoretical value. Furthermore, the
comparison of the proposed scheme with other schemes has been conducted on three
channels, as shown in Table 11, proving a better performance of the proposed scheme.

To further verify the randomness of the ciphertext images, we used local Shannon
entropy (LSE) to enhance the experiments. LSE can be calculated by Equation (20)

Hk,TB(S) =
k

∑
i=1

H(Si)

k
(20)

where k is the quantity of non-overlapping chunking blocks Si; TB denotes the pixel quantity
of every Si. H(Si) can be calculated by Equation (19). When k = 25 and TB = 1936, the
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result of the LSE test performed on Lena (256 × 256) is 7.902654720. According to [44,45],
this value passed the LSE test, validating the randomness of the ciphertext.

Table 10. Information entropy tests of the plaintext images and ciphertext images.

Image
Entropy

Plaintext Ciphertext

Lena (256 × 256)
R 7.2682 7.9994
G 7.5901 7.9993
B 6.9951 7.9992

Peppers (512 × 512)
R 7.3388 7.9994
G 7.4963 7.9994
B 7.0583 7.9992

Airplane (512 × 512)
R 6.7113 7.9993
G 6.7853 7.9992
B 6.2128 7.9993

Table 11. The entropy comparison of the encrypted Lena image (512 × 512) with other references.

Reference
Entropy

R G B

Ours 7.9993 7.9993 7.9992
[39] 7.9997 7.9937 7.9976
[41] 7.9991 7.9993 7.9993
[43] 7.9914 7.9907 7.9907

4.3. Classical Types of Attack
4.3.1. Differential Attack

To be resistant to differential attacks related to the plaintext sensitivity, a cryptosystem
should guarantee that tiny modifications in the plaintext image result in a significant
difference in the ciphertext image. The number of pixels with change rate (NPCR) is one of
the common measurement metrics, and the uniform average change rate intensity (UACI)
is another one. Security criteria are met when the NPCR is close to the ideal value of
99.6094% and the UACI is close to 33.4635%. NPCR and UACI are described as

NPCR =

M
∑

i=1

N
∑

j=1
D(i, j)

M× N
× 100% (21)

UACI =

M
∑

i=1

N
∑

j=1
|P1(i, j)− P2(i, j)|

255×M× N
× 100% (22)

where the size of the image is denoted as M× N. D(i, j) is the pixel difference between
P1(i, j) and P2(i, j), defined as

D(i, j) =

{
0 P1(i, j) = P2(i, j)
1 P1(i, j) 6= P2(i, j)

(23)

Table 12 gives the NPCR and UACI collections of the proposed scheme. Table 13
compares them with values from other references. The results show that the values of
NPCR and UACI of the scheme are close to the ideal parameters, suggesting that the
scheme can resist differential attacks better.
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Table 12. The NPCR and UACI data of different images.

Image NPCR (%) UACI (%)

Lena 99.6081 33.4478
Peppers 99.6113 33.4462
Airplane 99.6156 33.4521
Barbara 99.6014 33.4496

Table 13. The NPCR and UACI results compared with other referenced literature.

Reference NPCR (%) UACI (%)

Ours 99.6081 33.4478
[41] 99.6403 33.4968
[43] 99.6211 33.5113
[46] 99.6098 33.4477

4.3.2. Known and Chosen Plaintext Attack

Considering that the eavesdropper intercepts the plaintext and the ciphertext image,
this leads to the eavesdropper guessing the key based on the difference while making
tiny changes. In the proposed scheme, the key generation is determined by the images
needed to be encrypted; that is, a one-time pad mechanism is applied as the input changing
mechanism. Moreover, the designed scrambling method is associated with the key streams,
and different key streams imply different shuffling position matrices for scrambling pixels.
Based on the above analysis, the proposed scheme can resist plaintext-relative attacks.

4.4. Robustness Analysis

During communication, potential noise pollution of information exists in the trans-
formation process. To assess the robustness of the proposed encryption system, tests of
using different densities of noise to pollute the encrypted image were conducted separately.
Figure 14 displays the decryption results of adding noise of densities 0, 0.05, 0.1, and 0.2.
Although there are some snowflakes on the decrypted image, we can still distinguish valid
information from the results. It is proved that the system is equipped with robustness
against noise attacks.
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5. Conclusions

In this paper, a new 5-D hyperchaotic system is constructed and a novel plaintext-
correlated image encryption scheme based on the combination of the 5-D hyperchaotic
system and the Hopfield chaotic neural network is proposed. Structurally, the scheme
consists of two main encryption stages, perpetuation and diffusion. First, the original
image is used for chunking to yield the initial condition keys and the selection keys for
the initial key combination. Then, the initial keys are used to yield chaotic sequences of
the two systems as key streams for the encryption system. Afterward, the key streams are
used to construct the shuffling position matrices to complete the pixel-level scrambling.
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Finally, in the diffusion phase, the chaotic sequences and DNA coding are combined to
achieve diffusion encryption. The R, G, and B channels are merged to obtain the complete
encrypted image. Generally, the application of HC5D and HCNN introduces a huge key
space, making the scheme effectively defendable against brute attacks. In addition, the
system introduces a plaintext-relative key generation mechanism; due to the sensitivity to
images, it is capable of defending against plaintext-relative attacks. Moreover, compared
with the traditional cryptosystem based on a single chaotic system, combining HC5D with
HCNN can obtain a more sophisticated encryption structure, avoiding the encryption
system degradation problem caused by a simple structure. Thus, the encryption system
can achieve higher security. Security analyses are carried out to validate the performance of
the proposed scheme. In conclusion, the above statistics indicate that the proposed scheme
can safeguard sensitive information and is attack-resistant.
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