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Abstract: Numerous methods have been developed for longitudinal binomial data in the literature.
These traditional methods are reasonable for longitudinal binomial data with a negative association
between the number of successes and the number of failures over time; however, a positive association
may occur between the number of successes and the number of failures over time in some behaviour,
economic, disease aggregation and toxicological studies as the numbers of trials are often random. In
this paper, we propose a joint Poisson mixed modelling approach to longitudinal binomial data with
a positive association between longitudinal counts of successes and longitudinal counts of failures.
This approach can accommodate both a random and zero number of trials. It can also accommodate
overdispersion and zero inflation in the number of successes and the number of failures. An optimal
estimation method for our model has been developed using the orthodox best linear unbiased
predictors. Our approach not only provides robust inference against misspecified random effects
distributions, but also consolidates the subject-specific and population-averaged inferences. The
usefulness of our approach is illustrated with an analysis of quarterly bivariate count data of stock
daily limit-ups and limit-downs.

Keywords: best linear unbiased predictors; logistic regression; nonparametric random effects;
overdispersion; random cluster sizes; zero inflation
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1. Introduction

There is continuing interest in developing mixed models for longitudinal binomial
data [1,2]; however, these methods in the literature generally assume a fixed number of
trials, and thus imply a negative association between the number of successes and the
number of failures. As the number of trials is fixed, an increase in the number of successes
implies a decrease in the number of failures, and vice versa. In practice, however, the
number of successes and the number of failures are often positively associated when the
number of trials is random. That is, the number of successes and the number of failures
can increase or decrease simultaneously. This can be illustrated further with a hypothetical
example in Table 1. Clearly the sample correlation is 1 although both probabilities of success
and failure are 0.5. This is because the two outcomes can increase together if the totals are
not fixed. On the other hand, when the totals are fixed, the increase of one outcome is at
the loss of the other; therefore, they are negatively associated. Thus, the inference methods
for the case of fixed cluster sizes are no longer valid for the case of varying cluster sizes
since the key assumption of negative association has been violated [3].
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Table 1. A hypothetical example.

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8

Success 10 20 30 40 50 60 70 80
Failure 10 20 30 40 50 60 70 80

Total 20 40 60 80 100 120 140 160

In the analysis of clustered binary data, the importance of accounting for randomness
in the cluster sizes has long been recognized in developmental toxicity studies, disease
aggregation and behaviour studies [4,5]; therefore, varying cluster sizes are likely to occur
if such data are collected longitudinally in these areas. Hence, mixed models that can
accommodate a random number of trials are also needed in the analysis of longitudinal
binomial analysis of positively associated numbers of successes and numbers of failures. In
addition, traditional approaches to mixed models for longitudinal binomial data usually
rely on the specification of particular random effects distributions; therefore, concerns
over the validity of the assumed random effects distributions and the robustness of such
inferences were raised [6].

Our work is motivated by the daily price limit policy in Chinese stock market. Quar-
terly bivariate counts of stock daily limit-ups and limit-downs were collected over 49 sea-
sons from the second quarter of 2007 to the second quarter of 2019 for 60 randomly selected
stocks. The quarterly counts of stock daily limit-ups and the quarterly counts of stock
limit-downs were positively correlated over time within every stock; the Pearson correla-
tion coefficient ranged from 0.11 to 0.92 with an average of 0.54 for these 60 stocks. The
mixed models for longitudinal binomial data in the literature imply a negative association
between the number of successes and the number of failures and are inappropriate for the
analysis of quarterly bivariate counts of stock daily limit-ups and limit-downs for these
stocks. These binomial mixed models in the literature also imply that the number of trials
is always positive; however, more than 58% of the corresponding number of trials for our
quarterly bivariate counts of stock daily limit-ups and limit-downs were exactly zero. The
research on the price limit of stock mainly focuses on its impact on stock volatility [7–9]. It is
generally believed that the price limit policy strengthened the herding effect of the market
and made stock prices a self-exciting process. This is indeed one of the characteristics of
Chinese stock market, that is, stocks are prone to frequent limit-ups and limit-downs. For
market managers, in the process of extreme market fluctuations, the limit-ups and limit-
downs bring a lack of liquidity, and the market is prone to systemic risks. For investors, the
extreme volatility of stocks will directly affect their investment decisions and investment
returns; therefore, the instability of the stocks is of great interest in the analysis of extreme
price fluctuations but has not been studied so far.

In this paper, we propose a three-level joint Poisson mixed model for both longitudinal
counts of successes and longitudinal counts of failures in the longitudinal binomial data
with varying numbers of trials over time. Without loss of generality, we describe the
model here in terms of quarterly data of stock daily limit-ups and limit-downs to facilitate
understanding. First, we introduce stock-specific random effects shared by both counts
of stock daily limit-ups and limit-downs. The higher the stock-specific distribution-free
random effects, the higher both quarterly counts of stock daily limit-ups and limit-downs;
therefore, the stock-specific random effect characterizes the instability of the corresponding
stock. Second, conditioning on stock-specific random effects, we introduce two sequences of
autocorrelated distribution-free random effects; one for quarterly counts of stock daily limit-
ups, whereas the other is for quarterly counts of stock daily limit-downs. Finally, given both
stock-specific and the corresponding autocorrelated random effects, we assume that both
quarterly counts of stock daily limit-ups and limit-downs follow Poisson distributions with
time-dependent covariates. This joint Poisson mixed model can accommodate randomness
and zero in the total counts of quarterly stock daily limit-ups and limit-downs at each time
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point and imply a positive cross association between the quarterly counts of stock daily
limit-ups and the quarterly counts of stock limit-downs. Following Ma and Jørgensen [10]
and Ma et al. [5], we develop a model estimation based on the orthodox best linear unbiased
predictors (BLUP) of random effects given the data. As our approach does not require
the specification of any parametric distribution for random effects, our inference is robust
against misspecified random effects distributions. To the best of our knowledge, this is the
first time a mixed model is developed for longitudinal binomial data where the number of
successes and the number of failures are positively associated over time.

The rest of the paper is organized as follows. After introducing quarterly count data of
stock daily limit-ups and limit-downs in Section 2, we propose a joint model for bivariate
longitudinal counts and discuss its implied longitudinal binomial model in Section 3. In
Section 4, we discuss the orthodox best linear unbiased predictors of random effects and
model estimation. We analyze the quarterly stock price limits data in Section 5 and conclude
in Section 6.

2. Quarterly Data of Stock Daily Limit-Ups and Limit-Downs

A unique daily price limit policy has been in place in Chinese stock market since 13
December 1996. The purpose of the price limit policy is to reduce the volatility of prices
by setting limits on how much each stock can rise or fall on a daily basis. The price can
move within 10% of the previous day’s closing price, and a quotation that is outside the
range will be invalid. These daily limits on rise or fall are called stock daily limit-ups and
limit-downs.

To characterize the instability of the stocks, quarterly bivariate counts of stock daily
limit-ups and limit-downs were collected over 49 seasons from the second quarter of 2007
to the second quarter of 2019 for 60 selected stocks. These 60 stocks were randomly selected
from the CSI Small cap 500 index (CSI 500) index in order to make the selected samples
generally representative of the market and make the conclusion of this research widely
applicable. The data are available from http://www.sse.com.cn/ (accessed on 5 January
2020) and http://www.szse.cn/ (accessed on 5 January 2020). The parallel boxplots of this
pair of quarterly counts of stock daily limit-ups and limit-downs are displayed in Figure 1
below. The quarterly counts of stock daily limit-ups range between 0 and 21, whereas the
quarterly counts of stock daily limit-downs range between 0 and 18. All these counts are
far below their ceiling counts of around 60 (trading days); thus, the ceiling counts are not
necessarily a concern for our use of conditional Poisson for the quarterly counts [11].

To study the relationship between quarterly bivariate counts of stock daily limit-ups
and limit-downs and basic characteristics of stocks that are prone to rise and fall limits,
we also collected information on the following three variables quarterly: price-to-earnings
ratio (PE), price-to-book ratio (PB) and price-to-sales ratio (PS). These three variables are
common and important growth indicators reflecting stock fundamentals [12–14]. Our
analysis results are expected to help managers and investors in risk management and
investment decision-making.

http://www.sse.com.cn/
http://www.szse.cn/
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Figure 1. Parallel box plots of quarterly counts of stock daily limit-ups (top panel) and limit-downs
(bottom panel). The quarters are numbered consecutively in the horizontal axis with “1” for the
second quarter of 2007 and 49 for the second quarter of 2007.

3. Joint Model for Bivariate Longitudinal Counts
3.1. The Model

Let Yi1t be the quarterly count of daily limit-ups and Yi2t the quarterly count of daily
limit-downs, where i indexes one of these 60 stocks, i = 1, . . . , m = 60, and t = 1, . . . , T = 49
indexes the seasons under study with t = 1 corresponding to the second quarter of 2007 and
t = 49 the second quarter of 2019. Let Nit be the total number of limit-ups or limit-downs
for the ith stock in the tth season. We model the quarterly counts of daily limit-ups and
limit-downs jointly through a three-level Poisson mixed model as follows.

Assumption 1. At the top level, we introduce a stock-specific random effect Ui for each stock,
i = 1, . . . , m. We assume that the Ui’s are positive, independently and identically distributed with
mean 1 and variance σ2.

Assumption 2. At the second level, we introduce two sequences of random effects for quarterly
counts of daily limit-ups and limit-downs of each stock, Vi1t for the count of daily limit-ups Yi1t and
Vi2t for the count of daily limit-downs Yi2t. Denote U = (U1, U2, . . . , UT)

′. Conditioning on U,
we assume that these stock × season random effects are positive and identically distributed with

E(Vi1t|U) = E(Vi2t|U) = Ui
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and

Cov(Vijt, Vi′ j′t′ | U) =

{
τ2

j ρj(t,t′)Ui if i = i′ and j = j′

0 if i 6= i′ or j 6= j′

with ρj(t,t′) = 1 for t = t′, j, j′ = 1, 2. This formulation of correlations of the random effects is
general as it encompasses various correlation structures including unstructured, m-dependence,
Toeplitz, exchangeable, etc. In this paper, we focus on the first-order autoregression (AR(1)), in
which Cor(Vijt, Vijt′) = ρ

|t−t′ |
j .

Assumption 3. At the response level, we assume the quarterly counts of limit-ups and limit-
downs are conditionally Poisson distributed, given the stock-specific random effects and the stock
× season random effects. Denote V = (V′1, V′2, . . . , V′m)′, where Vi = (V′i1 , V′i2)

′, Vij = (Vij1,
Vij2, . . . , VijT)

′ and W = (U′, V′)′. Specifically, we assume that counts Yi1t’s and Yi2t’s are
conditionally independent and Poisson distributed with{

Yi1t | W ∼ Poisson(Vi1t exp(z′itα + x′itβ))
Yi2t | W ∼ Poisson(Vi2t exp(z′itα))

(1)

where xit = (xit1, xit2, . . . , xitp)
′ and zit = (zit1, zit2, . . . , zitp)

′ are known vectors of covariates, α
and β are unknown regression coefficients. Here, we employ the same strategy as in Ma et al. [5] to
incorporate covariates in the model. In general, z and x can be different, but they are the same in the
analysis of this paper:

z′itα = α0 + PEα1 + PBα2 + PSα3 and x′itβ = β0 + PEβ1 + PBβ2 + PSβ3.

Remarks. (1) The proposed joint Poisson mixed model can accommodate both a
random and zero number of trials. From Equation (1), given all the random effects, the
total number of counts Nit is also conditionally independent and Poisson distributed,

Nit | W ∼ Poisson(Vi1t exp(z′itα + x′itβ) + Vi2t exp(z′itα)). (2)

Clearly, Nit can take a value of zero with positive probability and thus, our model can
handle the case that both the quarterly counts of limit-ups and limit-downs are zeros. This
is advantageous to traditional logistic mixed models for the number of successes in which
the portion of data with zero number of trials has to be excluded from the analysis.

(2) As each of the pair of Poisson mixed models is a generalization of a negative
binomial model, our model can accommodate overdispersion and zero inflation.

(3) In Assumptions 1 and 2 above, we only assume the mean and variance structures
of the random effects, without specifying any parametric form for their distributions.
Furthermore, our estimation method to be discussed in the next section requires only these
first two moments of the random effects. Thus, our model is robust against misspecified
random effects distributions.

(4) Our model consolidates subject-specific and population-averaged inferences for the
number of successes and for the number of failures. Under the model setup, the marginal
means of the counts are

E(Yi1t) = exp(z′itα + x′itβ) and E(Yi2t) = exp(z′itα) (3)

Comparing Equations (1) and (3), it is clear that the regression parameters α and β can be
interpreted marginally the same way as conditionally.

(5) The number of successes Yi1t is conditionally binomial, given the number of trials
and the random effects:

Yi1t | (Nit, W) ∼ binomial(Nit, pit), (4)
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where

pit =
Vi1t exp(x′itβ)

Vi1t exp(x′itβ) + Vi2t
.

Thus, the binomial probability pit is linear in the regression parameters β under the logit
link as follows:

logit(pit) = log
(

Vi1t
Vi2t

)
+ x′itβ. (5)

Note that α does not appear in Equation (5); therefore, it is auxiliary in this induced
binomial model.

3.2. Covariance Structure

We now give the moment structures of the random effects and responses which will
be used in the model estimation; these can be obtained after some algebraic calculations by
the method of conditioning on random effects. For ease of programming, we present some
results in matrix forms.

In addition to the vectors introduced so far, let Y′i = (Y′i1, Y′i2)
′ where Yi1 = (Yi11, Yi12,

. . ., Yi1T)
′ and Yi2 = (Yi21, Yi22, . . . , Yi2T)

′. Similarly, let µi = (µ′i1, µ′i2)
′ where µi1 = (µi11,

µi12, . . ., µi1T)
′, µi2 = (µi21, µi22, . . ., µi2T)

′, µi1t = exp(z′itα + x′itβ) and µi2t = exp(z′itα).
The means of the random effects and the responses are

E(Ui) = 1, E(Vi) = 1, E(Yi) = µi, (6)

respectively, where 1 is a vector of ones. The variances of Vi is

Var(Vi) = σ2J +
[

τ2
1 R1 0
0 τ2

2 R2

]
(7)

where Rj is the correlation matrix of Vij, j = 1, 2. The variance of Yi is

Var(Yi) = diag(µi) + diag(µi)Var(Vi)diag(µi) (8)

where diag(µi) is the diagonal matrix of µi. The covariances between the random effects
and the responses are

Cov(Ui, Yi) = σ2µ′i, Cov(Vi, Yi) = Var(Vi)diag(µi), (9)

respectively.

4. Model Estimation

Similar to Ma et al. [10], we adopt an iterative EM-like algorithm for the model
estimation. While updating a component in an iteration, which can be either a vector of
random effects, regression parameters or dispersion parameters, we keep other unknowns
at their current values. Thus, in the subsections below, we treat random effects and/or
parameters as known except the ones under discussion.

4.1. Prediction of Random Effects

Let the inverse of Var(Yi) be denoted by Var−1(Yi), i = 1, 2, . . . , m. The values of the
random effects are updated by the orthodox BLUPs of the random effects as follows:

Ûi = E(Ui) + Cov(Ui, Yi)Var−1(Yi)[Yi − E(Yi)], (10)

and
V̂i = E(Vi) + Cov(Vi, Yi)Var−1(Yi)[Yi − E(Yi)]. (11)

where the terms in the equations are given in Equations (6)–(9). As pointed out in [10],
the orthodox BLUPs minimize the mean squared distance between the random effects
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and their predictors within the class of linear functions of the responses. The estimating
equations for the regression and random effects parameters can then be constructed based
on these predictors.

4.2. Estimation of Regression Parameters

As in Ma et al. [5], we may rewrite Equation (1) into a single Poisson mixed model
with regression parameters γ = (α′, β′)′ as follows:

Yijt|W ∼ Poisson(Vijt exp(x′ijtγ)), (12)

where xi1t = (z′it, x′it)
′ and xi2t = (z′it, 0′)′. Thus, we may adapt the orthodox BLUP

approach in [10] to our model.
We first differentiate the partially observed “joint” log-likelihood for the data and the

random effects with respect to the regression parameters γ to obtain the partially observed
“joint” score function. We then have an unbiased estimating equation for γ below, by
replacing the random effects with their corresponding orthodox BLUP predictors:

ψ(γ) =
m

∑
i=1

2

∑
j=1

T

∑
t=1

x′ijt
[
yijt − V̂ijt(γ)µit(γ)

]
= 0. (13)

Following Ma et al. [10], Equation (13) can be solved iteratively using the Newton scoring
algorithm [15] with γ being updated as follows:

γ∗ = γ− S−1(γ)ψ(γ) (14)

with the explicit expression of the sensitivity matrix given by

S(γ) = −
m

∑
i=1

X′idiag(µi)Var−1(Yi)diag(µi)Xi

where X is the design matrix formed by stacking xijt’s, i.e., Xi = (xi11, . . ., x11T , xi21, . . .,
xi2T)

′.
The optimality results in Ma et al. [10] still hold, i.e., under mild regularity conditions,

the solution to Equation (13) is consistent and asymptotically normal with asymptotic mean
γ and asymptotic variance given by the inverse of the negative sensitivity matrix S(γ).

4.3. Estimation of Random Effects Parameters

In this subsection, we present a moment approach to estimate the unknown random
effects parameters σ2, τ2

j and ρj, j = 1, 2.

Following Ma and Jørgensen [10], the dispersion parameter σ2 for the stock-specific
random effects can be estimated in terms of their corresponding orthodox BLUPs Ûi’s with
a bias correction. After some algebraic calculation, the iterative equation for updating σ2

can be expressed as

σ̂2
r =

1
m

m

∑
i=1

{
(Ûi − 1)2 + ci

}
, (15)

where ci is a bias-correction term defined as

ci = σ̂2
r−1 − σ̂4

r−1µ′iVar−1(Yi)µi

with σ̂2
r−1 as the estimate from the previous iteration. Similarly, the iterative equations for

estimating τ2
1 and τ2

2 are given as

τ̂2
j,r =

1
mT

m

∑
i=1

T

∑
t=1

{
(V̂ijt − Ûi)

2 + dijt

}
, (16)
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where the bias-correction term dijt is expressed as

dijt =τ̂2
j,r−1 − σ4µ′iVar−1(Yi)µi −Cov(Vijt, Yi)Var−1(Yi)Cov(Yi, Vijt)

+ 2Cov(Ui, Yi)Var−1(Yi)Cov(Yi, Vijt).

For unstructured correlation structures, ρj,(t,t′) can be estimated using an adjusted
Pearson estimator as

ρ̂j,(t,t′) =
∑m

i=1

{
(V̂ijt − Ûi)(V̂ijt′ − Ûi) + bij,(t,t′)

}
[{

∑m
i=1(V̂ijt − Ûi)2 + dijt

}{
∑m

i=1(V̂ijt′ − Ûi)2 + dijt′
}]1/2 , (17)

where bij,(t,t′) is the correction term which can be simplified as

bij,(t,t′) =ρj,(t,t′)τ
2
j −Cov(Vijt, Yi)Var−1(Yi)Cov(Yi, Vijt′)− σ4µ′iVar−1(Yi)µi

+ σ2µ′iVar−1(Yi)Cov(Yi, Vijt) + σ2µ′iVar−1(Yi)Cov(Yi, Vijt′)

For various patterned correlation, we can obtain the patterned correlation matrix from
Equation (17). To estimate ρj under AR(1) structure, it would be sufficient to estimate the
lag 1 (ρ1

j = ρj) correlation only, which can be estimated as

ρ̂j =
∑m

i=1 ∑T−1
t=1

{
(V̂ijt − Ûi)(V̂ij(t+1) − Ûi) + bij,(t,t+1)

}
[{

∑m
i=1 ∑T−1

t=1 (V̂ijt − Ûi)2 + dijt

}{
∑m

i=1 ∑T−1
t=1 (V̂ij(t+1) − Ûi)2 + dij,t+1

}]1/2 . (18)

4.4. Computational Procedures

To start the estimating algorithm, we need some sensible initial values for the unknown
parameters. We obtained the initial values γ̂0 of the regression parameters by fitting a
Poisson regression to Equation (12) ignoring the random effects. The initial value ρ̂j,0 of ρj
was taken to be the lag 1 sample correlation of the quarterly counts of daily limit-ups or
limit-downs. Similarly, by treating appropriate averages of the counts as rough estimates
of the random effects, we obtained the initial values of the dispersion parameters as the
sample moments of the random effects. Specifically, the initial value of σ2 was taken as

σ̂2
0 =

1
m

m

∑
i=1

{[
1

2T

2

∑
j=1

T

∑
t=1

Yijt

]
− 1

}2

and the initial value of τ2
j was

τ̂2
j,0 =

1
T

T

∑
t=1

{[
1
m

m

∑
i=1

Yijt

]
− 1

}2

The algorithm was iterated as follows.

Step 1: Initialize the parameters with γ0, σ2
0 , τ2

j,0 and ρj,0 as described above.

Step 2: At the rth iteration,

(1) Update regression parameters γ by Equation (14),
(2) Predict the random effects by their orthodox BLUPs given in Equations (10)

and (11),
(3) Update dispersion parameter σ2 by Equation (15),
(4) Update dispersion parameter τ2

j by Equation (16),

(5) Update correlation ρj by Equation (18).
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Step 3: Repeat Step 2 until the sum of absolute changes in the parameters is below a
prespecified threshold, for example, 10−4 or 10−7.

5. Analysis of Quarterly Counts of Stock Daily Limit Ups and Limit Downs

We first present some descriptive statistics of the variables in Tables 2 and 3. From
Table 2, the variables PB and PS are highly dispersed; for computational stability considera-
tion, we divided all these three predictors PE, PB and PS by 100 in our analysis. In Table 3,
we observe that the counts of limit-ups and limit-downs are positively correlated (r = 0.56),
and that the counts are also positively correlated with PE and PB although the correlations
are weaker.

Table 2. Summary statistics of the variables.

Min. 1st Qu. Median 3rd Qu. Max. Mean SD

Up 0 0 0 1 21 0.76 1.55
Down 0 0 0 0 18 0.51 1.43

PE −1449.53 17.09 33.29 70.87 3676.97 93.96 271.06
PB −16.34 1.66 2.73 4.72 100.64 3.94 5.22
PS 0.05 1.17 2.84 6.60 4629.43 13.98 173.92

Table 3. Pearson’s sample correlations of the variables.

Up Down PE PB PS

Up 1.00 0.56 0.12 0.21 −0.01
Down 0.56 1.00 0.06 0.10 −0.01

PE 0.12 0.06 1.00 0.21 0.17
PB 0.21 0.10 0.21 1.00 0.04
PS −0.01 −0.01 0.17 0.04 1.00

The trace plots of all these five variables, limit-ups, limit-downs, PE, PB and PS, are
presented in Figure 2 for four stocks, one in each panel. There seems to be some evidence
that PE and PB follow the same temporal pattern. Furthermore, PE looks different than PB
and PS.

We fitted the proposed model to the stock instability data. The parameter estimation
results are presented in Table 4.

The price-to-book ratio variable PB is defined as the stock price divided by the net
asset value per share. PB represents the intrinsic value of the stock. The higher the PB is, the
lower the intrinsic value of the stock is. The estimated effect of PB on the quarterly count
of daily limit-ups was β∗1 = 0.0345 and significant, with a p-value 0.0200 < 0.05, whereas
the estimated effect of PB on the quarterly count of daily limit-downs was α1 = 0.0308
but insignificant, with a p-value 0.2070 > 0.05. Furthermore, the estimated effect of PB on
the corresponding binomial proportion was β1 = 0.0038, but highly insignificant, with a
p-value of 0.8938. In other words, only the quarterly count of daily limit-ups was affected
by PB significantly, whereas neither the quarterly count of daily limit-downs nor the
corresponding binomial proportion was affected by PB significantly.

The price-to-earnings ratio variable PE is defined as the price of a stock divided by
the earnings per share. PE represents the valuation of the stock: the higher the PE, the
higher the valuation of the stock. The estimated effects of PE on both quarterly counts of
daily limit-ups and limit-downs were positive and highly significant. More specifically,
the corresponding regression parameters for quarterly numbers of limit-ups and limit-
downs were estimated as β∗2 = 9.2711 and α2 = 5.9616 with p-values of 0.0000 and 0.0000,
respectively. Furthermore, the estimated effect of PE on binomial proportion was also
positive and highly significant with β2 = 3.3095 and a p-value of 0.0080. That is, with
PB and PS being held constant, as PE increased, both quarterly counts of daily limit-ups
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and limit-downs tended to increase significantly, and so did the corresponding binomial
proportion. In other words, as PE increased, the quarterly count of daily limit-ups tended
to increase faster than the quarterly count of limit-downs.
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Figure 2. Trace plots of all the variables for four randomly selected stocks. The variables PE, PB and
PS were scaled within the stock, that is, subtracting the sample mean and then dividing by the sample
standard deviation.

The price-to-sales ratio variable PS was defined as the price of a stock divided by the
sales per share. None of the estimated effects of PS on the quarterly count of daily limit-ups,
the quarterly count of daily limit-downs and the corresponding binomial proportion were
significant; these insignificance results of PS were also in agreement with the close-to-zero
sample correlations with the counts of limit-ups (r = −0.01) and limit-downs (r = −0.01)
in Table 3.

The stock-specific random effects helped characterize the positive association between
quarterly counts of daily limit-ups and limit-downs. The higher the stock-specific random
effects, the higher the frequencies of both quarterly counts of daily limit-ups and limit-
downs; therefore, the stock-specific random effects reflected stock instabilities. Thus, we
term stock-specific random effects as stock-specific instabilities hereafter. We present the
parallel box plots of the predicted stock-specific random effects by industry in Figure 3
to assess stock-specific instabilities. First, the mining industry tended to have much
higher stock instabilities than other industries. Second, the production and supply of
electricity, construction, manufacturing, service and pharmaceutical industries tended to
have relatively lower stock instabilities. Third, the IT industry had a wide range of stock
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instabilities from very low to very high, whereas the financial industry tended to have
higher than average stock instabilities with much narrower range. Finally, the logistics
industry tended to have very low stock instabilities with an exception.

Table 4. Parameter estimates in the model for the analysis of quarterly counts of stock daily limit-ups
and limit-downs. (The covariates PB, PE and PS were divided by 100 in the analysis).

Estimate Standard Error p-Value

Intercept (β0) 0.2063 0.0957 0.0311
PB (β1) 0.0038 0.0283 0.8939
PE (β2) 3.3095 1.2476 0.0080
PS (β3) 0.2416 0.4743 0.6106

Intercept (β∗0) −0.7445 0.0595 0.0000
PB (β∗1) 0.0345 0.0148 0.0200
PE (β∗2) 9.2709 0.6666 0.0000
PS (β∗3) −0.1230 0.1226 0.3156
Intercept (α0) −0.9508 0.0817 0.0000
PB (α1) 0.0308 0.0244 0.2071
PE (α2) 5.9614 1.0633 0.0000
PS (α3) −0.3646 0.4606 0.4286

σ2 0.0295
τ2

1 1.9986
τ2

2 5.4142
ρ1 0.4157
ρ2 0.2880
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Figure 3. Parallel box plots of the predicted stock-specific random effects by industry.



Entropy 2022, 24, 1472 12 of 13

6. Discussion

For longitudinal binomial data, we proposed a joint Poisson mixed model for the
number of successes and the number of failures when their association was positive over
time. Its usefulness and advantages were demonstrated through the analysis of quarterly
data of stock daily limit-ups and limit-downs. Compared with traditional logistic mixed
models, the proposed joint model could still assess covariate effects on the binomial
proportions through the induced binomial model (see Equation (5)), while the influence
of a random number of trials was incorporated. In addition, the ability to allow for zero
number of trials was also an advantage as excluding this portion of data might lead to
biased inferences on the binomial proportion. Furthermore, the predicted stock-specific
random effects enabled the assessment of stock instabilities by industry.

In accordance with the proposed estimation method, we did not specify a parametric
form for the random effects distributions. While this formulation enjoys the property of
robustness against misspecified random effects, it is in principle straightforward to assume
some parametric distributions for the random effects and estimate the parameters using
alternative methods. For example, the hierarchical nature of the model makes it easy to
implement in Bayesian computing package JAGS or OpenBUGS, which only requires users
to specify the model structure.

Finally, the proposed joint Poisson mixed model can be easily extended to longi-
tudinal multinomial data by directly modelling counts of each category with a Poisson
mixed model.
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