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Abstract: A model of a multi-reservoir resource exchange intermediary also defined as a commercial
engine is proposed according to analogies and similarities between thermodynamics and economics.
The optimal configuration of a multi-reservoir commercial engine with a maximum profit output
objective is determined by applying optimal control theory. The optimal configuration consists of
two instantaneous constant commodity flux processes and two constant price processes, and the
configuration is independent of a number of economic subsystems and commodity transfer law
qualitatively. The maximum profit output needs some economic subsystems to never contact with
the commercial engine during commodity transfer processes. Numerical examples are provided
for a three-economic-subsystem commercial engine with linear commodity transfer law. The effects
of price changes of an intermediate economic subsystem on the optimal configuration of a three-
economic-subsystem and the performance of optimal configuration are discussed. The research object
is general, and the results can provide some theoretical guidelines for operations of actual economic
processes and systems.

Keywords: multi-reservoir commercial engine; maximum profit; optimal control; finite time thermo-
dynamics; generalized thermodynamic optimization

1. Introduction

Since the 1970s, Finite Time Thermodynamics (FTT) has made great progress in physics
and engineering fields [1–10]. Many scholars have researched the optimal performances
of thermal and chemical processes and cycles [11–35]. A great deal of work has been per-
formed for the optimal configurations of thermal and chemical processes and cycles [36–53],
including heat transfer, mass transfer, heat and mass transfer, heat engine, refrigerator, heat
pump, chemical reaction, chemical engine, chemical pump, etc., with various optimiza-
tion objectives and considering various transport laws. Amelkin et al. [44,45] proposed
a multi-reservoir heat engine model and found the maximum power configuration. Xia
et al. [46] proposed a multi-reservoir chemical engine model and found the maximum
power configuration.

The analogies and similarities between thermodynamics and economics have been
studied in some years. Some work was based on classical thermodynamics [47–50]. Tsir-
lin [51] applied the FTT idea and method into economics firstly. The finite commodity
flow rate (CFR) was considered to obtain a minimal expense and maximum profit output
(MPO) of resource exchange with linear commodity transfer law (CTL) [n ∝ ∆(P)]. De
Vos [52,53] provided the concept of endoreversible economics and introduced a generalized
CTL [n ∝ ∆(Pm)]. Tsirlin [54], Tsirlin et al. [55–57], and Amelkin et al. [58] applied FTT
into microeconomics and performed capital dissipation minimization (CDM), which is
analogous to entropy generation minimization for thermal, mass and chemical systems.
Amelkin [59] and Tsirlin [60] performed CDM with linear CTL and MPO of complex eco-
nomic systems. Chen [61] and Xia et al. [62,63] performed MPO [61] and CDM [62,63]
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of a single resource exchange process with a generalized CTL. Recently, Tsirlin et al. [64]
provided a comprehensive discussion on FTT in economics.

Temperature difference leads to heat transfer, and price difference leads to commodity
flow, which is the similarity between the heat transfer and commodity trade processes.
However, heat flows from high temperature to low temperature, while commodities flow
from low price to high price, and each commodity flow is accompanied by a counter
capital flow, which is the main difference between them. The similarities and differences
between the optimizations of these two processes need to be further indicated. Based on
the models of a multi-reservoir heat engine proposed in Refs. [44,45] and a multi-reservoir
chemical engine proposed in Ref. [46], this paper will build a model of multi-reservoir
resource exchange intermediary also named a commercial engine by methods of analogy
and transplantation firstly, and it will further derive its optimal cycle configuration for
MPO by applying FTT. This research work will further extend the FTT idea and method
to applications of non-conventional thermodynamic fields, and it will enrich generalized
thermodynamic optimization theory [3,65–68].

2. Modelling

Figure 1 depicts a multi-reservoir commercial engine model. It consists of a commer-
cial engine and N infinite economic subsystems. In the analysis and optimization of a
thermodynamic system, the selection and boundary division of the research object, that is,
the thermodynamic system, are very important. Similarly, in the analysis and optimization
of economic systems, the selection and boundary division are also very important. The
research object selected in this paper is the commercial engine: that is, the middleman or
enterprise acting as the intermediary of commodity trading, and the commodity trading
process between suppliers and consumers must be completed through the commercial en-
gine rather than the direct trading process between suppliers and consumers. For example,
there are situations where the commodity trading between suppliers and consumers cannot
be completed directly due to the objective isolated geographical conditions or the imperfect
trust mechanism. For the direct commodity exchange between suppliers and consumers,
that is named products can be obtained more cheaply by parallel importing them from a
different market from one’s own, this phenomenon also exists, which is not the research
content of this paper. The specific research on the direct commodity exchange between
suppliers and consumers can be seen in Refs. [61,62].
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The purchased and sold prices of the commodity by the commercial engine are P1(t)
and P2(t), respectively. The estimated prices of the commodity by N infinite economic
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subsystems are P0i, where i ∈ [1, N]. The commodity flow between the commercial engine
and economic subsystems has the form

g̃ia(P0i, Pa, θia) = θiagia(P0i, Pa), i ∈ [1, N] (1)

where a ∈ {1, 2}, g̃ia(P0i, Pa, θia) is practical CFR, and gia(P0i, Pa) is an ideal CFR. The
contact function θia describes the contact state between the economic subsystem and the
commercial engine. If the commercial engine is fully contacted with the i-th economic
subsystem, θia = 1; if the commercial engine has no contact, θia = 0. That is, 0 ≤ θia ≤ 1.
All processes in economic subsystems and in commercial engine are reversible, and there
is sole irreversibility in finite-rate commodity flow between economic subsystems and
commercial engines. The ideal CFR gia(P0i, Pa) between a commercial engine and economic
subsystem shows the standard behavior of CTL as a function of commodity prices P0i and
Pa. Let the directions of the commodity flowing into and out of the commercial engine
be positive and negative, respectively. As the commodity flows from low to high price,
gia(P0i, Pa) < 0 if P0i > Pa, gia(P0i, Pa) > 0 if P0i < Pa, and gia(P0i, Pa) = 0 if P0i = Pa. This
is the main difference between the economic system in this paper and the thermodynamic
system in Refs. [44,45]. The system operates under cyclic condition with a fixed duration,
and there is no commodity cumulated inside the commercial engine

1
τ

∫ τ

0

N

∑
i=1

[g̃i1(P0i, P1, θi1) + g̃i2(P0i, P2, θi2)]dt = 0 (2)

The instantaneous profit Π of the commercial engine is

Π(P0, P1(t), P2(t), θ1(t), θ2(t)) = −
N

∑
i=1

[g̃i1(P0i, P1, θi1)P1 + g̃i2(P0i, P2, θi2)P2] (3)

where θa is the contact function vector and P0 is the economic subsystem price vector:

θa = (θ1a, θ2a, . . . . . ., θNa) (4)

P0 = (P01, P02, . . . . . ., P0N) (5)

The average profit Π of the commercial engine per unit time over the total cycle is
given by

Π =
I
τ
= − 1

τ

∫ τ

0

N

∑
i=1

[g̃i1(P0i, P1, θi1)P1 + g̃i2(P0i, P2, θi2)P2]dt (6)

where I is the total profit of the commercial engine over the total cycle.

3. Optimizing Configuration

The problem that should be solved now is to maximize the average profit of a multi-
reservoir commercial engine within τ, that is, to determine the optimal time path of vector
elements (θa(t) = (θ1a, θ2a, . . . . . ., θNa)) of contact functions as well as prices P1(t) and P2(t)
of a commercial engine for the maximum Π shown by Equation (6) subject to the constraint
shown by Equation (2). There are 2N + 2 control variables, and the prices P1(t) and P2(t)
satisfy the condition 0 < P1(t), P2(t) < ∞. The contact function vector θa(t) satisfies

0 ≤ θia(t) ≤ 1; i ∈ [1, N], a ∈ {1, 2}. (7)
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From the objective function of Equation (6) and constraint of Equation (2), the op-
timization problem is a typical averaged nonlinear programming problem. Therefore, a
modified Lagrangian (L) is obtained

L = −
N

∑
i=1

[g̃i1(P0i, P1, θi1)(P1 + λ) + g̃i2(P0i, P2, θi2)(P2 + λ)] (8)

where λ is the time-dependent Lagrange multiplier.

3.1. Optimal Contact Function Paths

From Equation (8), the Lagrangian L depends linearly on each control variable θia;
therefore, the optimal values of θia are the well-known “bang bang” solutions: that is, L will
attain its maximum value only at boundary values {0, 1} of admissible θia. The Pontryagin
maximum principle gives a rule of contact function:

θia(P0i, Pia) =

{
0, gia(P0i, Pa)(Pa + λ) > 0,
1, gia(P0i, Pa)(Pa + λ) < 0,

i ∈ [1, N], a ∈ {1, 2} (9)

Taking a closer look at Equation (9), for gia(P0i, Pa) < 0, it implies that contact Pa of
a commercial engine connects with the economic subsystem at high price and sells the
commodity to it, thus fulfilling the P0i > Pa condition. While for gia(P0i, Pa) > 0, it implies
the P0i < Pa condition. The commercial engine then contacts to the low-price economic
subsystem and purchases the commodity from it. According to the span of the Lagrangian
multiplier λ, three possible cases are distinguished as follows:

(1) When λ > −Pl > −Ph, one has

(Ph + λ) > 0⇒
{

θih(P0i, Ph, λ) = 1, if gih < 0, i.e., P0i > Ph;
θih(P0i, Ph, λ) = 0, if gih ≥ 0, i.e., P0i ≤ Ph.

(10)

(Pl + λ) > 0⇒
{

θil(P0i, Pl , λ) = 1, if gil < 0, i.e., P0i > Pl ;
θil(P0i, Pl , λ) = 0, if gil ≥ 0, i.e., P0i ≤ Pl .

(11)

From Equations (10) and (11), all g̃ia are either negative or vanishing in this case due
to that g̃ia(P0i, Pa, θia) = θiagia(P0i, Pa). Further from the conservation law of amount of
Equation (2), all g̃ia values have to be zero, and no profit is produced. This case is excluded
from further consideration.

(2) When −Pl > −Ph > λ, one has

(Ph + λ) < 0⇒
{

θih(P0i, Ph, λ) = 0, if gih < 0, i.e., P0i > Ph;
θih(P0i, Ph, λ) = 1, if gih ≥ 0, i.e., P0i ≤ Ph.

(12)

(Pl + λ) < 0⇒
{

θil(P0i, Pl , λ) = 0, if gil < 0, i.e., P0i > Pl ;
θil(P0i, Pl , λ) = 1, if gil ≥ 0, i.e., P0i ≤ Pl .

(13)

From Equations (12) and (13), all g̃ia are either positive or vanishing in this case due
to that g̃ia(P0i, Pa, θia) = θiagia(P0i, Pa). Further from the conservation law of amount of
Equation (2), all g̃ia values have to be zero, and no profit is produced. This case is also
excluded from further consideration.

(3) When −Pl > λ > −Ph, one has

(Ph + λ) > 0⇒
{

θih(P0i, Ph, λ) = 1, if gih < 0, i.e., P0i > Ph;
θih(P0i, Ph, λ) = 0, if gih ≥ 0, i.e., P0i ≤ Ph.

(14)

(Pl + λ) < 0⇒
{

θil(P0i, Pl , λ) = 0, if gil < 0, i.e., P0i > Pl ;
θil(P0i, Pl , λ) = 1, if gil ≥ 0, i.e., P0i ≤ Pl .

(15)
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From Equation (14), all g̃ih = gih(P0i, Ph) are negative in this case due to that
g̃ia(P0i, Pa, θia) = θiagia(P0i, Pa), and this shows that the commercial engine sells commodity
to economic subsystems with price P0i > Ph. From the conservation law of amount (i.e.,
Equation (2)) and Equation (15), one can conclude that g̃il = gil(P0i, Pl) are all positive, and
this shows that the commercial engine purchases commodity from economic subsystems
with price P0i < Pl .

Optimal contact functions show that an economic subsystem can be connected to one
side of the commercial engine at most. The economic subsystems connected with the low-
price side of the commercial engine sell the commodity to the commercial engine, and those
connected with the high-price side of the commercial engine purchase the commodity from
the commercial engine, while those with prices in the range between Pl and Ph are never
connected with the commercial engine during a cycle. The set of N economic subsystems
can be divided into three subsets: low-price, high-price, and unused economic subsystem
sets, respectively. The unused economic subsystem set can be empty depending on its
commodity price. The highest and lowest price economic subsystems are always active in
a finite profit production solution.

3.2. Optimal Prices Ph and Pl for the Commercial Engine

The commodity transfer function for each economic subsystem is separated into the
commodity input function and output function, that is, gil

+(P0i, Pl) and gih
−(P0i, Ph), which

are, respectively, given by

gil
+(P0i, Pl) =

{
g(P0i, Pl), if P0i < Pl
0, if P0i ≥ Pl

i ∈ [1, N] (16)

gih
−(P0i, Ph) =

{
0 if P0i ≥ Ph
g(P0i, Ph), if P0i < Ph

i ∈ [1, N] (17)

The total commodity rate input to and output from the commercial engine are the sum
of all contributions gil

+(P0i, Pl) and gih
−(P0i, Ph), that is, g+(P0, Pl) and g−(P0, Ph), which

are, respectively, given by

g+(P0, Pl) =
N

∑
i=1

gil
+(P0i, Pl), g−(P0, Ph) =

N

∑
i=1

gih
−(P0i, Ph) (18)

The flow of the commodity occurs with those of money at the same time, and the
total money flow rates used to purchase and obtained from selling the commodity by the
commercial engine are denoted as M−(P0, Pl) and M+(P0, Pl), respectively, that is:

M−(P0, Pl) = g+(P0, Pl) ∗ Pl , M+(P0, Ph) = g−(P0, Ph) ∗ Ph (19)

Substituting Equation (18) into Equation (8) yields

L = −[g+(P0, Pl)(Pl + λ) + g−(P0, Ph)(Ph + λ)] (20)

From ∂L/∂Pl = 0 and ∂L/∂Ph = 0, one has

λ = −[∂g+(P0, Pl)

∂Pl
Pl + g+(P0, Pl)]/[

∂g+(P0, Pl)

∂Pl
] (21)

λ = −[∂g−(P0, Ph)

∂Ph
Ph + g−(P0, Ph)]/[

∂g−(P0, Ph)

∂Ph
] (22)

For the give commodity transfer law gi(P0i, P) and estimate commodity price P0i of
the economic subsystem, the values of parameters Ph, Pl and λ are obtained by combining
Equation (2) together with Equations (21) and (22).
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4. Numerical Examples and Discussions

A commercial engine with three economic subsystems is considered as an example
herein. The estimate commodity prices of the three economic subsystems are P01, P02, and
P03, respectively. They could either purchase the commodity from the commercial engine or
sell the commodity to the commercial engine. The CFR is assumed to obey the linear CTL:

gi(P0i, P) = αi(P0i − P) (23)

The lowest and highest commodity prices of three economic subsystems are fixed as
P03 = 4 and P01 = 1. Without loss of generality, α1 = α2 = α3 = 1 are set by selecting
appropriate units. Figure 2 shows the indicator function ind(P02) versus commodity
price of the intermediate economic subsystem. Figure 3 shows the commodity prices
(Ph) and Pl of the commercial engine versus commodity price (P02) of the intermediate
economic subsystem. For low price P02 that satisfies P02 < Pl in Figure 3, both the economic
subsystems 1 and 2 sell the commodity to the commercial engine as the low-price economic
subsystem; therefore, the indicator function ind(P02) is 1 in Figure 2. For high price P02 that
satisfies P02 > Ph in Figure 3, the intermediate economic subsystem 2 is in contact with
commercial at the same time as economic subsystem 3; therefore, the indicator function
ind(P02) is 3 in Figure 2. For high price P02 that satisfies Pl < P02 < Ph in Figure 3,
intermediate economic subsystem 2 is not used; therefore, indicator function ind(P02) is
0 in Figure 2. The economic reason is that for the multi-reservoir commercial engine
considered herein, this unused intermediate economic subsystem is neither low-price
commodity supplier nor high-price commodity consumer, and therefore, it is useless for
the commercial engine to produce profit.
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Figure 4 shows the resulting MPO (Πmax) per unit time versus the commodity price
of the intermediate economic subsystem 2. When P02 increases, MPO decreases until the
intermediate economic subsystem 2 is switched off; then, it remains constant, and finally,
the intermediate economic subsystem 2 is switched on again, and MPO increases again.
For the price P02 in the range between P02 = Pl and P02 = Ph in Figure 4, MPO (Πmax) per
unit time of the commercial engine achieves its minimum value.
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The general definition of economic index is the ratio of gain to cost. In thermodynamics,
the economic index of a heat engine is the thermal efficiency, which is defined as the ratio
of the network output of the cycle to the heat absorbed from the high-temperature heat
source. The economic index of a reversible Carnot engine cycle is Carnot efficiency, which
is the upper limit of thermal power conversion efficiency between the high-temperature
heat source and low-temperature heat sink with the same temperature limits. Similarly,
in economics, the economic index of a commercial machine is economic efficiency, that is,
profit rate, which is defined as the ratio of the net profit obtained by the commercial engine
to the cost paid for purchasing commodity from the supplier. Similar to the reversible
Carnot engine, the economic efficiency of the reversible Carnot commercial engine is the
upper limit of the economic efficiency of a commercial engine between low-price supplier
and high-price consumer with the same price limits. The economic efficiency of the
commercial engine is defined as η = (Ph − Pl)/Pl = Ph/Pi − 1. Figure 5 shows efficiency
(ηmaxΠ) at MPO versus commodity price P02 of an intermediate economic subsystem.
When P02 increase and satisfies P02 < Pl , ηmaxΠ decreases; when P02 increases and satisfies
Pl < P02 < Ph, ηmaxΠ is constant. When P02 increases and satisfies Ph < P02, that is,
intermediate economic subsystem 2 is switched on again, ηmaxΠ increases.
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5. Conclusions

Based on the models of a multi-reservoir heat engine proposed in Refs. [44,45] and
a multi-reservoir chemical engine proposed in Ref. [46], this paper proposes a model of
a multi-reservoir commercial engine by methods of analogy and transplantation firstly,
and it further derives its optimal cycle configuration for MPO by applying FTT. Numerical
examples are provided for a three-economic-subsystem commercial engine with linear CTL;
the MPO and its corresponding efficiency are provided. The results show that:

1. Optimal configuration consists of two instantaneous constant commodity flux pro-
cesses and two constant price processes, where the used economic subsystems and the
profit-producing commercial engine contact prices are time-independent, and the con-
figuration is independent of number of economic subsystems and CTL qualitatively.
Different CTLs have no influence on the optimal configuration of commercial engine
qualitatively, but only quantitatively. Effects of different CTLs on the multi-reservoir
commercial engine performance will be our next research work.

2. For attaining MPO, some economic subsystems should never come into contact
with the commercial engine during commodity transfer processes. These unused
subsystems are referred to as unused subsystems. The highest price consumer and
the lowest price supplier will always be used. This shows that in order to obtain a
favorable market survival environment under competitive conditions, commodity
suppliers should take positive and effective measures to reduce the manufacturing
cost of commodities and then reduce the selling price of commodities, so as to become
the lowest price economic subsystem. In addition, commodity consumers should
take active and effective measures to improve the utility and value of commodities
so as to improve the purchase price of commodities and become the highest price
economic subsystem.

3. A multi-reservoir commercial engine is more general than a common two-reservoir
commercial engine, and the results can provide theoretical guidelines for the optimal
operation of actual economic processes.
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Nomenclature

g ideal commodity flow rate
g̃ practical commodity flow rate
I total profit
L modified Lagrangian function
m power index related to commodity transfer law
N the economic subsystem number
n commodity flow rate
P price
t time
Greek symbols
α commodity flow coefficient
η economic efficiency
λ Lagrange multiplier
θ contact function
τ cycle period
Π average profit
Subscripts
0i the i-th economic subsystem
1 purchased price
2 sold price
h high price
i number
l low price
max maximum
0i the i-th economic subsystem
1 purchased price
Superscripts
+ input
− output
Abbreviations
CDM capital dissipation minimization
CFR commodity flow rate
CTL commodity transfer law
FTT finite time thermodynamics
ind index
MPO maximum profit output
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