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Abstract: In the present study, mathematical modeling was performed to simulate natural convection
of a nanofluid in a square enclosure using the thermal lattice Boltzmann flux solver (TLBFS). Firstly,
natural convection in a square enclosure, filled with pure fluid (air and water), was investigated to
validate the accuracy and performance of the method. Then, influences of the Rayleigh number, of
nanoparticle volume fraction on streamlines, isotherms and average Nusselt number were studied.
The numerical results illustrated that heat transfer was enhanced with the augmentation of Rayleigh
number and nanoparticle volume fraction. There was a linear relationship between the average
Nusselt number and solid volume fraction. and there was an exponential relationship between the
average Nusselt number and Ra. In view of the Cartesian grid used by the immersed boundary
method and lattice model, the immersed boundary method was chosen to treat the no-slip boundary
condition of the flow field, and the Dirichlet boundary condition of the temperature field, to facilitate
natural convection around a bluff body in a square enclosure. The presented numerical algorithm
and code implementation were validated by means of numerical examples of natural convection
between a concentric circular cylinder and a square enclosure at different aspect ratios. Numerical
simulations were conducted for natural convection around a cylinder and square in an enclosure.
The results illustrated that nanoparticles enhance heat transfer in higher Rayleigh number, and the
heat transfer of the inner cylinder is stronger than that of the square at the same perimeter.

Keywords: natural convection; nanofluid; thermal lattice Boltzmann flux solver; immersed
boundary method

1. Introduction

Natural convection has received widespread attention by many researchers because it
is relevant to many engineering applications, such as heat exchangers, solar energy and
nuclear reactors. Conventional fluids, such as water and ethylene glycol mixture, are not
effective heat transfer medias, due to low thermal conductivity. Therefore, nanofluids
have gained attention as an alternative and effective heat transfer medium, due to having
higher thermal conductivities [1]. There are two main research approaches for studying
nanofluids: experiments and numerical simulations. In view of experiments, Song et al. [2]
measured the thermal performance of SiC nanofluid in a water pool boiling experiment,
and investigated the enhancement for critical heat flux. Nikhah et al. [3] carried out an
experimental investigation on the convective boiling of dilute CuO-water nanofluids in an
upward flow inside a conventional heat exchanger. Alkasmoul et al. [4] investigated the
turbulent flow of Al2O3-water, TiO2-water and CuO-water nanofluids in a heated, hori-
zontal tube with a constant heat flux. The results showed that the efficiency of nanofluids
in enhancing heat transfer was not high for turbulent flows. Qi et al. [5] carried out an
experimental study on boiling heat transfer of an α-Al2O3-water nanofluid.

More researchers have applied numerical methods to study the performance of
nanofluids. Khanafer et al. [6] directly solved the macroscopic governing equations to
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investigate heat transfer enhancement in a two-dimensional enclosure utilizing nanoflu-
ids for various pertinent parameters, including Grashof numbers and volume fractions.
The results indicated that heat transfer increased with the volumetric fraction of the cop-
per nanoparticles in water at any given Grashof number. Fattahi et al. [7] carried out a
study on water-based nanofluid, containing Al2O3 or Cu nanoparticles, in a square cavity
for Rayleigh number 103–106 and solid volume fraction 0–0.05, by means of the lattice
Boltzmann method. The results indicated that the average Nusselt number increased by
increasing the solid volume fraction and the effects of solid volume fraction on Cu were
stronger than on Al2O3. He et al. [8] applied the single-phase lattice model to simulate con-
vection heat transfer utilizing Al2O3-water nanofluid in a square cavity. Qi et al. [9] applied
the two-phase lattice Boltzmann model for natural convection of nanofluid. From the above
analysis, the lattice Boltzmann method (LBM) has obtained remarkable achievements in
simulating incompressible viscous laminar nanoflow. Saadat et al. [10] developed a com-
pressible LB model on standard lattices to solve supersonic flows involving shock waves,
based on the consistent D2Q9 LB model, and with the help of appropriate correction terms
introduced into the kinetic equations to compensate for deviations in the hydrodynamic
limit. Huang et al. [11] improved the lattice Boltzmann model with a self-tuning equation
of state to simulate the thermal flows beyond the Boussinesq and ideal-gas approximations.
Hosseini et al. [12] derived the appropriate form of the correction term for the space- and
time-discretized LB equations, through a Chapman–Enskog analysis for different orders of
the equilibrium distribution function. As a mesoscopic approach, LBM can easily solve the
macroscopic variables used by distribution functions and the linear streaming and collision
processes can effectively simulate the nonlinear convection and diffusion effects in the
macroscopic state. With the development of Lattice models in recent years, LBM can solve
various flow problems successfully, including incompressible, compressible and thermal
flows, by introducing a variety of applicable models. However, the solutions of flow for
High Mach number and turbulence problems of complex shape are limited because the
standard LBM is strictly limited to using the uniform Cartesian mesh due to the lattice
uniformity for flow.

Recently, the idea of coupling the LBM and conventional methods (including finite
difference method and finite volume method) has been proposed for computational fluid
dynamics. It effectively combines the merits of macroscopic and mesoscopic methods.
The coupling algorithm can be divided into the whole region coupling algorithm and the
partition coupling algorithm. The whole region coupling algorithm solves the different
variables used by different numerical algorithms. Nie et al. [13] and Mezrhab et al. [14]
used the LBM-FDM coupling method to solve natural convection problems, in which LBM
solved flow problems and FDM analyzed heat transfer. Chen et al. [15] used the LBM-FDM
coupling method to solve the two-phase interface convection problem, in which LBM solved
the velocity field and FDM solved the concentration field. Mishra et al. [16] used LBM-FVM
to solve heat conduction and radiation problems. Sun and zhang [17] used LBM-FVM for
conduction and radiation in irregular geometry. The partition coupling algorithm divides
the whole region into several sub-regions and realizes the coupling function through
information transfer between the sub-regions. Luan et al. [18–20] simulated complex flows
in porous media using LBM-FVM. Chen et al. [21–23] used LBM-FVM to study the multi-
scale flow, multi-component mass transfer, proton conduction and electrochemical reaction
processes. Li et al. [24,25] used LBM-FVM to study natural convection and the solid–liquid
variation problem. Feng et al. [26] developed a thermal lattice Boltzmann model with a
hybrid recursive regularization collision operator on standard lattices for simulation of
subsonic and sonic compressible flows without shock by LBM-FVM. Essentially, the main
advantage of the above two coupling methods is to improve the calculation efficiency of
LBM and expand the applications of macroscopic computational fluid dynamics.

A new coupling idea gas been proposed in the past five years. This coupling method
adopts the finite volume method to discretize macroscopic governing equations and uses
local lattice Boltzmann equation solutions to calculate interface flux, on the basis of con-



Entropy 2022, 24, 1448 3 of 18

sidering migration and collision processes. This method realizes the coupling of the
macroscopic method and the mesoscopic model and is named the lattice Boltzmann flux
solver (LBFS). Yang et al. [27,28] proposed LBFS based on compressible models, which is
suitable for calculating viscous and compressible multi-component flows. Shu et al. [29]
and Wang et al. [30–32] developed LBFS for incompressible viscous flow problems. This
method integrates the advantages of the macroscopic method and the mesoscopic model,
to not only realize the unified solution of non-viscous flux and viscous flux, but also to
improve calculation efficiency without using a uniform grid in the whole calculation do-
main. Based on the above development, Wang et al. [33] developed the thermal lattice
Boltzmann flux solver (TLBFS) and successfully used it to simulate the natural convec-
tion problem. Cao [34] proposed a variable property-based lattice Boltzmann flux solver
(VPLBFS) for thermal flows with partial or total variation in fluid properties in the low
Mach number limit.

In this paper, we attempted to build mathematical modeling to simulate the natural
convection of Al2O3/water nanofluid in a square enclosure using the thermal lattice Boltz-
mann flux solver (TLBFS), which is a coupling method combining the finite volume method
to discretize the macroscopic governing equations in space, and reconstructed flux solutions
at the interface between two adjacent cell centers by using the single-relaxation-time Lattice
Boltzmann model. The top mpotivating priority of this paper was to establish a simple and
effective numerical calculation method to solve natural convection problems. Therefore, it
was necessary to introduce the boundary treatment technique in the solver. Tong et al. [35]
applied the multiblock lattice Boltzmann method with a fixed Eulerian mesh, and the foul-
ing layer was represented by an immersed boundary with Lagrangian points. The shape
change of the fouling layer could be carried out by deforming the immersed boundary,
while keeping the mesh of flow simulation unchanged. Suzuki et al. [36] simulated lift and
thrust generation by a butterfly-like flapping wing body model by means of immersed
boundary lattice Boltzmann simulations. The immersed boundary method is an effective
and simple method to treat solid surface boundary conditions and the numerical method
based on a non-body-fitted grid can avoid the abundant work involved in grid genera-
tion. Therefore, the immersed boundary method was applied to implement the no-slip
boundary condition and Dirichlet boundary condition was applied for natural convection
around a bluff body in a square enclosure with the purpose of effective treatment of surface
boundaries. Natural convection problems were investigated at different Rayleigh numbers
and nanoparticle volume fractions. Influences of the Rayleigh number and nanoparticle
volume fraction on the streamlines, isotherms and average Nusselt number were studied.

2. Governing Equations and Numerical Method
2.1. The Macroscopic Governing Equations

For incompressible thermal nanofluid, in consideration of single phase and constant
properties flow conditions, the macroscopic governing equations of natural convection in a
two-dimensional enclosure can be written as follows:

Continuity equation;
∂ρn f

∂t
+∇ · ρn f u = 0 (1)

Momentum equation;

∂

∂t

(
ρn f u

)
+∇

(
ρn f uu

)
= −∇p + µn f∇

[(
∇u + (∇u)T

)]
+ Fn f (2)

Energy equation;

∂

∂t

(
ρn f e

)
+∇

(
ρn f ue

)
= χn f∇2

(
ρn f e

)
(3)
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where ρ, u, p and m represent fluid density, velocity, pressure, dynamic viscosity coefficient,
respectively; e stands for internal energy defined as e = DRT/2, where D is the dimension,
R is the gas constant and T represents the temperature; χ is the thermal diffusivity. The
subscript nf denotes the nanofluid.

Natural convection heat transfer in nanofluids is studied in a two-dimensional en-
closure. Nanoparticles considered to be spherical and frictional forces are neglected. The
flow is assumed as laminar with a single-phase homogeneous mixture. The buoyancy force
always plays an essential role as an external force. Using the Boussinesq approximation,
the force source term can be defined as:

Fn f = ρn f βn f g(T − Tm)j (4)

where g represents the gravity acceleration, β is the thermal expansion coefficient and Tm is
the average temperature.

According to Chapman-Enskog analysis, the relationships can be established between
the fluxes and the distribution functions of the lattice Boltzmann model. Based on the
thermal lattice Boltzmann flux solver (TLBFS), the governing Equations (1)–(3) can be
rewritten as:

∂ρn f

∂t
+∇ ·

(
∑
α

eα f eq
α

)
= 0 (5)

∂ρn f u
∂t

+∇ ·∏1 = Fn f (6)

∂ρn f e
∂t

+∇ ·∏2 = 0 (7)

where

∏1 =
N

∑
α=0

(eα)β(eα)γ

[
f eq
α + (I − 1

2τv
) f neq

α

]
(8)

∏2 =
N

∑
α=0

eα

[
geq

α + (I − 1
2τc

)gneq
α

]
(9)

τv = µn f /(ρn f c2
s δt) + 0.5 (10)

τc = χn f /
(

2cs
2δt

)
+ 0.5 (11)

From the above process, the macroscopic flow variables and fluxes can be computed
by equilibrium and non-equilibrium distribution functions of the lattice model for the
governing equations of nanofluid. Equations (8) and (9) are used to solve the macroscopic
flow variables, and fluxes can be evaluated by the thermal lattice Boltzmann flux solver,
which is introduced in detail in the next section. The force source term is added at the cell
center during the calculation process.

2.2. Thermal Lattice Boltzmann Flux Solver

The discrete term of the governing Equations (5)–(7) by finite volume method:

dWi
dt

=
1

∆Vi
∑
k

RkdSk + F (12)

where W = [ρn f , ρn f u, ρn f v, ρn f e]T; dVi and dSk are the volume of ith control volume and
the area of the kth interface. For the 2D case, the D2Q9 lattice velocity model [37] is used
for momentum and energy fluxes. The expression of the fluxes Rk at the cell interfaces is
as followed:
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Rk =


nx

(
f eq
1 − f eq

3 + f eq
5 − f eq

6 − f eq
7 + f eq

8

)
+ ny

(
f eq
2 − f eq

4 + f eq
5 + f eq

6 − f eq
7 − f eq

8

)
nx
(

fˆ1 + fˆ3 + fˆ5 + fˆ6 + fˆ7 + fˆ8
)
+ ny

(
fˆ5 − fˆ6 + fˆ7 − fˆ8

)
nx
(

fˆ5 − fˆ6 + fˆ7 − fˆ8
)
+ ny

(
fˆ2 + fˆ4 + fˆ5 + fˆ6 + fˆ7 + fˆ8

)
nx
(

ĝ1 − ĝ3 + ĝ5 − ĝ6 − ĝ7 + ĝ8
)
+ ny

(
ĝ2 − ĝ4 + ĝ5 + ĝ6 − ĝ7 − ĝ8

)

(13)

fˆα = f eq
α + (1− 1

2τv
) f neq

α (14)

ĝα = geq
α + (1− 1

2τc
)gneq

α (15)

From Equations (13)–(15), it can be seen that the important segment to solve fluxes is
to accurately evaluate the f eq

α , fˆα and ĝα terms.
The simplified thermal lattice Boltzmann model with BGK approximation can be

written as:
fα(r + eαδt, t + δt)− fα(r, t) = − 1

τv

[
fα(r, t)− f eq

α (r, t)
]

(16)

gα(r + eαδt, t + δt)− gα(r, t) = − 1
τc

[
gα(r, t)− geq

α (r, t)
]

(17)

In which equilibrium density distribution function and equilibrium internal energy
distribution function is given as:

f eq
α (r, t) = ρwα

[
1 +

eα · u
c2

s
+

(eα · u)2 − (cs|u|)2

2c4
s

]
(18)

geq
α (r, t) =


− 2ρ

3
|u|2
c2 , α = 0

ρe
9

[
3
2 + 3

2 ·
eα ·u
c2 + 9

2 ·
(eα ·u)2

c4 − 3
2 ·
|u|2
c2

]
, α = 1, 2, 3, 4

ρe
36

[
3 + 6 · eα ·u

c2 + 9
2 ·

(eα ·u)2

c4 − 3
2 ·
|u|2
c2

]
, α = 5, 6, 7, 8

(19)

Using the second-order Taylor series expansion, Equations (16) and (17) can be trans-
formed as below:

δt

(
∂

∂t
+ eα · ∇

)
fα +

δ2
t

2

(
∂

∂t
+ eα · ∇

)2
fα +

1
τ

(
fα − f eq

α

)
+ O

(
δ3

t

)
= 0 (20)

δt

(
∂

∂t
+ eα · ∇

)
gα +

δ2
t

2

(
∂

∂t
+ eα · ∇

)2
gα +

1
τ

(
gα − geq

α

)
+ O

(
δ3

t

)
= 0 (21)

By the multi-scale Chapman-Enskog expansion, the distribution function, the temporal
and spatial derivatives, the non-equilibrium density and energy distribution functions can
be transformed into an expression only related to the equilibrium distribution functions
and can be derived from:

f neq
α (r, t) = −τv

[
f eq
α (r, t)− f eq

α (r− eαδt, t− δt)
]

(22)

gneq
α (r, t) = −τc

[
geq

α (r, t)− geq
α (r− eαδt, t− δt)

]
(23)

From Figure 1, the flow properties of eight vertices of the D2Q9 model can be evaluated
by interpolation with the given flow properties at the cell centers of two adjacent control
volumes. The values ri, ri+1 and r are defined as the physical positions of the two cell
centers and their interfaces, respectively. The interpolation formulation can be given as:

ψ(r− eαδt, t− δt) =

{
ψ(ri) + (r− eαδt − ri) · ∇ψ(ri) r− eαδt in Ωi

ψ(ri+1) + (r− eαδt − ri+1) · ∇ψ(ri+1) r− eαδt in Ωi+1
(24)
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where ψ stands for the flow properties, including ρ, u, v and e. f eq
α (r− eαδt, t− δt) and

geq
α (r− eαδt, t− δt) can be obtained by the corresponding equilibrium density distribution

function and energy distribution function. Then, the flow properties of the cell interface
can be written as:

ρ(r, t) = ∑
α=0

f eq
α (r− eαδt, t− δt) (25)

ρ(r, t)u(r, t) = ∑
α=0

eα f eq
α (r− eαδt, t− δt) (26)

ρ(r, t)e(r, t) = ∑
α=0

geq
α (r− eαδt, t− δt) (27)

Figure 1. Local flux reconstruction at cell interface.

Next, f eq
α (r, t) and geq

α (r, t) can also be easily solved by distribution functions. After
obtaining the equilibrium distribution functions, the fluxes can be evaluated according
to Equation (13).

2.3. Computational Sequence

The complete numerical simulation procedures for each time step of the proposed
method are summarized below.

1. According to the fluid properties of the nanofluid, determine initial velocity and
temperature field;

2. Based on the grid size, identify a streaming time step at each interface and then the
single relaxation parameters, including dynamic viscosity and the thermal diffusivity;

3. Apply the D2Q9 model to compute the density and energy equilibrium distribution
functions f eq

α (r− eαδt, t− δt) and geq
α (r− eαδt, t− δt) around the middle point r of

each interface;
4. Compute the macroscopic flow properties of nanofluid at the cell interface and

then compute f eq
α (r, t) and geq

α (r, t) by the equilibrium distribution functions of the
D2Q9 model;

5. Compute fˆα and ĝα terms, then the fluxes at the cell interface can be solved by
Equation (13);

6. Calculate the force source term and add this term to the fluxes;
7. Solve Equations (5)–(7) to obtain the macroscopic flow properties of the nanofluid;
8. Repeat steps (3)–(7) until the following convergence criterion is satisfied.

3. Numerical Examples of Natural Convection in a Square Enclosure
3.1. Problem Description

The computational domain and boundary conditions are shown in Figure 2. From this
figure, it can be seen that the no slip boundary condition was applied on four walls. The
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adiabatic condition was set on the top and bottom walls and temperatures of 1 and 0 were
applied on the left and right walls, respectively. The non-dimensional parameters, Prandtl
number Pr and Rayleigh number Ra, were applied to determine the dynamic similarity
as follows:

Pr = ν/χ (28)

Ra =
V2

c · L2

ν · χ (29)

where L = 1 is the characteristic length of the square cavity and Vc is the characteristic
thermal velocity which is constrained by the low Mach number limit. In the present
simulations, Vc = 0.1 was set in order to ensure incompressible viscous flow.

Figure 2. Computational domain and boundary conditions.

In the present study, Al2O3/water nanofluid was used. The thermophysical properties
of the water and nanoparticles are listed in Table 1. The homogeneous model for nanofluid
was adopted. Physical properties of the nanofluids, including density, specific heat and
thermal expansion coefficient, were obtained using the classical formula developed for
conventional solid–liquid mixtures as follows:

ρn f = (1− φ)ρ f + φρs (30)(
ρcp
)

n f = (1− φ)
(
ρcp
)

f + φ
(
ρcp
)

s (31)

βn f = (1− φ)β f + φβs (32)

where φ refers to the volume concentration of nanoparticles and the subscripts s, f denote
the particle and base fluids.

Table 1. Thermophysical properties of fluid and nanoparticles.

Properties Fluid Phase (Water) Solid Phase (Al2O3)

ρ (kg/m3) 997 3880
cp (J/kg·K) 4179 765

β (1/K) 0.00021 0.0000085
k (W/m·K) 0.613 40
µ (kg/m·s) 0.000855 -

The effective viscosity and thermal conductivity of the nanofluid strongly affect the heat
transfer rate and flow characteristics of nanofluids. The effective viscosity could be estimated
by experimental correlation for 47 nm Al2O3/water nanofluid by Angue Mintsa et al. [38]
and thermal conductivity was given by Gherasim et al. [39] as follows:

µn f = 0.904e14.8φµ (33)
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κn f = (1.72φ + 1.0)κ f (34)

In the present simulations, the convergence criterion for flow field and temperature
field were respectively given as follows:

Error1 =
∑ij

∣∣∣∣√(u(i, j, t + δt))
2 + (v(i, j, t + δt))

2 −
√
(u(i, j, t))2 + (v(i, j, t))2

∣∣∣∣
∑ij

√
(u(i, j, t + δt))

2 + (v(i, j, t + δt))
2

≤ 1× 10−7 (35)

Error2 =
∑ij|T(i, j, t + δt)− T(i, j, t)|

∑ij T(i, j, t + δt)
≤ 1× 10−7 (36)

3.2. Natural Convection of Pure Fluid in a Square Enclosure

To testify as to the accuracy and performance of the lattice Boltzmann flux solver based
on the population model, the classical natural convection in a square enclosure filled with
air and water was studied at Ra = 103, 104, 105 and 106.

Firstly, a grid independent study was conducted on five different uniform grids of
101 × 101, 151× 151, 201× 201, 251× 251 and 301× 301 for the natural convection problem
at Ra = 106 and Pr = 0.7. As shown in Table 2, when the mesh size was 201 × 201, or even
larger, the average Nusselt number did not change much and the value was between the
benchmark solutions of Davis [40] and Hortmann et al. [41]. When the mesh size was larger
than 151 × 151, the maximum horizontal velocity on the vertical mid-plane, the maximum
vertical velocity on the horizontal mid-plane and their locations were in agreement with
the benchmark solutions of Davis [40]. The above results illustrated grid independence on
uniform grids of 201 × 201, for the case of Ra = 106.

Table 2. Grid independent study on uniform of natural convection at Ra = 106.

Method Grids Nuavg y umax x vmax

Present

101 × 101 8.788 0.855 64.22 0.0350 217.60
151 × 151 8.809 0.850 64.66 0.0367 219.32
201 × 201 8.816 0.853 64.99 0.0375 220.05
251 × 251 8.819 0.854 66.18 0.0380 220.17
301 × 301 8.819 0.852 66.99 0.0383 220.14

De Vahl Davis [40] 8.800 0.850 64.63 0.0397 219.36
Hortmann et al. [41] 8.825 - - - -

Based on the above results, the grid independent study was conducted on non-uniform
grids by using the size of less than 201 × 201. Table 3 shows the numerical results of
six different non-uniform grids of natural convection at Ra = 106. From this table, the
results were close to the data of uniform grids of 201 × 201 when the non-uniform mesh
was more than 121 × 121. In order to ensure the accuracy and efficiency of numerical
simulations, the non-uniform grid of 141 × 141 was chosen to simulate natural convection
in a square enclosure.

Table 3. Grid independent study on non-uniform of natural convection at Ra = 106.

Grids Nuavg y umax x vmax

81 × 81 8.803 0.856 64.77 0.0358 218.98
101 × 101 8.811 0.855 64.99 0.0349 219.16
121 × 121 8.816 0.854 65.04 0.0400 219.37
141 × 141 8.818 0.853 65.03 0.0388 220.15
161 × 161 8.819 0.853 65.03 0.0379 220.14
181 × 181 8.820 0.853 65.06 0.0372 220.22
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The average Nusselt number results at different Rayleigh numbers are listed in Table 4,
and it can be seen that the numerical simulation results were in good agreement with
previous literature results at different Rayleigh numbers. This illustrated the accuracy of
the present method for natural convection.

Table 4. Comparison of average Nusselt numbers at different Rayleigh numbers.

Ra
Air Water

Present Davis [40] Khanafer et al. [6] Qi [9] Present Kahveci [42] Lai and Yang [1]

103 1.118 1.118 1.118 1.118 1.119 - 1.128
104 2.246 2.243 2.245 2.247 2.278 2.274 2.286
105 4.522 4.519 4.522 4.522 4.725 4.722 4.729
106 8.818 8.800 8.826 8.808 9.204 9.230 9.173

Figure 3 shows the temperature distribution at horizontal midsections of the enclosure.
For the enclosure filled with air, the results of Ra = 105 were compared with the numerical
results of Khanafer et al. [6] and the experimental results of Krane and Jessee [43]. For the
enclosure filled with water, the results were compared with numerical results of Lai and
Yang [1]. It was noted from the comparisons that the solutions were in excellent agreement.
This illustrated that the method in this paper could capture the temperature field very well.

Figure 3. Comparison of temperature distribution at horizontal midsections with previous literatures.

The streamlines and isotherms of air and water at various Rayleigh numbers are
shown in Figures 4 and 5, respectively. It can be seen that the natural convection and heat
transfer between the wall and fluid were enhanced as Ra increased. For Ra ≤ 104, the flow
characteristic was to appear as a central vortex. For Ra > 104, the central vortex became
more expanded and finally broke up into two vortices so that temperature boundary layers
were formed. The above phenomenon agreed well with previous studies.

3.3. Natural Convection of Nanofluid in a Square Enclosure

After validating the numerical method for natural convection in a square enclosure
filled with pure fluid, the natural convection in a square enclosure filled with Al2O3-water
nanofluid of nanoparticles having volume fraction φ = 1–4% at Ra = 103–106 was simulated
to validate the present numerical algorithm. The presented averaged Nusselt numbers
were compared with the numerical results of Lai and Yang [1] and listed in Table 5. It
shows that there was a good agreement and the relative errors were less than 0.8%, which
further illustrated that the present numerical method could simulate the natural convection
of nanofluid at different Rayleigh numbers and nanoparticle volume fractions.
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Figure 4. Streamlines and isotherms of air at various Rayleigh numbers.

Figure 5. Streamlines and isotherms of water at various Rayleigh numbers.

Table 5. Comparison of average Nusselt numbers with the previous studies.

Ra φ Present Ref [1] Relative Error (%)

103

0.01 1.139 1.147 0.697
0.02 1.158 1.167 0.771
0.03 1.177 1.186 0.756
0.04 1.196 1.206 0.829

104

0.01 2.317 2.326 0.387
0.02 2.357 2.366 0.380
0.03 2.396 2.406 0.416
0.04 2.435 2.445 0.409

105

0.01 4.807 4.811 0.008
0.02 4.890 4.894 0.008
0.03 4.972 4.977 0.010
0.04 5.054 5.059 0.010

106

0.01 9.366 9.331 0.375
0.02 9.528 9.492 0.386
0.03 9.688 9.653 0.363
0.04 9.849 9.813 0.367
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In the present numerical simulations, the effect of nanoparticle suspensions (Al2O3-
water) on flow and temperature characteristics for Ra = 103–106 and nanoparticles volume
fraction φ = 0–10% were studied. The variation of average Nusselt number against solid
volume fraction for different Rayleigh numbers is shown in Figure 6a and the variation of
average Nusselt number against Rayleigh number for different solid volume fractions is
shown in Figure 6b.

Figure 6. Variation of average Nusselt number against (a) solid volume fraction for different Rayleigh
number; (b) Rayleigh number for different solid volume fraction.

Numerical results indicated that average Nusselt number increased with the increase
of Ra and φ. This illustrated that the function of heat transfer was enhanced with the
augmentation of nanofluid thermal conductivity, which indicated that the major mechanism
of heat transfer in flowing fluid was thermal dispersion. At the same Ra, the relationship
of the average Nusselt number and solid volume fraction was almost linear. At the same
solid volume fraction, the relationship of the average Nusselt number and Ra presented an
exponential form. At higher Rayleigh number, the greater the heat transfer rate that could
be obtained.

Figures 7 and 8 indicate the isotherms and streamlines of nanofluid (Al2O3-water)
at Ra = 103–106 and φ = 0%, 5% and 10%, which show the effect of volume fraction and
Ra on flow field and temperature field very well. From Figure 7, it can be seen that
heat transfer between the wall and fluid were enhanced as Ra increased. As the volume
fraction of nanoparticles increased, the isotherm changed slightly. That was because the
mixture flow became more viscous, due to the nanoparticles. The velocity of flow fluid
reduced and then natural convection weakened. However, the function of heat transfer in
total computational domain was enhanced, which was attributed to the augmentation of
nanofluid thermal conductivity.

From Figure 8, it can be observed that the flow appeared as a central vortex for lower
Ra. As Ra increased, the central vortex became more expanded and finally broke up into
two vortices, so that temperature boundary layers were formed. For pure fluid, the vortex
formed in the enclosure as a result of the buoyancy effect. By increasing the volume fraction
of nanoparticles, the intensity of streamlines increased, due to the high energy transport
through the flow as a result of irregular motion of the ultra-fine particles.
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Figure 7. Isotherms of nanofluid at various Ra and φ.

Figure 8. Streamlines of nanofluid at various Ra and φ.

4. Numerical Examples of Natural Convection around Bluff Body in a Square Enclosure
4.1. Problem Description

The boundary condition-enforced immersed boundary method was chosen for treat-
ment of the solid boundary conditions. Based on the immersed boundary method and
thermal lattice Boltzmann flux solver (IB-TLBFS), the macroscopic governing equations can
be rewritten as:

∂ρn f

∂t
+∇ ·

(
∑
α

eα f eq
α

)
= 0 (37)
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∂ρn f u
∂t

+∇ ·∏1 = Fn f + fb (38)

∂ρn f e
∂t

+∇ ·∏2 = qb (39)

where the force source term fb and the heat source term qb are both generated by the
immersed boundary. To solve the governing equations, the calculation process is divided
into two steps: the first step predicts the state variables without taking account of the
boundary function and the second step corrects velocity and temperature by the immersed
boundary method.

In this work, the implicit velocity correction scheme proposed by Wang et al. [44]
was be applied in view of satisfaction of the no slip boundary. The implicit heat source
scheme proposed by Ren et al. [45] was applied for the Dirichlet boundary conditions of
the temperature field.

Natural convection of a heated bluff body in a square enclosure was studied. The
physical models, computational domain and boundary conditions are presented in Figure 9.
All boundaries were no-slip and isothermal boundary conditions. The flow was assumed
to be laminar and driven by the temperature difference.

Figure 9. The physical models, computational domain and boundary conditions between bluff body
and square enclosure. (a) Cylinder (b) Square.

Numerical investigations were carried on two types of bluff bodies, a circular cylinder
and a square. The four side walls of the outer square enclosure were cooled isothermally at
TC and the side length was L. The wall of the inner bluff body was heated isothermally at
TH and D and a represent the diameter of the circular cylinder and the side length of the
square, respectively. For fixed Rayleigh number, numerical simulation cases were designed
to have a fixed perimeter for different bluff bodies and the influences of geometry on the
heat transfer is discussed in detail.

4.2. Natural Convection in the Annulus between Concentric Circular Cylinder and Square Enclosure

After validating the numerical algorithm of the thermal lattice Boltzmann flux solver,
natural convection in the annulus between concentric circular cylinder and square enclosure
at Ra = 104, 105 and 106 were simulated to validate the immersed boundary method and
code implementation. Numerical simulations were conducted for three different aspect
ratios (Ar = 1.67, 2.5 and 5.0). The average Nusselt number was also computed and
compared with reference data in the literature.

The computed average Nusselt numbers are compared in Table 6 with those of
Ren et al. [45], Shu et al. [46] and Moukalled et al. [47]. From this table, it can be seen
that the present results of the method combining IBM and TLBFS agreed very well with
reference data. Besides this, the results revealed that the average Nusselt number greatly
depended on Rayleigh number and aspect ratio. Due to buoyancy-induced convection, the
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average Nusselt number increased with increase of Ra, while it decreased with increase of
Ar, due to the effect of annulus gap space.

Table 6. Comparison of average Nusselt numbers at different Ra and Ar.

Ra Ar Present Ren et al. [45] Shu and Zhu [46] Moukalled and Acharya [47]

104
1.67 5.425 5.303 5.40 5.826
2.50 3.256 3.161 3.24 3.331
5.00 2.090 2.051 2.08 2.071

105
1.67 6.285 6.171 6.21 6.212
2.50 4.954 4.836 4.86 5.080
5.00 3.809 3.704 3.79 3.825

106
1.67 11.943 11.857 12.00 11.620
2.50 9.002 8.546 8.90 9.374
5.00 6.110 5.944 6.11 6.107

The streamlines and isotherms in the annulus at various Rayleigh numbers and aspect
ratios are shown in Figure 10. Conduction dominated the flow field and a relatively weak
convective flow could be observed in the annulus at the lower Ra. As the Rayleigh number
increased, the strength of the convective flow grew and the center of the recirculation eddy
changed its position. When Ra = 106, a relatively stronger convective flow dominated
the fluid field and a higher temperature gradient could be observed. In contrast, stronger
convective flow and higher temperature gradient could be observed in the case of lower
values of Ar.

Figure 10. Streamlines and isotherms at various Ra and Ar.

4.3. Natural Convection of Nanofluid between Bluff Body and Square Enclosure

In the present study, numerical investigations of natural convection between heated
bluff body and square enclosure were conducted for nanoparticles having volume fractions
of φ = 0%, 2% and 4% and Rayleigh numbers of Ra = 104, 105 and 106.

The averaged Nusselt numbers are listed in Table 7. The numerical simulation results
indicated that average Nusselt number increased with increase of Ra and φ, which was the
same as occurred in natural convection of square enclosure. By comparison, the averaged
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Nusselt number of the natural convection around a circular cylinder in an enclosure was
greater than that of the square at the same calculation conditions. This illustrated that a
smooth geometrical shape was beneficial to heat transfer.

Table 7. Comparison of average Nusselt numbers at various Ra and φ.

Cylinder Square

φ Ra = 104 Ra = 105 Ra = 106 Ra = 104 Ra = 105 Ra = 106

0.00 3.131 5.080 9.144 2.9432 4.8675 8.6541
0.02 3.132 5.098 9.200 2.9447 4.8884 8.7186
0.04 3.134 5.117 9.263 2.9463 4.9103 8.7883

Figures 11 and 12 present the distribution of the isotherms for different Rayleigh
numbers (Ra = 105 and 106) and values of nanoparticle volume fractions (φ = 0 and 0.04).
An overview of this figure indicated that the thermal fields strongly depended on Rayleigh
number. When Ra = 105 or even lower, the isotherms of φ = 0 were almost close to that
of φ = 0.04, which illustrated that nanoparticle volume fraction played a smaller role in
heat transfer and flow pattern. When Ra = 106, there were significant differences between
the isotherms of φ = 0 and φ = 0.04, which illustrated that nanoparticle volume fraction
played a role in heat transfer and flow pattern for high Ra. The thickness of the thermal
boundary layer decreased as the volume fraction increased, which was due to the increasing
conduction heat transfer by adding nanoparticle volume fraction.

Figure 11. Isotherms for natural convection around cylinder at different nanoparticles volume
fraction. Green line: φ = 0.00, red line: φ = 0.04.

Figure 12. Isotherms for natural convection around square at different nanoparticles volume fraction.
Green line: φ = 0.00, red line: φ = 0.04.

Figure 13 shows the streamlines for natural convection around a circular cylinder and
square at nanoparticle volume fractions φ = 0.04 and Ra = 106. From Table 7, it can be seen
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that the preferable heat transfer effect could be acquired by the cylinder in comparison with
the square at the same perimeter. That was because the velocity and temperature gradients
around the sharp corners of the square dramatically changed, which prevented the heat
transfer effect.

Figure 13. Isotherms and streamlines for natural convection at nanoparticles volume fraction φ = 0.04
and Ra = 106.

5. Conclusions

The thermal lattice Boltzmann flux solver (TLBFS) was applied to simulate natural
convection of nanofluid in a square enclosure. This method couples the finite volume
method and lattice Boltzmann models to realize the solution of incompressible thermal
flow. To validate the accuracy and performance of this method, natural convection in
a square enclosure filled with pure fluid (air and water) was first studied. There were
good agreements with previous literature. Numerical investigations of fluid flow and
convective heat transfer were performed. The effects of some parameters, such as the
Rayleigh number (Ra), and volume fraction of nanoparticles (φ), on natural convection
were analyzed. With increase in the Rayleigh number and nanoparticle volume fraction,
the heat transfer rate increased and the nanofluid flow became more viscous and this led to
a decrease in nanofluid motion velocity. The average Nusselt number was an increasing
exponential function of the Rayleigh number and an increasing linear function of the
nanoparticle volume fraction. Then, natural convection around a bluff body in a square
enclosure was studied by a method combining TLBFS and immersed boundary method.
Natural convection problems in the annulus between concentric circular cylinder and
square enclosure without nanofluid were simulated, which validated the feasibility of the
numerical algorithm and code implement. Numerical investigations of natural convection
between heated bluff body (cylinder and square) and square enclosure were conducted
for different nanoparticle volume fractions and Rayleigh numbers. The numerical results
illustrated that heat transfer effect increased with increase of Ra and φ. At lower Ra, the
function of heat transfer with the augmentation of nanofluid thermal conductivity was
counteracted by the more viscous flow. Nevertheless, nanoparticles played a better role in



Entropy 2022, 24, 1448 17 of 18

enhancing natural convection at higher Ra. The above results declare that the TLBFS is a
promising method for heat transfer of nanofluids of the future.
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