
Citation: Tu, K.; Puchala, D.

Variable-to-Variable Huffman

Coding: Optimal and Greedy

Approaches. Entropy 2022, 24, 1447.

https://doi.org/10.3390/e24101447

Academic Editors: Jun Chen and

Sadaf Salehkalaibar

Received: 27 August 2022

Accepted: 8 October 2022

Published: 11 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Variable-to-Variable Huffman Coding: Optimal and
Greedy Approaches
Kun Tu 1,*,† and Dariusz Puchala 2,*,†

1 School of Mathematical Sciences, Yangzhou University, 88 South Daxue Road, Yangzhou 225002, China
2 Institute of Information Technology, Lodz University of Technology, 8 Politechniki Avenue,

93-590 Lodz, Poland
* Correspondence: tukun@yzu.edu.cn (K.T.); dariusz.puchala@p.lodz.pl (D.P.)
† These authors contributed equally to this work.

Abstract: In this paper, we address the problem of m-gram entropy variable-to-variable coding,
extending the classical Huffman algorithm to the case of coding m-element (i.e., m-grams) sequences
of symbols taken from the stream of input data for m > 1. We propose a procedure to enable the
determination of the frequencies of the occurrence of m-grams in the input data; we formulate the
optimal coding algorithm and estimate its computational complexity as O(mn2), where n is the size
of the input data. Since such complexity is high in terms of practical applications, we also propose
an approximate approach with linear complexity, which is based on a greedy heuristic used in
solving backpack problems. In order to verify the practical effectiveness of the proposed approximate
approach, experiments involving different sets of input data were conducted. The experimental study
shows that the results obtained with the approximate approach were, first, close to the optimal results
and, second, better than the results obtained using the popular DEFLATE and PPM algorithms in the
case of data that can be characterized by highly invariable and easy to estimate statistics.

Keywords: Huffman coding; variable-to-variable m-gram entropy coding; lossless data compression

1. Introduction

Today, as members of the information society, we extensively use computer systems
operating with large amounts of data that must be transmitted over computer networks
and archived in computer systems with the use of mass storage devices. We are also
witnessing the constant increase in the capabilities of modern data acquisition devices and
the continuous growth of the popularity of mobile electronic equipment, which places
higher and higher demands on the amount of data required to be transmitted between
various computer systems (e.g., in embedded systems including Internet of Things (IoT)
appliances interconnected with 5G cellular networks). Bearing this in mind, we can expect
these trends to increase regularly in the future. For this reason, it is very important to
reduce the actual size of the data to be transmitted without the loss of information conveyed
by the data itself. In the case of static images, video sequences, or audio recordings, we
agree to some distortion in the reconstructed data. For example, minor modifications to
the colors of pixels in a natural image do not mean the loss of information, because we are
still able to read the pictured content. In such a scenario, we can speak about lossy data
compression, which in practice can result in even a few hundred times reduction in the size
of the input data (c.f. Joint Photographic Experts Group (JPEG) or Moving Picture Experts
Group (MPEG) standards [1]). Conversely, the situation is different in relation to text data,
executable files of computer programs, and topographic data including coordinates, geo-
metric descriptions of terrain and field objects, and descriptions of movement trajectories
of objects, etc. In these cases, any change in the input data is not allowed, which means
that the data must be reconstructed without distortion. Consequently, we can speak of
lossless compression. Compared to lossy compression, lossless compression not only places

Entropy 2022, 24, 1447. https://doi.org/10.3390/e24101447 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24101447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-6197-0372
https://orcid.org/0000-0001-9070-8042
https://doi.org/10.3390/e24101447
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24101447?type=check_update&version=2

Entropy 2022, 24, 1447 2 of 20

additional restrictions on the data compression methods but also limits the compression
ratios that can be obtained.

Data compression methods are the techniques of data coding through which one
message is represented in the form of another message using a different alphabet that can
be characterized by a more compact representation (i.e., requiring a smaller number of
bytes). Lossless data compression methods can be roughly grouped into the following
three categories:

• Block-to-variable codes: this is a type of coding technique where a variable-length
output codeword is assigned to each symbol of the input alphabet. The length of
the codeword strictly depends on the frequency (probability) of the occurrence of
the input symbol according to the following rule—the more probable a symbol the
shorter the output code. The compression is obtained when frequently appearing
symbols are coded in a more efficient way. The following coding techniques belong
to this category: phased-in codes [2], redundancy feedback coding, Shannon–Fano
codes [3,4], and Huffman coding [5,6].

• Variable-to-block codes: this is a category of coding techniques where we assign
fixed-size output codewords to variable-length sequences of symbols from the in-
put data. Compression is achieved by encoding long sequences with shorter fixed-
length codes when long sequences of input symbols appear with high frequency in
the input data stream. This category includes the following coding methods: Tun-
stall codes [7], digram coding [1], and the dictionary-based techniques LZ77 [8,9],
LZ78, [10], and LZW [11].

• Variable-to-variable coding: this is a category of techniques that encode the variable-
length input data sequences using variable-length output codewords. These tech-
niques allow for higher compression ratios because they combine the advantages of
both the abovementioned classes of methods. This category includes, for example,
the modified LZW algorithm [12] (where the size of the output codewords is not con-
stant but depends on the level at which the dictionary is filled with sequences of data),
DEFLATE [13] (uses dictionary and Huffman coding, in which the dictionary indexes
are coded with block-to-variable codes depending on their frequencies of occurrence),
frequency-directed run-length (FDR) codes [14], variable-length input Huffman cod-
ing [15] (applicable to binary data where the sequences of 0’s are coded using the
Huffman method), selective Huffman coding [16–18] (where only the most frequently
occurring binary sequences are encoded with the Huffman method), and the dual-tree
based approach [19,20] (the apt combination of Tunstall and Huffman coding, which
improves the efficiency of the second one).

In this paper, we use Huffman coding. As mentioned above, Huffman coding is a
block-to-variable coding method that depends on the known frequencies of symbols in
the input stream. It assigns the shortest code to the most frequently occurring symbol. It
is convenient to implement with a code in time linear to the number of input frequencies
when the frequencies are sorted. See Section 2 for the details of the Huffman coding
algorithm. In fact, it is a type of prefix code, and it is so widespread that “Huffman
code” is widely viewed as a synonym for “prefix code”. There is no ambiguity when
decoding the generated bitstream, and it ensures that the decoded information is lossless
and absolutely precise. The original algorithm was proved to be optimal for a symbol-
by-symbol coding with a known input probability distribution. Although there are many
alternatives performing better than the classical Huffman coding in practice, Huffman
coding remains indispensable. For example, it is widely applied to fax, text, GZIP, JPEG,
PNG, MP3, etc. Its necessity is accepted when we are dealing with backup files containing
important information. To promote the efficiency of Huffman coding, researchers have tried
to combine a fixed number of symbols together (“blocking”) to increase the compression.
As the size of the block increases, the variant-Huffman coding approaches the entropy limit.
However, there are some theoretical difficulties. For instance, first, the time complexity
of the algorithm becomes exponential with regard to the size of the block, which makes

Entropy 2022, 24, 1447 3 of 20

the approach impractical. Second, it is difficult to decide the value of the “fixed number”.
The algorithm is not as flexible once the value is fixed, and the fixed number approach may
be not compatible with the classic Huffman coding, i.e., a fixed m > 1 is not guaranteed to be
better than m=1. The theoretical problems introduce serious obstacles to the applications
of the Huffman coding.

In this article, we study these problems in theory and move the Huffman coding a
step forward, which may shed light on further future applications. Specifically, we address
the problem of variable-to-variable coding using the natural extension of the classical
Huffman coding to m-grams, i.e., the sequences of symbols for the values of m higher than
1. The novelty of this paper includes the following five points. (i) We provide a technique
that enables determination of the frequencies of the occurrence of the symbol sequences (m-
grams) in the input data with various lengths ranging from 1 to m. (ii) A formulation of the
optimal m-gram Huffman data coding algorithm is proposed. Additionally, an estimation
of its computational complexity is shown. (iii) In order to promote the efficiency of the
algorithm, we propose an approximate approach based on a greedy heuristic. It can be
characterized by linear computational complexity in relation to the size of the input data.
(iv) The decoding algorithm is considered and shown. (v) To verify the effectiveness of the
proposed approximate approach, experiments are conducted for different sets of input data.

2. Huffman Coding

Huffman coding is a popular technique for block-to-variable lossless compression of
data (see [5]). In this technique, based on the frequency of occurrence, we assign to each
symbol coming from the input data the individual binary codewords of variable length
according to the following intuitive rule: the more frequent a symbol is, the shorter the
codeword assigned to it. In order to create the codewords, we take advantage of binary trees
that guarantee obtaining prefix codes, which denotes the class of codes where no codeword
is a prefix of any other codeword. Codes having this property are highly demanded in
variable-length coding because they enable unambiguous decoding of data even from
a sequence of concatenated codewords. It should also be noted that Huffman coding
constructs a set of variable-length codewords that can be characterized by the shortest
average length [21].

In order to decode the data at the decoder, we need to know the codewords assigned
to the individual symbols occurring in the input stream. The codewords (for all input
data symbols) can be placed into a stream of compressed data, but it is usually more
effective to transmit information about the frequency of the occurrence of the individual
symbols. Based on this information, the decoder is able to reconstruct codewords by
building and using the same binary tree. In some cases, it can be also advantageous to
use fixed codewords, which are known to both the coder and decoder. It should be noted
that such an approach can be highly practical in cases where the given class of input data
is characterized by the stable frequency distribution of symbols. We demonstrate the
Huffman coding technique through the following elementary example.

Let us assume that the input data stream is constructed over the alphabet of the form
A={a, b, c} and that the following exemplary sequence of symbols I is to be coded, i.e., we
have I = {aaaabbaaaabbbbbbaabcabbccabbaaaaabbccaaaaa}. Obviously, we have three
different symbols in A, which means that we need 2 bits to code each of the symbols when
using natural binary coding. With the size of the input data n= |I|=42, there are 84 bits
required to code the whole input sequence I . In the case of Huffman coding, in the first
place, we have to evaluate the frequencies of the occurrence of all the input symbols in the
alphabet A. This step does not consume much time (computational complexity O(n)) and
only requires iterating the entire input data sequence I and counting the occurrences of the
symbols. The results obtained for the exemplary sequence I are collected in the second
column of Table 1.

Entropy 2022, 24, 1447 4 of 20

Table 1. The frequency of the occurrence and the codewords assigned to the individual symbols
coming from the exemplary input sequence I .

Symbol Frequency Codeword

a 22 1
b 15 00
c 5 01

The next step is to create a Huffman code tree and to determine the codewords
assigned to individual symbols. We start constructing the tree with a forest composed
of nodes representing the symbols from the alphabet together with their frequencies of
occurrence (see Figure 1).

Figure 1. Initial forest of nodes representing the symbols from the alphabet together with their
frequencies of occurrence.

The whole process is iterative, and in each iteration leading to the Huffman code tree,
we have to select two trees from the forest with the lowest frequencies of occurrence, and
then combine them into one tree in which the root node represents the total number of
occurrences of all the symbols in the newly formed tree (see Figure 2).

Figure 2. Operations within each iteration of the Huffman code’s tree-building procedure consisting
in finding the two trees with the smallest total number of occurrences of symbols and combining
them into a single tree.

We repeat these operations until only one tree is left. The resulting tree is the complete
Huffman code tree that we are looking for (see Figure 3).

Next, in order to retrieve the codewords for the individual symbols, we have to
traverse the tree from the root node to each leaf. For each symbol, the path information
from the root node to its node is stored in the form of concatenated bits, where ‘0’ describes
the left and ‘1’ the right subtree (this assignment is fully arbitrary and can be inverted). The
resulting path descriptors are the searched for codewords. For the considered exemplary
case, the codewords obtained on the basis of the code tree from Figure 3 are collected in
the third column of Table 1. It should be noted that the length of the codewords depends
strictly on the height of the tree. The Huffman code tree has the smallest height when all the
symbols have an equal probability of occurrence. When the frequencies of the occurrence
of the following symbols form the elements of a Fibonacci sequence, the resulting tree is
unbalanced, which results in its maximum height [21].

Entropy 2022, 24, 1447 5 of 20

Figure 3. The Huffman code tree obtained for the considered exemplary case.

If we use the Huffman codewords from Table 1 to code the exemplary sequence of data
I , then it is elementary to check that we can obtain the coded sequence of the following form
C = {11110000111100000000000011000110000010110000111110000010111111}. It is also
simple to verify that the coded sequence requires 62 bits, which gives an average number
of 1.476 bits per single symbol related to the total number of symbols n=42. This is more
than a 26% improvement. In this place, we can ask how close this result is to the theoretical
limit. Of course, the theoretical limit is determined by the first-order entropy calculated
as [21]:

H=−
|A|−1

∑
i=0

pi log2 pi, (1)

where pi for i=0, 1, . . . , |A| − 1 describe the probabilities of the occurrence of the individual
symbols from the alphabet A. In our example, these probabilities can be calculated as
pi = fi/n, with fi describing the frequencies of the occurrence of the symbols (these
frequencies are in the second column of Table 1). Hence, for the symbol ‘a’ we have
p0 = 22/42, for the symbols ‘b’ and ‘c’ we have p1 = 15/42 and p2 = 5/42, respectively.
Based on these results, one can easily calculate the entropy using the formula (1), which
leads to the result of H=1.385 bits per symbol.

We can clearly see that the result of H = 1.476 bits per symbol obtained with the
Huffman coding was higher than the theoretical limit of H=1.385 bits per symbol. This is
a direct consequence of the fact that Huffman coding is only optimal under certain circum-
stances. It was proved in paper [22] that the redundancy of Huffman coding, understood as
the difference between the average Huffman codeword length and the entropy, is at most
pmax+0.086, where pmax is the probability of the most frequent symbol in the alphabet.
In our example, this corresponds to the range between 1.385 and 1.995 bits per symbol,
but the obtained result was close to the lower limit. The authors of [23] examined the
extreme cases of large and small alphabets, and they concluded that, in the case of practical
applications of text coding, the Huffman technique enabled obtaining codewords with an
average length higher by less than 1% than the actual entropy. For shorter blocks of text
(several hundreds of elements), the Huffman coding outperformed the arithmetic coding.

3. Proposed Method

The Huffman coding in its basic form allows the compression of data based on the
frequencies of the occurrence of individual symbols from the alphabet. Hence, the lower
limit for its performance can be calculated as the first-order entropy. This also means
that even if there is redundancy in the input data due to the repetition of sequences of

Entropy 2022, 24, 1447 6 of 20

symbols, the basic Huffman coding is not able to use the information of these dependencies
to compress the input data. In this case, in practical applications, we use dictionary-based
methods that belong to the group of variable-to-block data compression techniques. It
is also well known that variable-to-variable techniques may produce much better results
in many cases than variable-to-block and block-to-variable approaches. For example,
the Lempel–Ziv–Welch compression algorithm with a fixed length of the dictionary indexes
will be easily outperformed by its variant where the length of the indexes increases with
the size of the dictionary (see [12]). Combining run-length encoding (RLE) of data series
with the Huffman technique can give very good results when certain symbols in the input
data are repeated in long sequences. Another example is the DEFLATE algorithm [13],
which combines the Huffman coding with the LZ77 dictionary algorithm, where the LZ77
is responsible for eliminating the repeated sequences of symbols, and the Huffman coding
is responsible for replacing commonly used indexes with shorter binary representations.

In this paper, we focus on the variable-to-variable variant of the Huffman coding
technique that operates on sequences of symbols, i.e., m-grams of input data symbols,
where m can be several, several dozen, or even several hundred. This requires us to address
the following issues: (i) a method of estimating the occurrence frequencies of the sequences
of symbols in the input data, (ii) searching for the optimal Huffman coding algorithm
in theory operating on m-grams (i.e., sequences of symbols). In particular, we need to
estimate its computational complexity and practical applicability. From the practical point
of view, an approximate and heuristic approach should be constructed, and (iii) the data
decoding problem.

It should be noted that the problem of variable-to-variable Huffman coding has been
addressed in the literature [15–20]. In papers [15–18], the authors proposed special variants
of variable-to-variable Huffman coding techniques that were dedicated to the compression
of data used in the process of testing systems-on-a-chip devices. Due to the specific field
of application, the methods proposed there were adapted to the inherent attributes of the
input data and thus cannot be used for general tasks. In particular, there were selective
techniques that did not recover the values of bits unimportant in the testing process.
The approach proposed in papers [19,20] was the dual-tree and variable-to-variable lossless
entropy coding scheme. The first tree (Tunstall tree) was to parse the variable-length
source words from the sequence of input data into indexes corresponding to single leaf
nodes of the tree. The second tree (Huffman code tree) was used to map the indexes to
variable-length codewords. By tuning both trees properly according to the probability
distributions of words and code symbols, it enabled obtaining the asymptotic optimality of
the scheme. However, it should be noted that the technique described in [19,20], different
from our approach, had the following three typical properties and requirements: (i) It
assumed that the input sequence was a random process with independent and identically
distributed. random variables. (ii) The selection of the input sequence symbols according
to the structure of the Tunstall tree had to be specified and unique. (iii) The asymptotic
improvement of the efficiency of the Huffman coding depended on the combination of
the two trees. It allowed obtaining the compression efficiency close only to the first-order
entropy of input data. In our paper, we do not assume the statistical independence of the
occurrences of the input data symbols. Furthermore, we do not use an encoding tree that
uniquely defines the choice of the sequences of the input data symbols. In some sense,
this increases the complexity of the task of optimal data encoding; however, it enables us
to obtain the compression efficiency resulting from the m-gram entropy values (it should
be noted that, by m-gram entropy, we understand entropy calculated for m-grams, i.e.,
m-element sequences of symbols, with m>1. For m=1, we can speak about the first-order
entropy, which means the entropy calculated for individual symbols from the alphabet
based on their frequencies of occurrence).

Entropy 2022, 24, 1447 7 of 20

3.1. Estimating the Frequencies of the Symbol Sequences

The first step before creating the Huffman code tree is to estimate the frequency of
the various symbol sequences that may appear in the input data. In our approach, we
assume that m-grams or m-element sequences of symbols can form basic entities to which
we assign succinct representations in the form of Huffman codewords. Therefore, first of
all, we need to know the frequencies of their occurrences. Of course, m-grams and their
frequencies can be set a priori, but in this paper, we consider an approach based on the
so-called pattern input data (the pattern data is a specially selected set of data used to
estimate the frequencies of the occurrence of m-grams, i.e., statistical characteristics of the
data, which can be used further on to determine the Huffman codewords. It should be
statistically representative for the given class of data), which allows us to find the sequences
and their frequencies automatically using the proposed algorithm parametrized only with
the maximum sequence length m (see Algorithm 1).

Algorithm 1 Frequency estimation of the sequences of the input data elements

Require: I , n= |I|, m ≥ 1, n ≥ m, α ≥ 0
Ensure: DF

1: DF ← {} . Create an empty dictionary
2: i← 1
3: while i ≤ m do
4: j← 0
5: while j ≤ n− i do
6: S← I [j : j + i] . Select fragment of input data from j to j+i−1
7: if DF[S] =null then . Fragment S is not in the dictionary
8: DF[S]← iα . Add S to dictionary with initial frequency
9: else

10: DF[S]← DF[S] + iα . Increase frequency of S
11: end if
12: j← j + 1
13: end while
14: i← i + 1
15: end while

The principle of operation of the algorithm is simple. It consists of two steps, i.e.,
iterating through a sequence I of the input data and extracting all possible sequences
S of different lengths i = 1, 2, . . . , m. We also assume that we have a dictionary DF in
which information about the frequencies of the occurrence of particular symbol sequences
is stored. If the sequence S is already in the dictionary, we increase the number of its
occurrences by the value of iα (where i for i = 1, 2, . . . , m is the parameter indicating the
size of the sequence of symbols under consideration, and α is the exponential scaling factor
used to enhance the frequency of the occurrence of long sequences. We must note that with
α=0 we count the actual numbers of the occurrences of the symbol sequences). Otherwise,
we add S to the dictionary and initialize the occurrence counter of the sequence with a
value equal to iα. The computational complexity of the algorithm can be roughly estimated
as O(m2n).

We can see in Table 2 the results of the operation of Algorithm 1 for the following
exemplary input data I = {aaaaaaab}, where the maximum length of sequences m = 3.
It should be noted that the starting value of the counters, as well as their incremental
values, depends on the α parameter. For α>0, the value of increment iα is higher than 1
and depends on the size of the sequences. In this way, parameter α can be used to boost
the frequencies of longer words. The third column of Table 2 shows the results obtained
with α=1. This function is based on heuristics, but enables us to achieve better results in
practical applications.

Entropy 2022, 24, 1447 8 of 20

Table 2. The frequencies and the weighted (α=1) frequencies of the occurrence of sequences in the
input data I for m=3.

Symbols Frequency Weighted (α=1)

a 7 7
b 1 1
aa 6 12
ab 1 2
aaa 5 15
aab 1 3

3.2. Determining the Huffman Codewords

Once we know the frequencies of the occurrence of m-grams for a given value of m,
the next required step is to identify the Huffman codewords. This step requires creating
the Huffman code tree using the standard procedure (described in Section 2). The only
difference here lies in the fact that the leaf nodes hold not only single symbols from the
alphabet A but also i-element sequences of symbols for i=1, 2, . . . , m. In Table 3, we can
see the Huffman codewords for our exemplary input data I for two different values of the
α parameter.

Table 3. Huffman codewords determined for the sequences of symbols based on an exemplary
message for m=3 and for two different values of parameter α.

Symbols α=0 α=1

a 11 111
b 0010 11010
aa 10 10
ab 0011 11011
aaa 01 0
aab 000 1100

It should be noted that the case of α=1 corresponds to the so-called weighted case.
The values of the frequencies collected in this case are stored in the second column of
Table 2. The assumed heuristic of weighing the frequencies of the occurrence of the symbol
sequences allows us in this case to produce only one-bit long code for the most frequent
sequence of symbols ‘aaa’. In Figure 4, we can see the Huffman code tree generated for our
exemplary case and the weighted case with the α=1 variant of the frequency data.

Figure 4. Steps required to build the Huffman code tree for the weighted variant of the frequency
calculation algorithm in the case of the exemplary input data I .

Entropy 2022, 24, 1447 9 of 20

In the case of high values of the parameter m, the number of the sequences of the input
data can be too large, which makes it impossible to build the Huffman tree in an acceptable
amount of time. To solve this problem, we propose the following heuristic, which keeps
only a given percentage of the most frequent sequences of symbols of input data. At the
same, it should be noted that we have to assign codewords to all individual symbols from
the alphabet A in order to make the coding of the input data possible.

3.3. Optimal Coding Procedure

Once the codewords are generated and assigned to the sequences of symbols from
the stream of input data, we can proceed to the next step of data coding. We must bear in
mind, however, that in the considered case the data coding task differs from the similar
task that must be performed in the case of the classical Huffman coding or the dual-tree
coding approach introduced in papers [19,20]. The difference is that with both of the other
techniques, there is always only one option of mapping a given sequence I of input data
into the sequence of codewords C. For example, in the classical Huffman coding, we assign
one codeword to each input symbol. Hence, for a given set of codewords, there is only one
possible way to code a specific sequence of symbols. In the dual-tree approach, we use
a Tunstall tree at each iteration of the algorithm in order to select the sequence of input
data to which we assign an individual codeword. Once again this assignment is unique,
and consequently, there is only one possible way to code a given set of input data. In the
proposed approach, the ambiguity is fully expected. Let us consider the exemplary input
data of the form I={aaaaaaab} and the codewords assigned to the sequences of symbols
for m = 3 (see Table 3). It is understood that we can start coding the input data in three
different ways, that is by coding the ‘a’, ‘aa’ or ‘aaa’ sequence. Next, once again, we have
the same three choices and so on until all the data are coded. Hence, we have several
possible ways of coding the same input data, for example, (using codes for α=1):

{aaaaaaab}=a + aaa + aa + ab → 111 + 0 + 10 + 11011={11101011011},
{aaaaaaab}=aaa + aaa + ab → 0 + 0 + 11011={0011011},
{aaaaaaab}=aa + aaa + aab → 10 + 0 + 1100={1001100}.

It is clear that in practical applications we are not interested in any other coding of input
data apart from the coding that may guarantee the smallest number of bits. This way of
data coding is called optimal. Although the whole problem is strictly combinatorial, it can
be accelerated with the use of dynamic programming. In Algorithm 2, we can find the
dedicated procedure allowing us to find the optimal coding C of the input data I based on
the given set of codewords collected in the DC dictionary.

The proposed algorithm allows us to find the optimal code C for a given sequence
of input data I (see Algorithm 2). It consists in building a directed graph stage by stage,
which describes all possible ways of coding input data. See Figure 5 for an illustration
in which each column represents a stage. By stages, we mean the subsequent steps of
the algorithm leading to finding the optimal solution, while states can be interpreted as
positions (indexes of symbols) in the sequence of input data. The nodes of the graph are
labeled with the numbers {0, 1, . . . , n}, and they represent all possible states of the process
at the following stages. In fact, the nodes with the same number n correspond to one state
n. Examining the graph, looking for a path leading from node 0 to node n is equivalent to
analyzing the input data from the first symbol (state 0) to the end of the entire sequence
(state n). Depending on stage e, where e=0, 1, . . . , n, the set Se of possible states that we
can proceed to in our next step is defined as:

Se ={i : e ≤ i ≤ min{m · e, n}}. (2)

It should be noted that being at stage e in state i we can change the state by moving to the
next stage but only to one of the following possible states j, where the range of j is from
i+1 to min{i+m, n}. The possible transitions between states are described with directed

Entropy 2022, 24, 1447 10 of 20

edges in the graph, which are also labeled with the sequences of the symbols from the input
data by which we move forward in the whole input sequence. Hence, the resulting graph
is a multistage graph, i.e., one that has only local connections between adjacent stages.
Moreover, as a result, we can say that the entire process of searching for the optimal code
has the Markov property, which means that the states at a given stage depend directly on
the states and decisions made at the immediately preceding stage. The next step on the way
to finding the optimal code (the solution to the problem) is to formulate the rule allowing
us to find locally optimal solutions based on the previous results, i.e., the analogous results
determined at the previous stage (the solutions to the subproblems).

Algorithm 2 Procedure for finding the optimal coding of the input data

Require: I , DC, n= |I|, m ≥ 1, n ≥ m
Ensure: C

1: Dnodes ← {0 : null} . Create and initialize node data dictionary
2: for e := 0 to (n−1) do . For loop with n iterations regarding stages
3: for i := e to min{m ∗ e, n} do . Iterate through nodes at each stage
4: k← i + 1 . Calculate node indexes range in the next stage
5: l ← i + m
6: if l > n then . Node index cannot be higher than data size
7: l ← n
8: end if
9: for j := k to l do . Iterate through node indexes

10: S← I [i : j] . Read data sequence between i and j−1
11: c← Dnodes[i] +DC[S] . Calculate code sequence
12: if Dnodes[j]=null then . Check if node j was already reached
13: Dnodes[j]← c . If not add it to Dnodes with its code
14: else
15: if |Dnodes[j]| > |c| then . Is new code sequence better?
16: Dnodes[j]← c . If needed update code sequence for j
17: end if
18: end if
19: end for
20: end for
21: end for
22: C ← Dnodes[n] . Read the optimal coding sequence

Let us assume that fe(j) describes the length of the shortest path leading from node 0
at stage 0 to the current stage e (where e=0, 1, . . . , n) and state j∈Se. By the length of the
path, we understand the total number of bits resulting from the input data partition along
the path. This depends on the sequences of symbols along the path and the lengths of the
codewords assigned to those sequences. Thanks to the Markov property of the problem, it
is not difficult to find the shortest paths from the starting node 0 to all nodes at the current
stage e, i.e., the values of fe(j) for j∈Se. Specifically, for each node j at the present stage e,
it is enough to check only the local connections to it leading from the nodes in the previous
stage. We compute the length of the paths, which is certainly the summation of fe−1(i)
and the length of the local connections, where fe−1(i) (i∈Se−1) denotes the length of the
shortest path from 0 to state i in stage e− 1. It should be noted that f0(0)= 0. Then, we
assign the minimal value to fe(j). Hence, following the Markov property we can write the
following formula:

fe(j)= min
i∈Se−1

1≤j−i≤m

{ fe−1(i) + |DC[I [i : j]]|} (3)

Entropy 2022, 24, 1447 11 of 20

for j ∈ Se, where |·| is the length of the code, and I [i : j] describes the sequence of the
elements from the input data starting from index i to index j−1. Of course, in addition to
the lengths fe(i) of the shortest paths, we also need to store the nodes that make up the
paths (see Algorithm 2). In this way, we are able to find the sequence of codes corresponding
to a given path. Consequently, we apply this rule to all the nodes at each stage until we
obtain the final solution after reaching all nodes corresponding to the last state n. Since
such nodes can be reached from more than one stage (actually from every stage starting
with e =

⌊ n
m
⌋
+1), here, we have to choose the shortest path among all the possibilities.

Such a path and the corresponding sequence of codewords is the final solution to the
problem. The operation of finding the final solution to the problem is described in the
graph representation (see Figure 5) in the form of a node labeled as n+1, which is connected
to all the adequate nodes representing the state n at stages e≥

⌊ n
m
⌋
+1.

Figure 5. The multistage graph created for the exemplary input data I={aaaaaaab}.

In Figure 5, we can see the multistage graph created for the exemplary input data
I = {aaaaaaab}. We start to solve the problem of finding the optimal code with node 0
and stage e=0. It is obvious that the distance from node 0 to itself equals 0 (i.e., f0(0)=0).
It should be noted that in our example, we assumed m=3, which results in the possible
values {1, 2, 3} of the states reachable for the next stage e=1 (i.e., S1={1, 2, 3}). Moving
from node 0 at stage e = 0 to nodes {1, 2, 3} at stage e = 1 corresponds to coding the
following sequences of symbols {a, aa, aaa} with the use of the codewords {111, 10, 0},
respectively. It gives the lengths {3, 2, 1} of the paths leading from the starting node 0 to
nodes {1, 2, 3} at stage e=1. They are automatically the shortest paths from the starting
node to the nodes considered at this stage (i.e., we have f1(1)=3, f1(2)=2, and f1(3)=1).
In the next step, we move to stage e=2. With m=3 and having the nodes {1, 2, 3} at the
stage e = 1, we can move from node 1 to nodes {2, 3, 4}, from node 2 to nodes {3, 4, 5},
and from node 3 to {4, 5, 6} (this means S2 = {2, 3, 4, 5, 6}). It corresponds to coding the
following sequences of symbols taken from the input data: (i) moving from 1 to {2, 3, 4}
means {a, aa, aaa}, (ii) moving from 2 to {3, 4, 5} takes {a, aa, aaa}, and (iii) moving from 3
to {4, 5, 6} corresponds to {a, aa, aaa}. All these sequences {a, aa, aaa} can be coded using
the following codewords {111, 10, 0} with lengths {3, 2, 1}. Finding the shortest path for

Entropy 2022, 24, 1447 12 of 20

node 2 at stage e=2 is trivial because we have only one path from the nodes at stage e=1
to that node. It corresponds to the sequence ‘a’ from node 1 and codeword 111. Because the
length of the shortest path for node 1 at stage e=1 is 3, we can say that the shortest length
of the searched-for path is 6 (i.e., f2(2) = max{ f1(1)+3} = 6). In the case of node 3, it
is more complicated because it can be reached from two nodes {1, 2} at stage e= 1 with
sequences {aa, aaa} and codewords {10, 0}. It should be noted that the lengths of the
shortest paths to nodes {1, 2} at stage e = 1 equal 3 and 2, respectively. Hence, in order
to find the shortest path leading from the starting node to node 3 at stage e=2, we have
to choose the smaller value from the sums 3 + 2 = 5 and 2 + 3 = 5 (which corresponds
to f2(3) = max{ f1(1)+2, f1(2)+3}= max{5, 5}= 5). Both sums are equal so we choose
the first possibility, which means the path moves from 0 to 1 and then to 3. We have to
solve the problem of finding the shortest paths for the remaining nodes and the subsequent
stages in the same way. It should be noted that the shortest paths for each node at every
stage are indicated with by purple in the graph in Figure 5. In the case of node 8 (the final
node), we have several shortest paths found because this node can be reached from several
stages, which gives several candidates for the optimal path. Hence, the final solution to the
problem is the shortest path selected among them, which in the graph is indicated by the
additional node 9.

The computational complexity of Algorithm 2 can be roughly estimated as O(m2n2).
It results from the number of n stages which we have to consider. Moreover, at each stage
we have a number of nodes dependent on the size of input data n. Next, for each node we
explore all possible connections to the nodes at the following stage in a number dependent
on parameter m. Finally, in order to calculate the size of the code sequence in line 15 of
the algorithm, we need to find the codeword for a sequence of data S taking advantage of
dictionary DC. This process also requires a number of operations relying on the value of
parameter m. However, this complexity can be improved and reduced to O(mn2) with the
aid of the apt usage of the TRIE tree (shown for the considered exemplary input data in
Figure 6). This requires combining the steps of generating the nodes for the next stage and
selecting the sequences of the symbols corresponding to the transitions between stages,
together with the process of finding the codewords assigned to them (this process can be
accelerated with the use of the TRIE tree). In such a configuration, this process can be
reduced to a number of operations of order O(m).

Figure 6. The TRIE tree generated for the exemplary input data and the codewords assigned to the
sequences of symbols for m=3.

Entropy 2022, 24, 1447 13 of 20

However, even for small values of parameter m the resulting computational complexity
of the optimal algorithm is still proportional to the squared size of input data n. We realize
that such computational complexity can be prohibitive in many practical applications,
especially when operating on long sequences of input data.

3.4. Approximate Coding Procedure

In order to reduce the computational complexity of the coding process, we propose
in this paper a more efficient but approximate approach, which is based on the greedy
heuristic inspired by the solution to the well-known backpack problem [24]. The idea
behind the proposed heuristic is simple and intuitive.

Let us assume that we are coding the given input sequence of data I and that we
are currently at state i in stage e. We are going to move to the next stage e+1 by means
of changing the state to j. For a given m, j could be any integer varying from j= i + 1 to
j = i + m, where j ≤ n. Clearly, every value represents a possible sequence to be coded
in the next step, and our task is to choose a value of j. As opposed to the optimal one,
in the heuristic approach, we may make the decision instantly while browsing the possible
states at the next stage. The choice is based on the following rule: we choose the sequence
of input data that guarantees the highest ratio of the length of the data sequence and the
length of the codeword assigned to it. After choosing the best possible sequence, we add its
codeword to C and then move to the next stage to the state resulting from the length of the
chosen sequence. We continue these steps until the final node n is reached. The proposed
heuristic approach is described in the form of pseudocode in Algorithm 3.

The computational complexity of Algorithm 3 lies between two limiting values.
The first one is related to the case when all the sequences with lengths i = 1, 2, . . . , m
are analyzed; meanwhile, the most beneficial is always the choice of a one element se-
quence. In this case, the computational complexity can be estimated as O(mn). The other
case, also limiting, takes place when at each iteration of Algorithm 3 the most beneficial is
the choice of the longest sequence. In this case, the computational complexity is of order
O(n). With m� n, we can say that the computational complexity of the approximate
procedure described by Algorithm 3 is linear.

Let us return to the considered example of the input data I = {aaaaaaab}. In order
to test the effectiveness of both the optimal and approximate approaches for the two sets
of codewords presented in Table 3, we provide the results of the I compression in the
following part of this section.

1. For the optimal approach and the value of α = 0, we obtain the following result
C={1001000}, where |C|=7.

2. With the approximate algorithm for α = 0, we can obtain the following coding se-
quence C={0101110010} with length |C|=10.

3. For the optimal approach and the value of α= 1, we obtain C= {1001100}, and the
size of the coding sequence is |C|=7.

4. With the approximate algorithm for α=1, it is possible to obtain the result in the form
C={0011011} with the size of output data |C|=7.

5. It should be noted that in the case of the classical Huffman coding we obtain code-
words in the form of one-bit values 0 and 1, which are assigned to symbols ‘a’ and ‘b’;
hence, the coding of the input data takes the form C={00000001} and |C|=8.

Based on the analysis of the above results, we can conclude that the proposed approach
allows us to obtain better results in terms of the size of the output data than that resulting
from the use of the classical Huffman coding (for a dictionary of size |A|=2, no compression
can be achieved). In the optimal approach, regardless of the value of the α parameter,
the length of the coded data was 7 bits. In the approximated approach, only in the second
case, for α=1, was it possible to obtain a good result, equivalent to the optimal approach.
This means that the proposed heuristic for boosting the frequency of the occurrence of the
data sequences, fulfills its role. In Figure 7, we can see the multistage graph representing
possible solutions of the given problem for the input data I={aaaaaaab} and α=1, where

Entropy 2022, 24, 1447 14 of 20

we mark the paths: (i) green for the optimal solution, (ii) red for the solution found with
use of the approximate algorithm, and (iii) for illustration purposes, the path resulting from
using the classical Huffman coding is blue.

Algorithm 3 Approximate coding procedure

Require: I , DC, n= |I|, m ≥ 1, n ≥ m
Ensure: C

1: C ← {} . Create and initialize output data
2: i← 0 . Initialize input data analysis index
3: while i < n do
4: r ← 0 . Initialize best ratio found value
5: l ← 0 . Initialize end of best ratio sequence
6: for k := 1 to m do . Iterate from 1 to m
7: j← i + k . Variable indicating end of the sequence
8: if j > n then . Variable j cannot be higher than n
9: j← n

10: end if
11: S← I [i : j] . Read input data sequence between i and j−1
12: c← DC[S] . Obtain its codeword from DC dictionary
13: t← |S|/|c| . Calculate the ratio and store it in variable t
14: if t > r then . Better ratio found than previous values
15: r ← t . Change value of r variable
16: l ← j . Remember value of the end index of the sequence
17: end if
18: end for
19: C ← C +DC[I [i : l]] . Add to C the codeword for the best sequence
20: i← l . Change i according to the size of the best sequence found
21: end while

Figure 7. The multistage graph for the input data I={aaaaaaab}with the possible solutions obtained
with α=1 marked.

Entropy 2022, 24, 1447 15 of 20

3.5. Decoding Procedure

Since the proposed Huffman tree produces no ambiguity, the data decoding procedure
follows the classical scheme, which is also used in the case of the classical Huffman decoding
algorithm. Having the Huffman code tree, regardless of whether we have single symbols or
their sequences at the leaf nodes, the decoding procedure consists of two steps, i.e., reading
the consecutive bits from the coded data C and then finding the symbols by traversing the
tree from the root node to the appropriate leaf nodes according to the directions resulting
from the values of the bits read.

4. Experimental Results

In order to verify the effectiveness of the proposed approach, we conducted a se-
ries of experiments in lossless data compression for different values of the parameter m.
The experiments involved the following types of data:

• Trajectory data: artificially generated data modeling the relative representation of the
movement trajectories of objects;

• English texts: examples of natural spoken language taken from arbitrarily selected
specimens of classical English prose;

• Fibonacci data sequence;
• DNA data;
• Floating point numbers representing measurement data;
• An executable object file.

The results obtained with the proposed approach were compared to the results obtained
with the use of the variable-to-variable DEFLATE (DFLT) coding algorithm and the Pre-
diction by Partial Matching (PPM) method. For the results see Tables 4–9. It should be
emphasized that, in our experiments, we assumed that for the proposed method the fre-
quencies of the occurrence of the data symbols were evaluated on the basis of the pattern
data, and they were used further on to determine the Huffman codewords. Moreover, it
was also assumed that Huffman codewords were known for both the encoder and the
decoder; hence, they were not stored in the output files obtained after the coding process.

4.1. Experiment 1

In this experiment we used artificially generated trajectory data, which modeled
relatively described paths of object movements. The problem of trajectory coding is well
known, and it concerns the task of the lossless compression of the movement data of various
objects such as robots, drones, and vehicles, as well as hiking paths and contour data for
cartographic purposes (see [25,26]). In order to code a path, we used the symbols A =
{a, b, c, d, e} drawn randomly with the following probabilities {0.88, 0.05, 0.01, 0.05, 0.01}.
Then, an exemplary path description was as follows:

aaaaaaaeaaaaabaaaabaaaaaaaaaaacaaeaaaaaaaaeaabeaaaabaaaaaabaaaa
acaaeaaabaaaeaaaabaaaaaeaaeaaaaaaaaaaaaaaabaaeaaaaaeaaaaeaaaaaa
aebaabaaaaaaaaabaaaaaaaaeaaaaaeaaabaaaaaaaaeaaaaaaeeaaeaaaeaaaa

We must bear in mind that the movement paths were described in a relative way, which
means that we had the initial absolute movement direction (north, north-east, east, etc.),
and the following steps were described relative to the current orientation using the symbols
from the alphabet A. The meaning of the symbols was as follows: ‘a’—continue moving in
the same direction, ‘b’ and ‘d’—move slightly left or right, respectively, and ‘c’ or ‘e’—move
left or right, respectively.

The results obtained in this experiment and expressed in the form of the entropy
calculated for the different values of the length of the input data sequences (m-grams) are
collected in Table 4. The efficiency in the data compression of the approximate variant of the
proposed method (see Algorithm 3) was compared to the well-known variable-to-variable
DEFLATE coding technique and the PPM algorithm.

Entropy 2022, 24, 1447 16 of 20

Table 4. Results in compression of trajectory data.

m m=1 m=2 m=4 m=6 m=8 DFLT PPM

H [b] 1.20 0.89 0.82 0.85 0.88 1.01 0.841

On the basis of the analysis of the results from Table 4, we can conclude that in this
experiment, the proposed method allowed obtaining much better results than the well-
known DEFLATE coding technique and also better results than those obtained with the use
of the PPM prediction technique. Moreover, the smallest values of entropy were obtained
for m=4.

In the second part of this experiment, we searched for the answer to the question: how
close are the results obtained with the approximate algorithm to the optimal results? For
this purpose, we conducted a series of subexperiments operating on short data sequences
(due to the high computational complexity of the optimal approach) for both Algorithms 2
and 3 and compared the obtained results (see Table 5).

Table 5. Comparison of the compression efficiency of the optimal and approximate approaches.

m m=1 m=2 m=4 m=6 m=8

Data size (optimal) [B] 152 114 105 107 112
Data size (approx.) [B] 152 114 107 108 115

Based on the results obtained in this experiment, we can conclude that the approximate
approach gave results identical to (for m=2) or very close to those obtained with the optimal
approach. Here, the difference is only about 1% to 3% of the resulting value.

4.2. Experiment 2

The aim of the second experiment was to verify the effectiveness of the proposed
approximate algorithm of the m-gram entropy Huffman coding with application to the
lossless compression of texts written in English. In order to do this, we carried out the
experiment with the use of arbitrarily selected texts written in English, where the number
of alphanumeric characters was reduced to the set including a blank space and lowercase
letters ‘a’ to ‘z’. The obtained results are collected in Table 6.

Table 6. Entropy of English language measured for the growing sizes of m-grams operating on
exemplary texts.

m m=1 m=2 m=4 m=6 m=8 DFLT PPM

H [b] 4.11 3.87 3.21 2.85 2.83 2.89 2.12

Based on the analysis of the received values of the entropy, we observe that the
proposed approximate approach obtained better results than the DEFLATE technique.
Moreover, the outcomes of the experiment were consistent with the results obtained,
for example, by Claude E. Shannon for m-grams (see e.g., [27]), where the entropy of
the English language for m = 1 was estimated as 4.16 bits, and in the case of m-grams,
i.e., operating on whole words, the result was around 2.23 bits. However, the best results
were obtained with the use of the prediction by partial matching technique, which enabled
construction online of the best statistics for this specific data.

4.3. Experiment 3

The binary Fibonacci sequence is a sequence of symbols generated over the two-symbol
alphabet A= {a, b} according to the following rule, which is applied recursively. In the
first place, we start with the initial sequence I1 = {a, b}. Next, and also in the following
iterations, the sequence obtained in the previous step is analyzed, and the individual

Entropy 2022, 24, 1447 17 of 20

occurrences of ‘a’ or ‘ba’ are replaced by sequence {a, b}, and the symbol ‘b’ is replaced
by ‘ba’. For example, after the first four iterations of the algorithm we have: I1 = {a, b},
I2 = {a, b, ba}, I3 = {a, b, ba, a, b}, and I4 = {a, b, ba, a, b, a, b, ba}. After combining the
elements of the resulting data, we obtain a binary Fibonacci sequence of data, e.g.,:

abbaababbaabbaababbaababbaabbaababbaabbaababbaababbaabbaababbaa
babbaabbaababbaabbaababbaababbaabbaababbaabbaababbaababbaabbaab
abbaababbaabbaababbaabbaababbaababbaabbaababbaababbaabbaababbaa

It should be noted that the frequencies of the occurrence of both symbols in the binary
Fibonacci sequence are identical, and the lengths of the sequences obtained at the following
iterations of the generation algorithm are the consecutive Fibonacci numbers. In this case,
i.e., when the frequencies of the symbols are identical, the classical Huffman coding (with
m=1) does not allow any compression. The results obtained in this experiment for different
values of the parameter m and the approximate technique (see Algorithm 3) are collected
in Table 7.

Table 7. Results of the compression of the Fibonacci data sequence.

m m=1 m=16 m=64 m=256 m=1024 DFLT PPM

H [b] 1.0 0.3 0.1 0.044 0.032 0.035 0.093

Based on the analysis of the results obtained in this experiment, we can draw the
following conclusions: (i) the classical Huffman coding (m = 1) does not allow for data
compression, (ii) the proposed approach allows us to obtain a significant reduction in
the size of data, (iii) the results received with the proposed approximate m-gram entropy
Huffman coding scheme were better than the results from the DEFLATE coding for high
values of m. It should be noted that in this experiment, it was possible to receive results
better than the use of the DEFLATE technique only for high sizes of m-grams, i.e., with
m=1024. This is due to the specifics of the data, where long sequences of data are repeated.
In order to make the process of Huffman code generation possible, in this experiment, we
used the previously mentioned heuristic that consists in taking into account only a given
percentage of the most frequently repeated sequences of data. In this experiment, it was
equal to 1%. The worst results were obtained with the use of the PPM technique even
with manually setting to 1024 the number of symbols taken into consideration during the
prediction process.

4.4. Experiment 4

The following experiment involved DNA sequencing data over the alphabet A =
{A, C, T, G} representing four possible nitrogen bases. An exemplary fragment of the input
data is shown below:

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGA
TAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTA
AATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACACAACATCC
ATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGC

The results of the compression using the proposed approximate approach (see Algorithm 3)
and both the DEFLATE and PPM techniques are collected in Table 8.

Table 8. Results of the compression of the DNA sequencing data.

m m=1 m=2 m=4 m=6 m=8 DFLT PPM

H [b] 2.00 2.02 1.98 1.96 1.95 2.17 2.11

Due to the specificity of the input data, only a slight reduction in data size was possible
(the best results were obtained for m=8). However, the results obtained with the proposed

Entropy 2022, 24, 1447 18 of 20

approximate approach were better than results received with the aid of the DEFLATE
technique and the PPM algorithm.

In experiments 1–4, the input data was divided into pattern and test sets, both of sizes
around 106 symbols. The pattern sets were used to find the frequency of the occurrence
of the m-grams and to determine the code words, which constitute the necessary a priori
knowledge for the proposed method on this basis. In turn, the test sets were used to assess
the efficiency of the proposed method on the data compression.

4.5. Experiment 5

In this experiment, we verify the effectiveness of the proposed approach and compare
it with the results obtained for the DEFLATE and PPM algorithms, operating on the popular
Calgary Corpus data set. In Table 9, we show the results obtained for the representative
sets of data belonging to the following classes: floating-point numbers (GEO), English text
(BOOK1, BIB), and binary executable data (OBJ1). It should be noted that in the case of
all the considered classes of data, the pattern and test sets were selected from the input
data in the proportions 25% to 75%. This enabled finding the necessary a priori knowledge
for the method in the form of the frequencies of the occurrence of the sequences of the
symbols and the code words assigned to them. Moreover, the GEO and OBJ1 data sets were
analyzed over the binary alphabet, and BOOK1 and BIB were analyzed over the alphabet
of alphanumeric symbols.

Table 9. Results of the entropy H [b] for the Calgary Corpus dataset.

GEO

m=2 m=4 m=8 m=12 m=14 m=16 DFLT PPM
0.923 0.880 0.828 0.816 0.800 0.786 1.286 0.823

BOOK1

m=1 m=2 m=4 m=6 m=8 −− DFLT PPM
4.134 3.805 3.255 3.365 3.929 −− 4.144 2.228

BIB

m=1 m=2 m=4 m=6 m=8 −− DFLT PPM
5.225 4.462 3.681 3.502 3.610 −− 2.694 1.918

OBJ1

m=2 m=4 m=8 m=12 m=14 m=16 DFLT PPM
1.023 0.924 0.893 0.853 0.826 0.789 0.706 0.834

The proposed method obtained the best results only in the case of GEO data. In the
case of the OBJ1 data set, the obtained results were close to but worse than the results
obtained with the use of the DEFLATE algorithm and much better than the results obtained
with PPM technique. In the case of the text data, the PPM method obtained the best
results, and the proposed method performed the worst. This was caused by the imprecise
estimation of the frequency of the occurrence of the symbol sequences on the basis of the
pattern sets.

On the basis of the obtained results, we can conclude that the proposed approach
provides good results in the case of data sets characterized by constant and relatively easy
to determine statistics of the occurrence of a sequence of symbols. Examples of such data
are: trajectory data, Fibonacci sequences, DNA sequencing data, or the sets of floating
point numbers. In the case of the text data, where such an estimate is much more difficult
to perform, the proposed method had worse results. It is worth showing the results of
the experiment for the BIB set, where the pattern set, i.e., the one used to determine the
statistical characteristics of the data, was also coded. The results of this experiment were:
4.381 bps for m=2, 3.129 bps for m=4, 2.279 bps for m=6, and 1.775 for m=8. The last

Entropy 2022, 24, 1447 19 of 20

result was much better than the results obtained with the DEFLATE (3.094 bps) and PPM
(2.470 bps) algorithms.

5. Conclusions

In this paper, we proposed optimal and approximate approaches to m-gram entropy
variable-to-variable data coding, which are natural extensions of the classic Huffman coding
algorithm. Due to the quadratic computational complexity O(mn2), the optimal approach
can be treated as a benchmark for approximate algorithms, or it can be used to code short
sequences of input data. In turn, the proposed approximate approach is characterized
by linear complexity O(mn), and as such, it can be used in the practical applications of
lossless data compression. In order to verify the effectiveness of the proposed approximate
approach, we conducted a series of experiments operating on different kinds of practical
input data. On the basis of the obtained results, we can conclude that the proposed approx-
imate approach gives good results for data characterized by invariant and easy to evaluate
statistics of the occurrence of the sequences of the symbols. For example, for trajectory
data or DNA sequencing data, it was possible to obtain results that were better by 2.5 and
7.6 percent, respectively, than the popular DEFLATE and PPM algorithms. In the case of
the text, the results for the proposed method were worse than for the DEFLATE and PPM
algorithms. On this basis, it can be concluded that the proposed method can find practical
application in the compression of data having the aforementioned property. Moreover,
in this paper we proposed a procedure for determining the frequencies of the occurrence of
m-element sequences of symbols (m-grams) in a string of input data, and we also discussed
the problem of data decoding. Possible directions for future work may include improve-
ments to the optimal algorithm, including estimation of the frequencies of the occurrence
of m-grams and also the development of more effective approximate techniques.

Author Contributions: Conceptualization, K.T. and D.P.; Formal analysis, K.T.; Methodology, K.T.
and D.P.; Software, K.T. and D.P.; Supervision, D.P.; Validation, K.T.; Visualization, D.P.; Writing—
original draft, K.T. and D.P. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sayood, K. Introduction to Data Compression; Morgan Kaufmann Publishers: Burlington, MA, USA, 2018.
2. Bell, T.C.; Cleary, J.G.; Witten, I.H. Text Compression; Prentice Hall: Englewood Cliffs, NJ, USA, 1990.
3. Fano, R.M. The Transmission of Information; Massachusetts Institute of Technology, Research Laboratory of Electronics: Cambridge,

MA, USA, 1949; Volume 65.
4. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
5. Huffman, D. A Method for the Construction of Minimum Redundancy Codes. Proc. IRE 1952, 40, 1098–1101. [CrossRef]
6. Navarro, G.; Ordóñez, A. Compressing Huffman Models on Large Alphabets. In Proceedings of the Data Compression Conference,

Snowbird, UT, USA, 20–22 March 2013; pp. 381–390.
7. Tunstall, B.P. Synthesis of Noiseless Compression Codes. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA,

1967.
8. Bille, P.; Berggren Ettienne, M.; Gagie, T.; Li Gørtz, I.; Prezza, N. Decompressing Lempel-Ziv Compressed Text. In Proceedings of

the Data Compression Conference, Snowbird, UT, USA, 24–27 March 2020; pp. 143–152.
9. Ziv, J.; Lempel, A. A universal algorithm for data compression. IEEE Trans. Inf. Theory 1977, IT-23, 337–343. [CrossRef]
10. Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 1978, IT-24, 530–536.

[CrossRef]
11. Welch, T. A technique for high-performance data compression. Computer 1984, 17, 8–19. [CrossRef]
12. Nelson, M.; Gailly, J.L. The Data Compression Book; M&T Books: New York, NY, USA, 1996.

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/JRPROC.1952.273898
http://dx.doi.org/10.1109/TIT.1977.1055714
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/MC.1984.1659158

Entropy 2022, 24, 1447 20 of 20

13. Deutsch, P.L. DEFLATE Compressed Data Format Specification Version 1.3; IETF: Fremont, CA, USA, 1996.
14. Chandra, A.; Chakrabarty, K. Frequency-directed run-length codes with application to system-on-chip test data compression. In

Proceedings of the 19th IEEE VLSI Test Symposium, Marina Del Rey, CA, USA, 29 April–3 May 2001.
15. Gonciari, P.T.; Al-Hashimi, B.M.; Nicolici, N. Variable-length input Huffman coding for system-on-chip test. IEEE Trans. Comput.

Aided Des. Integr. Circuits Syst. 2003, 22, 783–796. [CrossRef]
16. Jas, A.; Ghosh-Dastidar, J.; Ng, M.-E.; Touba, N.A. An efficient test vector compression scheme using selective Huffman coding.

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2003, 22, 797–806. [CrossRef]
17. Kavousianos, X.; Kalligeros, E.; Nikolos, D. Optimal selective Huffman coding for Test-Data compression. IEEE Trans. Comput.

2007, 56, 1146–1152. [CrossRef]
18. Kavousianos, X.; Kalligeros, E.; Nikolos, D. Test Data Compression Based on Variable-to-Variable Huffman Encoding With

Codeword Reusabilit. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2008, 27, 1333–1338. [CrossRef]
19. Freeman, G.H. Asymptotic Convergence of Dual-Tree Entropy Codes. In Proceedings of the Data Compression Conference,

Snowbird, UT, USA, 8–11 April 1991; pp. 208–217.
20. Freeman, G.H. Divergence and the Construction of Variable-to-Variable-Length Lossless Codes by Source-Word Extensions. In

Proceedings of the Data Compression Conference, Snowbird, UT, USA, 30 March–1 April 1993; pp. 79–88.
21. Salomon, D. Variable-Length Codes for Data Compression; Springer: London, UK, 2007.
22. Gallager, R.G. Variations on a Theme by Huffman. IEEE Trans. Inf. Theory 1978, 24, 668–674. [CrossRef]
23. Bookstein, A.; Klein, S.T. Is Huffman Coding Dead? Computing 1993, 50, 279–296. [CrossRef]
24. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009.
25. Dhou, K. A new chain coding mechanism for compression stimulated by a virtual environment of a predator-prey ecosystem.

Future Gener. Comput. Syst. 2020, 102, 650–669. [CrossRef]
26. Freeman, H. On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 1961, 2, 260–268. [CrossRef]
27. Hollos, S.; Hollos, J.R. Information Theory. A Concise Introduction; Abrazol Publishing: Longmont, CO, USA, 2015.

http://dx.doi.org/10.1109/TCAD.2003.811451
http://dx.doi.org/10.1109/TCAD.2003.811452
http://dx.doi.org/10.1109/TC.2007.1057
http://dx.doi.org/10.1109/TCAD.2008.923100
http://dx.doi.org/10.1109/TIT.1978.1055959
http://dx.doi.org/10.1007/BF02243872
http://dx.doi.org/10.1016/j.future.2019.08.021
http://dx.doi.org/10.1109/TEC.1961.5219197

	Introduction
	Huffman Coding
	Proposed Method
	Estimating the Frequencies of the Symbol Sequences
	Determining the Huffman Codewords
	Optimal Coding Procedure
	Approximate Coding Procedure
	Decoding Procedure

	Experimental Results
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Conclusions
	References

