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Abstract: This paper introduces and studies a new generalization of cumulative past extropy called
weighted cumulative past extropy (WCPJ) for continuous random variables. We explore the following:
if the WCPJs of the last order statistic are equal for two distributions, then these two distributions will
be equal. We examine some properties of the WCPJ, and a number of inequalities involving bounds
for WCPJ are obtained. Studies related to reliability theory are discussed. Finally, the empirical
version of the WCPJ is considered, and a test statistic is proposed. The critical cutoff points of the
test statistic are computed numerically. Then, the power of this test is compared to a number of
alternative approaches. In some situations, its power is superior to the rest, and in some other settings,
it is somewhat weaker than the others. The simulation study shows that the use of this test statistic
can be satisfactory with due attention to its simple form and the rich information content behind it.

Keywords: weighted cumulative past extropy; reliability theory; empirical extropy; goodness of
fit test
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1. Introduction

In recent years, there has been strong interest in the measurement of the uncertainty of
probability distributions, which is called entropy. The probabilistic concept of entropy was
developed by [1]. For an absolutely continuous random variable X, the Shannon entropy is
defined as

H(X) = −E(log f (X)) = −
∫ +∞

−∞
f (x) log f (x)dx,

where “ log ” means the natural logarithm, and f (x) is the probability density function (pdf)
of a random variable X. Several applications of entropy in information theory, economics,
communication theory, and physics are well developed in the literature, (see Cover and
Thomas, [2]). Belis and Guiasu [3] and Guiasu [4] considered a weighted entropy measure as

Hw(X) = −E(X log f (X)) = −
∫ +∞

−∞
x f (x) log f (x)dx, (1)

where by assigning greater importance to larger values of X, the weight x in (1) emphasizes
the occurrence of the event X = x. Reference [5] stated the necessity of the existence of
the weighted measures of uncertainty. In the Shanon entropy H(X), only the pdf of the
random variable X is regarded. Moreover, it is known that this information measure is
shift-independent, in the sense that the information content of a random variable X is equal
to that of X + b. Indeed, some applied fields such as neurobiology do not tend to deal with
shift-independent but shift-dependent. Further research was conducted to generalize the
concept of entropy, for example, by replacing the pdf f (x) with the survival function F̄(x),
ref. [6] introduced the cumulative residual entropy (CRE) as
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E(X) = −
∫ +∞

0
F̄(x) log F̄(x)dx. (2)

Moreover, continued generalizations recently include a more tractable measure of infor-
mation, which is the dual of entropy, called extropy, introduced by [7], which has the
following form:

J(X) = −1
2

∫ +∞

0
f 2(x)dx (3)

= −1
2

∫ 1

0
f
(

F−1(u)
)
du. (4)

After that, a number of researchers have worked to identify the behavior of this concept
in some complex schemes. In fact, both entropy and extropy provide us the information
content associated with the random variable X. As stated before, the extropy is a measure
of uncertainty introduced as dual to the entropy. The most important advantage of extropy
is that it is easy to compute. References [8–10] characterized the behavior of extropy and
its generalization in record values, order statistics schemes, and mixed systems, respec-
tively. Moreover, the extropy properties of the ranked set sampling were given in [11]. In
addition to the work of [12] in which the concept of extropy was generalized to cumulative
residual extropy, reference [13] investigated the properties of this term in both theoretical
and applied aspects based on a version of the ranked set sampling. Moreover, Vaselabi
et al., Buono and Longobardi, Kazemi et al. [14–16] considered varextropy, Deng extropy,
and fractional Deng extropy as generalizations of extropy. Furthermore, References [17–19]
considered dynamic weighted extropy, the extropy of past lifetime distribution, and the ex-
tropy of k-records, respectively. For the problem of estimation and inference of the extropy,
one can see, for example [20,21], and so on. An alternative measure of the uncertainty of a
random variable X called cumulative residual extropy (CRJ) was introduced by [12] as

E J(X) = −1
2

∫ +∞

0
F̄2(x)dx (5)

= −1
2

∫ 1

0

u2du
f
(

F−1(1− u)
) . (6)

As we see, this measure is a generalization of the so-called extropy of [7] in which the
survival function F̄(x) plays the role of the pdf f (x) in (3). Since the pdf f (x) is the
derivative of the cumulative distribution function F(x) (cdf), cdf is more convenient to
work with. Therefore, because of its convenience, some researchers prefer to work with
CRJ than extropy. In the following, the basic idea is to replace the pdf with the cdf in the
extropy definition (3). The cdf is more regular than the pdf, because the pdf is computed as
the derivative of the cdf. For the dual measure for a random variable X, we can define the
cumulative past extropy (CPJ) as

Ē J(X) = −1
2

∫ +∞

0
F2(x)dx (7)

= −1
2

∫ 1

0

u2du
f
(

F−1(u)
) . (8)

The Ē J(X) is suitable to measure information when uncertainty is related to the past, and
the empirical version of the CPJ can be easily obtained rather than the empirical version of
the extropy itself. So, one can explore the applications of the CPJ in providing inferential
methods. It is reasonable to define the CPJ only for random variables with bounded
support, since this measure will be equal to −∞ for all random variables with unbounded
support. The rest of this paper is organized as follows. In Section 2, we introduce the
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weighted cumulative past extropy as well as analyzing some of its properties, and some
examples are presented. Section 3 considers the WCPJ of order statistics. Furthermore,
we explore that when WCPJs of the last order statistic are equal for two distributions,
these two distributions will be equal. In Section 4, some bounds and inequalities are
achieved. Section 5 focuses on certain connections to reliability theory. Finally, in Section 6,
an empirical version of the WCPJ is provided, and a hypothesis testing problem is carried
out for a goodness of fit test of the standard uniform distribution.

2. Weighted Cumulative Past Extropy

In this section, we introduce a new information measure called weighted cumulative
past extropy (WCPJ). The cumulative past extropy can be generalized to weighted cumula-
tive past extropy. The main objective of the study is to extend weighted extropy to random
variables with continuous distributions.

Definition 1. Let X be a nonnegative absolutely continuous random variable having cdf F(x). We
define the WCPJ of X by

Ēw J(X) = −1
2

∫ +∞

0
xF2(x)dx (9)

= −1
2

∫ 1

0

u2F−1(u)
f
(

F−1(u)
)du. (10)

The following equality can be used in the sequel.

Ēw J(X) = −1
2

∫ ∞

0

∫ ∞

y
F2

X(x)dxdy. (11)

As stated in the introduction, similar to the CPJ, the value of the WCPJ is−∞ for all random
variables with unbounded support. So, our definition for WCPJ should be restricted to all
random variables with bounded support. Let X be a nonnegative random variable with
bounded support S; then, the WCPJ of X is defined as

Ēw J(X) = −1
2

∫ sup S

0
xF2(x)dx. (12)

Now, we evaluate the WCPJ of some distributions.

Example 1. Let X have the power distribution with the cdf, F(x) =
(

x
β

)θ
, x ∈ (0, β), θ > 0.

Then,

Ē J(X) = − β

2(2θ + 1)
, (13)

and

Ēw J(X) = − β2

4(θ + 1)
. (14)

We conclude Ēw J(X) = 2θ+1
2(θ+1) βĒ J(X). If β > 2(θ+1)

2θ+1 , then Ēw J(X) > Ē J(X), and if β < 2(θ+1)
2θ+1 ,

then Ēw J(X) < Ē J(X).

Example 2. Let X be a uniform random variable such that X ∼ U(a, b). Then,

Ē J(X) =
a− b

6
,
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and

Ēw J(X) = − b− a
24

(a + 3b).

We conclude

Ēw J(X) =

(
3b + a

4

)
Ē J(X) =

(
E(X) + b

2

)
Ē J(X).

If E(X) > 2− b, then Ēw J(X) > Ē J(X), and if E(X) < 2− b, then Ēw J(X) < Ē J(X).

In the following, the effect of the linear transformation on the WCPJ will be studied.

Proposition 1. Let X be a nonnegative random variable. If Y = aX + b, a > 0, b ≥ 0, then

Ēw J(Y) = a2Ēw J(X) + abĒ J(X). (15)

Theorem 1. Let X be a nonnegative continuous random variable with bounded support S.Then,
we have

(i) Ēw J(X) = − 1
2 E[HF(X)].

(ii) Ēw J(X) = − 1
2 (E[HF]− E[HF(X̄)]),

where HF(t̄) =
∫ t

0 xF(x)dx, HF(t) =
∫ sup S

t xF(x)dx, and HF =
∫ sup S

0 xF(x)dx.

Proof. From Equation (9) and by Fubini’s theorem, we have

Ēw J(X) = −1
2

∫ sup S

0
xF2(x)dx = −1

2

∫ sup S

0
xF(x)

∫ x

0
f (t)dtdx

= −1
2

∫ sup S

0
f (t)

∫ sup S

t
xF(x)dxdt (16)

= −1
2

E
(∫ sup S

X
xF(x)dx

)
.

On the other hand, ∫ sup S

t
xF(x)dx =

∫ sup S

0
xF(x)dx−

∫ t

0
xF(x)dx. (17)

The proof of part (ii) then follows from the substitution of (17) in (16).

In the following, we express an upper bound of the WCPJ in terms of the extropy.

Theorem 2. Let J(X) be the extropy of the random variable X and f (x) ≤ 1 for all n; then,

Ēw J(X) ≤ D∗ exp{2J(X)}, (18)

where D∗ = − 1
2 exp{E[log(XF2(X))]}.

Proof. The proof is similar to that of Theorem 2.3 in [22].

Remark 1. For a nonnegative and absolutely continuous random variable X with bounded support
S, the weighted cumulative past extropy is nonpositive.

3. Some Characterization Results Based on the Order Statistics

In this section, for some characterization results, the following lemma is needed.
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Lemma 1. Let g be a continuous function with support [0, 1], such that
∫ 1

0 g(y)ymdy = 0, for
m ≥ 0; then, g(y) = 0, for all y ∈ [0, 1].

In the following, we provide the WCPJ of the last and first order statistics. As before,
we assume that the random variable X has bounded support S. The WCPJ of the last order
statistic is

Ēw J(Xn:n) = −
1
2

∫ sup S

0
xF2

Xn:n
(x)dx = −1

2

∫ sup S

0
xF2n

X (x)dx, (19)

With a change in variable, u = FX(x), we are able to write

Ēw J(Xn:n) = −
1
2

∫ 1

0

u2nF−1(u)
f (F−1(u))

du. (20)

Moreover, by using FX1:n(x) = 1− F̄n
X(x), we have

Ēw J(X1:n) = −
1
2

∫ sup S

0
x(1− F̄n(x))2dx, (21)

with another change in variable, u = F̄(x) in (21), we have

Ēw J(X1:n) = −
1
2

∫ 1

0

(1− u)2nF−1(1− u)
f (F−1(1− u))

du. (22)

Remark 2. Let Λ∗ = Ēw J(Xn:n)− Ēw J(X). Since Λ∗ > 0, the uncertainty of Xn:n is more than
that of X, for all n. If n = 1, then Ēw J(Xn:n) = Ēw J(X).

Now, we evaluate the WCPJ of Xn:n for some distributions.

Example 3. Let X have a Power distribution with the cdf F(x) =
(

x
β

)θ
, 0 < x < θ, 0 < θ. Then,

Ē J(X) = − β
2(2θ+1) , Ēw J(X) = − β2

4(θ+1) , Ē J(Xn:n) = − β
2(2nθ+1) , and E J(X1:n) = − β2

4(nθ+1) .

In the sequel, Ē J(Xn:n) =
θ+1

nθ+1 Ē
w J(X).

Example 4. Assume that X has a uniform distribution with support on (a, b). Then, Ē J(Xn:n) =

− b−a
2(2n+1) , Ēw J(Xn:n) = − b−a

2(2n+1)

(
b− b−a

2(n+1)

)
, Ē J(X) = a−b

6 , and Ēw J(X) = − b−a
6 (3a + b).

Theorem 3. Let X1, · · · , Xn and Y1, · · · , Yn be random samples from nonnegative continuous
cdfs F(x) and G(x) and pdfs f (x) and g(x), respectively, with a common bounded support. Then,
F(x) = G(x) if and only if Ēw J(Xn:n) = Ēw J(Yn:n), for all n.

Proof. The necessity is trivial. Therefore, it remains to prove the sufficiency part. If
Ēw J(Xn:n) = Ēw J(Yn:n), for all n, then we have

−1
2

∫ 1

0
u2n
[

F−1(u)
f (F−1(u))

− G−1(u)
g(G−1(u))

]
du = 0.

By using Lemma 1, we obtain

F−1(u)
f (F−1(u))

=
G−1(u)

g(G−1(u))
.

In the following, we have F−1(u)dF−1(u)/du = G−1(u)dG−1(u)/du, u ∈ [0, 1]. Since
dF−1(u)/du = 1/ f (F−1(u)), it will be concluded that F−1(u) = G−1(u), u ∈ [0, 1].
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Theorem 4. Suppose that X1, · · · , Xn and Y1, · · · , Yn are random samples from nonnegative
continuous cdfs F(x) and G(x) and pdfs f (x) and g(x), respectively, such that F(x∗) = G(x∗).
Then, F(x) = G(x), for x < x∗, if and only if

Ēw J(Xj:n|Xj+1:n = x∗) = Ēw J(Yj:n|Yj+1:n = x∗). (23)

Proof. Suppose Ēw J(Xj:n|Xj+1:n = x∗) = Ēw J(Yj:n|Yj+1:n = x∗); that is, the WCPJ of the
last order statistic for two distributions F(x) and G(x) truncated at x∗ are equal. Thus, by
Theorem 3, these two truncated distributions are equal, which leads to F(x) = G(x) for
x < x∗.

Conversely, if F(x) = G(x) for x < x∗, then by assumption, F(x∗) = G(x∗), and F(x)
and G(x) truncated at x∗ are equal for x < x∗; that is,

F(x∗)− F(x)
1− F(x∗)

=
G(x∗)− G(x)

1− G(x∗)
, x < x∗.

The distribution of Xj:n, given that Xj+1:n = x∗, is the same as the distribution of the
last order statistic obtained from a sample of size n − j − 1 from a population whose
distribution F(x) is truncated at x∗. For more details, see [23]. By Theorem 3, we conclude
that Ēw J(Xj:n|Xj+1:n = x∗) = Ēw J(Yj:n|Yj+1:n = x∗).

4. Some Inequalities

In this section, we obtain some upper and lower bounds for the WCPJ.

Proposition 2. Let X be a nonnegative continuous random variable with the cdf FX(x) and
bounded support S = [k, sup S). Then, we obtain

Ēw J(X) ≤ k Ē J(X). (24)

Corollary 1. Let X be a continuous random variable with the cdf F(x) and support [0, k]. Then,

(i) kĒ J(X) ≤ Ēw J(X).

(ii) Ēw J(X) ≤ −HF(k̄)
2 log[1 + ( 2HF(k̄)

k2 )],

where HF(k̄) =
∫ k

0 xF(x)dx.

In the following, stochastic orders of two distributions in terms of their characteristics
are considered. For more details, one can see [24]. In the sequel, we show that the ordering
of the WCPJ is implied by the usual stochastic order.

Definition 2. A random variable X1 is said to be smaller than X2 in the usual stochastic order,
denoted by X1 ≤st X2, if P(X1 ≥ x) ≤ P(X2 ≥ x) for all x.

Definition 3. A random variable X1 is said to be smaller than X2 in the WCPJ order, denoted by
X1 ≤wcpj X2, if

Ēw J(X1) ≤ Ēw J(X2). (25)

Proposition 3. Let X1 and X2 be nonnegative and continuous random variables. If X1 ≤st X2,
then X1 ≤wcpj X2.

Example 5. Let X and Y be two random variables with the cdfs FX(x) = x, x ∈ [0, 1] and
FY(x) = x2, x ∈ [0, 1], respectively. It is seen that X ≤st Y, and X ≤wcpj Y.

In the following, we find a lower bound for Ēw J(X).
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Remark 3. Let X be a nonnegative random variable with the cdf F(x) and bounded support S.
Then,

Ēw J(X) ≥ 1
2

HF log
(

HF
A

)
+ K, (26)

where K = − 1
2

∫ sup S
0 x2F2(x)dx and A =

∫ sup S
0 F(x)dx.

Proof. By using the log-sum inequality, we obtain

−
∫ sup S

0
xF(x) log xdx ≤ −HF log

(
HF∫ sup S

0 F(x)dx

)
. (27)

Using F̄2(x) ≤ F̄(x) and the inequality 1− x ≤ − log x for 0 < x, we obtain

∫ sup S

0
x(1− x)F2(x)dx ≤ −HF log

(
HF∫ sup S

0 F(x)dx

)
. (28)

By multiplying both sides of (28) by −1/2, we have

Ēw J(X) ≥ −1
2

[∫ sup S

0
x2F2(x)dx− HF log

(
HF∫ sup S

0 F(x)dx

)]
,

which completes the proof.

5. Connections to Reliability Theory

In this section, the connection between the WCPJ and reliability theory will be con-
sidered. The inactivity time function is of interest in many fields such as survival analysis,
actuarial studies, economics, reliability, etc. The inactivity time is thus the duration of the
time occurring between the inspection time t and the failure time X, given that at time t the
system was found to be down. If X is the lifetime of a system, then the inactivity time of
the system is denoted by (t− X|X ≤ t), t ≥ 0. Let X be a nonnegative continuous random
variable with the cdf F(x), such that E(X) is finite. The mean inactivity time (MIT) function
of X is defined as

MIT(t) = E(t− X|X ≤ t) =
∫ t

0

F(x)
F(t)

dx, t ≥ 0. (29)

This function has been used in various contexts of survival analysis and reliability theory
involving characterization and stochastic orders of random lifetime. For more details,
see [25–30]. In the following theorem, we prove that the WCPJ has a relation to the second
moment of the inactivity time (SMIT) function.

Definition 4. Let X be a nonnegative continuous random variable. Then, for all t ≥ 0, we define
the second moment of the inactivity time (SMIT) as

SMIT(t) = E
(
(t− X)2|X ≤ t

)
. (30)

It can be easily seen that

SMIT(t) = 2tMIT(t)−
∫ t

0
2x

F(x)
F(t)

dx. (31)
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Theorem 5. Let X be a nonnegative continuous random variable with bounded support S, reversed
hazard rate function rh(x), SMIT function, and weighted cumulative extropy Ēw J(X). Thus,

Ēw J(X) ≤ −1
4

E[SMIT(X)] + C∗, (32)

where C∗ = 2−1[E(X ·MIT(X))− HF].

Proof.

E(SMIT(X)) = 2E[X ·MIT(X)]− 2
∫ sup S

0

∫ sup S

x
x rh(t)F(x)dtdx

= 2E[X ·MIT(X)]− 2
∫ sup S

0
xF(x)| log F(x)|dx

≤ 2E[X ·MIT(X)]− 2
∫ sup S

0
xF(x)dx + 2

∫ sup S

0
xF2(x)dx

= 2E[X ·MIT(X))]− 2HF − 4Ēw J(X).

In the sequel, we have

Ēw J(X) ≤ 1
4
[−E(SMIT(X)) + 2E(X ·MIT(X))− 2E(H̄F(X))]

= −1
4

E[SMIT(X)] +
1
2
[E(X ·MIT(X))− HF],

and the proof is complete.

Equation (32) is useful when we have some information about the SMIT or its behavior.
An alternative expression to (32) can be given in terms of the hazard rate function. The
hazard rate function of a random variable X with pdf f (x) and survival function F̄(x) is
defined as h(x) = f (x)/F̄(x).

Proposition 4. Let X be a nonnegative continuous random variable with bounded support S,
hazard rate function h(x) and a finite WCPJ. Then,

Ēw J(X) ≥ E(Q(X)), (33)

where Q(t) = − 1
2

∫ sup S
t x

(∫ x
0 h(u)du

)
dx.

Proof.

Ēw J(X) = −1
2

∫ sup S

0
xF(x)

∫ x

0
f (t)dtdx

= −1
2

∫ sup S

0
f (t)

∫ sup S

t
xF(x)dxdt

≥ 1
2

∫ sup S

0
f (t)

∫ sup S

t
x log F(x)dxdt

= −1
2

∫ sup S

0
f (t)

(∫ sup S

t
x
∫ x

0
h(u)dudx

)
dt.

6. Empirical WCPJ

In this part, an estimator of the WCPJ is constructed by means of the empirical
WCPJ. Suppose that X1, · · · , Xn is a nonnegative, continuous, independent, and identically
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distributed random sample from a population having the cdf F(x). By using the plug-in
method, we define the empirical weighted cumulative past extropy as

Ēw
n J(X) = −1

2

∫ +∞

0
xF2

n(x)dx,

where Fn(x) is the empirical distribution function. Let X(1), X(2), ..., X(n) be the ordered
statistics corresponding to the underlying random sample. Then, Ēw

n J(X) can be rewritten
in the form of the ordered statistics

Ēw
n J(X) = −1

4

n−1

∑
i=1

(
X2
(i+1) − X2

(i)

)( i
n

)2
. (34)

In the following, we use Ēw
n J(X) in (34) for testing the uniformity of the random sample

X1, · · · , Xn. Before dealing with a test statistic, we give the following nice property of
uniform distribution among all distributions defined on interval (0, 1). For a random
variable X with the cdf F and for p ∈ (0, 1), let ψp J(F) be defined as

ψp J(F) = −1
2

∫ p

0
xF2(x)dx.

It is trivial that for the uniform random variable X on interval (0, 1) with the cdf
F0(x) = x, ψp J(F0) = −p4/8. Suppose that for a cdf F in the class of cdfs defined on
interval (0, 1), ψp J(F) = −p4/8. This means that F and F0 have the same measure based
on ψp J(·), i.e., ψp J(F) = ψp J(F0). So, one can see that∫ p

0
x
(

F2(x)− F2
0 (x)

)
dx = 0, ∀p ∈ (0, 1).

It is known that the (0, p) generate the Borel σ-algebra of Ω = (0, 1]. Therefore, one
can write ∫

B
x
(

F2(x)− F2
0 (x)

)
dx = 0, ∀B ⊆ (0, 1].

So, F(x) = F0(x), almost everywhere is obtained. ψp J(F) is uniquely determined by the
uniform distribution in the sense that for some cdfs defined on (0, 1), they take a value
lower than −p4/8 and for some of them, they take higher than −p4/8, and only for the
standard uniform distribution, we have ψp J(F0) = −p4/8.

6.1. Uniform Goodness of Fit Test

Based on this last property, a test statistic can be designed for the uniform goodness of
fit test. One can construct a test statistic based on Ēw

n J(X) in (34), which is the sampling
counterpart of the WCPJ measure. For this goodness of fit test problem, we want to
test whether the given random sample X1, · · · , Xn is supported by the standard uniform
distribution. In other words, we want to test a hypothesis testing H0 : F = F0 against an
alternative H1 : F 6= F0, where F0 is the cdf of the standard uniform distribution. A simple
nonparametric test statistic is based on Ēw

n J(X), as mentioned before. Indeed, Ēw
n J(X)

is our test statistic. In the next stage of our hypothesis testing, we should provide the
critical region for the uniform goodness of fit test problem. The critical region is then
obtained in the sense that Ēw

n J(X) is less than or greater than two values K1(α) and K2(α),
respectively, where α is a prespecified type I error rate; that is, one needs to determine
K1(α) and K2(α), and whenever Ēw

n J(X) < K1(α) or Ēw
n J(X) > K2(α), then the null

hypothesis of having a standard uniform distribution is rejected in favor of an alternative
one. Since the distribution of the Ēw

n J(X) is not easy to derive, then K1(α) and K2(α) can
be estimated using the empirical quantile of the test statistic Ēw

n J(X) under the standard
uniform distribution. For a given type I error rate α and a large run number N, we generate
a random sample X1, · · · , Xn from the standard uniform distribution and then compute the
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value of Ēw
n J(X). After that, we repeat this step for a large number of runs, i.e., N = 100000.

We sort these N values of Ēw
n J(X). Then, K1(α) and K2(α) can be estimated by the quantiles

α/2-th and 1− α/2-th of the empirical distribution of Ēw
n J(X), respectively. In Table 1, we

obtain the values of K1(α) and K2(α), for some sizes of sample n.

Table 1. Values of K1(α) and K2(α) for α = 0.05.

n

Cutoff Points 20 30 40 50

K1(α) −0.1463 −0.1446 −0.1429 −0.1405

K2(α) −0.0668 −0.0785 −0.0861 −0.0910

6.2. Power of the Test

In this part, the power of the proposed test statistic is compared with some others.
These competing approaches are the one-sample Kolmogorov–Smirnov, [31,32]. To compute
the p-values of these tests, a package called “uniftest” in R software version 4.0.5 was
used. The results of the test statistics of our proposed Ēw

n J(X), the Kolmogorov–Smirnov,
Quesenberry and Miller, and the Frosini are symbolically shown by WCPJ, K-S, Q-M, and
FRO, respectively.

To compute the power of the tests, a random sample, which assumed all possible
values in the interval (0, 1), was generated from the non-standard uniform distribution,
such as beta or Kumaraswamy distributions, see, for example [33], whose supports varied
between 0 and 1. After that, the powers were estimated empirically. We considered the
following alternative distributions to compute the tests’ power:

(1) Beta distribution with pdf: 1/B(a, b)xa−1(1− x)b−1:

(i) Beta (1.5, 1.5)
(ii) Beta (0.5, 0.3)
(iii) Beta (10, 1);

(2) Kumaraswamy distribution with cdf: 1− (1− xa)b:

(i) Kuma (0.5, 5)
(ii) Kuma (0.5, 0.3)
(iii) Kuma (10, 10);

(3) Piecewise distribution function with cdf F(x) =

{
0.5− 2k−1(0.5− x)k; 0 ≤ x ≤ 0.5
0.5 + 2k−1(x− 0.5)k; 0.5 ≤ x ≤ 1

(i) Piec (2)
(ii) Piec (3.5)
(iii) Piec (5)

The results are depicted in Figure 1 for the different values of the sample size n as
20, 30, 40, and 50.

Figure 1 shows that the power of our proposed test based on the WCPJ was comparable
to that of others for the beta and Kumaraswamy distributions. Even in some cases for these
distributions, its power was superior to the other tests. For third alternative distribution,
the power of the test based on the WCPJ was weaker than that of the rest. However, as the
sample size n became larger, its power improved, and the test learned to discriminate the
observations arising from the standard uniform distribution from those generated from
nonuniform distributions. This test statistic can be satisfactory with due attention to its
simple form and the rich information content behind it. Note that the plots for comparing
the powers of the proposed test statistics are not shown in Figure 1 for beta (10, 1), kuma
(0.5, 5) and kuma (10, 10), because the powers of all the tests were equal to 1.
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Figure 1. Power comparison of the WCPJ, K-S, Q-M, and FRO test statistics: above (left): beta (1.5,
1.5), (middle): beta (0.5, 0.3), and (right): kuma (0.5, 0.3); and below (left): piec (2), (middle): piec
(3.5), and (right): piec (5) distributions.

7. Conclusions

The use of the extropy measure and its generalizations have become widespread in
all scientific fields. One updated generalization of this measure is known as weighted
extropy. In this paper, we introduced a new measure of uncertainty, related to cumulative
extropy, named weighted cumulative past extropy (WCPJ). The properties of the WCPJ
and a number of results including inequalities and various bounds to the WCPJ were
considered. Studies related to reliability theory were discussed. A topic that may attract
the attention of researchers is the dynamic version of the extropy in the sense that the
uncertainty of the system depends on time t. Further research should investigate the
uncertainty measure based on the weighted dynamic cumulative past or residual extropy.
As an application of the proposed method, the empirical WCPJ was proposed to estimate
this new information measure, and a test statistic was provided for the problem of the
goodness of fit test of the standard uniform distribution based on the proposed WCPJ.
Several applications of extropy and its generalizations, such as in information theory,
economics, communication theory, and physics, can be found in the literature. Here, we
cite some references. Ref. [34] studied the stock market in OECD countries based on a
generalization of extropy known as negative cumulative extropy. Ref. [35] applied another
version of extropy known as the Tsallis extropy to a pattern recognition problem. Ref. [16]
explored an application of a generalization of extropy known as the fractional Deng extropy
to a problem of classification. Ref. [36] used some extropy measures for the problem of
compressive sensing.
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