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Abstract: In this paper, based on the stabilization technique, the Oseen iterative method and the
two-level finite element algorithm are combined to numerically solve the stationary incompressible
magnetohydrodynamic (MHD) equations. For the low regularity of the magnetic field, when dealing
with the magnetic field sub-problem, the Lagrange multiplier technique is used. The stabilized
method is applied to approximate the flow field sub-problem to circumvent the inf-sup condition
restrictions. One- and two-level stabilized finite element algorithms are presented, and their stability
and convergence analysis is given. The two-level method uses the Oseen iteration to solve the
nonlinear MHD equations on a coarse grid of size H, and then employs the linearized correction on
a fine grid with grid size . The error analysis shows that when the grid sizes satisfy h = O(H?),
the two-level stabilization method has the same convergence order as the one-level one. However,
the former saves more computational cost than the latter one. Finally, through some numerical
experiments, it has been verified that our proposed method is effective. The two-level stabilized
method takes less than half the time of the one-level one when using the second class Nédélec element
to approximate magnetic field, and even takes almost a third of the computing time of the one-level
one when adopting the first class Nédélec element.

Keywords: finite element method; two-level method; stabilized method; Oseen iteration; stationary
incompressible MHD

MSC: 35Q30; 656M60; 65N30; 76D05

1. Introduction

Consider the following stationary incompressible MHD

—R;'Au+ (u-)u+Vp—Sccurlb x b =f, in Q,
R,'Sccurl(curlb) — Sccurl(u x b) — Vr =g, in Q,
divu=0, divb =0, in O,

u=0 b-n=0, nxcurlb=0, r=0, on 9Q),

M

where Q) € R? (d = 2,3) is a bounded Lipschitz domain. R, and Ry, are the hydrodynamic
and magnetic Reynolds numbers, respectively. S, is the coupling number, and f and g are
source terms with V - g = 0. n is the unit outward normal vector on 9.

Incompressible MHD describes the dynamics of a viscous, incompressible, electrically
conducting fluid under an external magnetic field. The MHD (1) is a coupled multi-physical
system of the classical Navier-Stokes equations and Maxwell’s equations. MHD modelling
has a number of applications in physics and engineering technology, such as radio wave
propagation in ionosphere in geophysics, MHD engine, control of MHD boundary layer
and liquid-metal MHD electricity generation (see [1]). Since MHD equations are strongly
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nonlinear and have many physical quantities, it is needed to find effective numerical
methods to solve them.

For the MHD modelling (1) without the Lagrange multiplier r term, the early study
of the exact penalty regularization finite element method on a convex domain is carried
out in [2]. Based on this format, the nonconforming mixed finite element methods [3], the
Stokes, Newton and Oseen finite element iterative methods [4,5], the penalty based finite
element iterative methods [6], and the generalized Arrow-Hurwicz iterative methods [7]
are investigated. In view of multi-physical coupling and nonlinearity of system (1), two-
level method and finite element iterative algorithms are combined by [8-12] to reduce the
computing cost, and local and parallel finite element algorithms based on some iterations
are proposed in [13-16]. On the other hand, a number of effective solvers based on the
finite element methods are presented in [17-19]. To keep the physical property of the Gauss
law of the magnetic field, the constrained transport divergence-free finite element method
is designed in [20]. The coupled Stokes, Newton and Oseen-type iteration methods are
studied and discussed for the (1) in [21] on a general Lipschitz domain. For the nonsmooth
computational domain, the magnetic field belongs to a lower regularity space than H!(Q)),
and the discrete finite element scheme with the Lagrange multiplier of (1) becomes a
double-saddle points problem.

For the mixed finite element method, the component approximations must preserve
the compatibility and satisfy the so-called inf-sup condition. It is well known that the
lowest equal-order finite element pairs in engineering preferred do not satisfy the inf-sup
condition. Numerical experiments show that the break of the inf-sup condition often leads
to unphysical pressure oscillations. To avoid the instability problem and use the lowest
equal-order elements, the popular stabilized methods based on local Gauss integrations
are proposed and studied, for example, for the Stokes problem [22,23], the coupled Stokes—
Darcy problem [24], the Stokes eigenvalue system [25], the Navier-Stokes equations [26-29]
and the natural convection problem [30]. However, the stabilized finite element algorithm
for MHD with respect to the Lagrange multiplier has not been reported.

In this paper, a two-level finite element iterative algorithm based on the stabilized
method is proposed to numerically solve the stationary incompressible MHD equations.
Compared to the existing literature, the stabilized scheme with the Lagrange multiplier
proposed here have two main benefits. One is that the lowest equal-order finite element
pairs can be used to approximate hydrodynamic subproblem, and the other is that our
scheme preserve the physical property of Gauss law weakly for magnetic subproblem
by adding the Lagrange multiplier. In the next section, the stabilized finite element dis-
cretization based on local Gauss integrations is designed and analyzed. To deal with the
nonlinear term, the stabilized finite element method based on Oseen iteration is studied.
The two-level stabilized finite element algorithm and its convergence are given in Section
3. In the last section, some numerical experiments are tested to support the theoretical
analysis of our proposed method.

2. Stabilized Finite Element Discretization Based on Local Gauss Integrations
We will introduce some Sobolev spaces, and the norms of the product spaces:

H!(Q) = H(Q)?, X: = H}(Q) = {u € H(Q) : u|yq = 0},
H(div; Q) = {u € L2(Q)4 : divu € L?(Q)},
W : = Hy(cur; Q) = {b € H(cur; )) : b X n|3n = 0},
Q:=L3(Q) = {q € L*(Q) : [ qdx :10},5 = H}(Q), 1
[1(w,b)[]1 = (HVuII%+5c|Icur11bII%)7/ (. )l = (pl[§+ 11V7r15) %,
5 fv
1B llo = ([ull3 +Scl bIR) 1€l = sup &,
Q)

veH(

1 1
I F 1 = (11112, + S IglIE) 2 11 F 1o = (1115 + S Ill) -
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Forallw,u,v € X,b,c,d € W,g€ Q,5 € S, let

(u,v) = R;1(Vu, Vv),an(b,c) = R;,;'Sc(curlb,curl ¢),
(w,u,v) = (W-Vu,v) = 3(w-Vu,v) — 3(w-Vv,u),
c1(d,v,b) = Sc(curlb x d,v),
bs(q,v) = (9, V- v),bu(s,c) = (Vs,c),
A(u,b;v,c) = as(u,v) +an(b,c),

C(w,d;u,b;v,c) =co(w,u,v) —c1(d,v,b) + ¢1(d, u,c),
B(q,s;v,¢) = bs(q,v) +bm(s,c),
(F,(v,e)) =(f,v) + (g c).

By the Lagrange multiplier technique, the variational form of system (1) is [31]: Find
(u,b,p,r) e XxWxQxS,forall (v,¢,q,5) € X x W x Q x S such that

as(u,v) — bs(p,v) + bs(g,u) +co(u,u,v) —c1(b,v,b) = (f,v), ()
am(b, ) — by (r,¢) + bu(s,b) +c1(b,u,c) = (g, c). 3)

The compact form of (2) and (3) is read as
A(u,b;v,c)+C(u,b;u,b;v,c) —B(p,r;v,c)+ B(g,su,b) = (F,(v,c)). (4)

The properties of the bilinear and trilinear forms from [32-34] are useful for our
analysis. Forallu,v € X,b,c € W,g € Q,r € S, there have

[A(u,b; v, ¢)] < 3l(w,b)][1]/(v, ¢)[ 1,5 = max{R;", R, }, ®)
A(u,b;u,b) > 2l[(u,b)|[}, 2 = min{R, !, R,; Ao}, 6)
B(q,s;v,¢) < Vdl[(q,9)[1(v,0)]1, )
C(w,d;u,b;u,b) =0, ®)

[C(w, d;u,b;v,¢)| < N[(w,d)|[1]|(wb)[l]|(v, )], )

where N and Ag are positive constants that depend only on Q). In the next content, we use
C to represent a general positive constant independent of mesh sizes H and h.

H and h(h < H) are now two real positive parameters that tend to 0. 7 is a uni-
formly regular partition of Q) into triangular(d = 2) or tetrahedral(d = 3) element K with
diameters bounded by H, and 7}, is the fine mesh generated by a mesh refinement process
to Ty. Let T,(u = H,h) is a partition. P(K) is the space of polynomials of degree k
(positive integers) over K. P; element is utilized to approximate the velocity field, pressure
and Lagrange multiplier, and two kinds of lowest order Nédélec elements are applied to
approximate the magnetic field. The subspaces of X, W, Q, S are

Xy := {u, € HY(Q) : wy|x € Pi(K)?, VK € T;.},

W, := {b,, € Ho(curl; Q) : b, |x € N\ (K),VK € T,},1 =1,2,
Qu = {4u € L§(Q) : qulx € P1(K), YK € Ty},

Sy = {ry € H}(Q) : ry|x € P1(K),VK € Ty},

V= {uy €Xy: bs(qy/uu) =0,Vq, € QV}'
Cp == {by € Wy : (s, by) = 0,Vs, € Sy}
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Here, Nédélec elements of the first family and the second one are as follows [35]

NI (K) = (B (K)) & Dy(K), Dy(K) = {p € [PK)]| p(x) -x = 0, inK},
N (K) = [B(K)),

where [P (K)]¢ is the homogeneous polynomials of degree k.
W, and S, satisfy the discrete inf-sup condition [31]

b (S, cu) 4
sup —————= > B||Vsullo, Vs, € Sy,
P eurle, wllo- Vs € Sy

(10)
where the constant 8 > 0 is independent of y.
Denote P, and R, by the L?-orthogonal projectors
Py : L*(Q) — Vy, Roy : L*(Q) — Cy..
Define the discrete Stokes operator by Ay, = —P,A,, in which A, is defined by
(see [32,33])

—(Apuy,v) = (Vuy, Vv), Vu,, v e Xy,
3
and the discrete norm [|uy, ||y, = HAlzyuﬂ

of the k € R order, where
0

Il = [[Vapllo, [lwy.

2u = HAlyuyHOI Vuy, € Xy.
Meanwhile, Ay, b, = Ro,(V, X V x by, +by,) is defined as [33]:

(VuxVxbyc)=(Vxby,Vxc), Ycec W,

It is necessary to introduce some discrete estimates [33,34]

1 1
199l + vl < 199,05 141,45, a
19Vl s < CllAvillo, Y, € X,

The trilinear form C(-, -, -) has the properties [34]: forall w,, uy, v, € X, dy, by, ¢, € Wy,

|C(Wy, dyswp, by vy, ep) |+ [C(uy, by wy, dys vy, ¢

! " (12)
< NI[(A1pwy, Azpdy) [[o|l (wye, by) o] (Vie, €0) 1

It is apparent that the discrete inf-sup condition is not valid to the subspace X, and Q.
To meet the needs of this property, as in [22,26], a mixed stability term with the universal
bilinear form is added:

Dy, pus Vi, gu) = as(Wpu, Vi) — bs(pu, vi) + bs(qu, up) + G(pu, qu),
where

(13)

Clpwrt) = & ([ Pund = [y pudud), k >2,
KeT,

for all py,q, € Qu, le. Puqud¢ means that makes use of an i-order(i = 1,2) local Gauss
integral to calculate it over the element K.

Let IT,, : L>(Q)) — Py be a L>-projection with the properties as follows [22,36]:

(P, qu) = (Tup, qu),Vp € L2(Q), g1 € Qu,
ITLpllo < Clipllo, Vp € L2(V),

(14)
Ip — Iypllo < Cu™n7Yp[|,, Vp € HY(Q) NHT(Q).
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As a consequence, the local Gauss integral can be restated as:

G(pu,9) = (pu — upu,q —11,q), Vpu,q € Qu. (15)
Dy(-,; -, -) satisfies the following important properties (see [22,26]): For all (uy, py), (Vu, qu)
€ Xy x Qu,

[Dylwppivall - pp-1
sup ovloataly. = PR Vuyllo +[lpyllo)- (16)

(v.7)€(Xp,Qp)
The stabilized discrete scheme reads: Find (uy,by, py,ry) € Xy x Wy X Qu x Sy, for
all (v,¢,q,8) € X x Wy, x Qy x Sy, such that

as(uy, v) + co(ub,, u,,v) —c1(by, v,by) — bs(pu, v) + bs(q,uu)
+G(p}4r ”7) + Hflas(uwv) = <f,V>, (17)
am(by, )+ c1(by, uy, €) — by (ry,¢) 4+ bu(s, by) = (g, ¢),

where ¢ > 0 is an artificial viscosity parameter, (17) can be rewritten as:

Ay, by, v, ¢) + Clup, by wy, by; v, ¢) + 2as (wy, v) + Glpy, q) s
~B(pu,ri;v,¢) + B(q,s;uu,by) = (F, (v, ¢)).

Let
Ayu(uy,by;v,¢) = A(ay, by v, ¢) + %as(uwv).
e

Then the bilinear form A, satisfies the following coercive and continuous properties:
|Ay(u;,, by v, )| < Cinax| (uw by) l1[l(v, )[l1, (19)

Ay (wp, by ay, by) > Con|| (wy, b)) |13, (20)

where
Crax = {Re_l +ou, R;l}, Cinin = {Re_l +ou, Rn_11)\0}~

Rewrite (18) as

Au(uy, by, v, ¢) +C(uy,by;uy, by v, ¢) +G(pu, q)

~B(pu v, <) + B(g, 51y, by) = (F, (v,¢)). @

In order to derive error estimates, we introduce two projections. The Stokes projection
is defined as follows [26,36] : Find R(u, p) € X,, Q(u, p) € Qy such that

as(u— R(u,p),v) = bs(p — Q(u, p),v) + bs(g,u — R(w, p)) =0, (22)
forall (v,q) € X, x Qu. Ifu € H'*(Q),p € H'(Q), v > %, there holds [26,36]

lu = R(u, p)llo + p(IV(u = R(w, p))llo +[lp — Q(u, p)llo)
< 2 (g + lplly)- (23)

The Maxwell’s projection is defined by [37]: Assume that b € H'(Q),curlb €
H™(Q),7 > 3, find Ab € W, Ar € S, such that

am(b — Ab,c) — by, (r — Ar,¢) + by(s, b— Ab) =0, Yb € W,r € S. (24)
By the property of A, it can be shown that

| curl b — curl Ab||o + ||b — Abl|o + ||V (r — Ar)]|o

. 25
< Cumin (b ¢ + [ curl bz + [r]lrs1). ®)
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Now, we will give the stability and error estimate for the problem (21).

Lemma 1. Suppose the condition oy := ?Q'F H)* < 1 holds, the solution of the problem (21) satisfies
Conin || (W, by [l < |7 ][ (26)
Conin(1 = 01) [|(Agpu, Azpby) o < [ Fllo. (27)

Proof. For (21), taking (v,b,q,s) = (wy, by, pu,ru) € Xy X Wy x Qu x Sy, then by (8),
we have

Ay (wy, by, wy, by) + G(pu, pu) = (F, (ap, by)).

Using (20) and (15), we can easily receive (26).
Replacing (v, ¢) = (A1, uy, Ayby),q = 0,5 = 0in (21), and applying (12) to have

Coin || (Arpuy, Agby)llo < [ Fllo + N[ (Aypug, Azuby)lloll(uy, byl
< || Fllo + N[ (A1puy, Azyb )||oH H*

Furthermore, we arrive at (27). O

Theorem 1. Let (u,b, p,r) be the solution of the problem (4) satisfying u € H'T7(Q),p €
HY(Q),b € HY(Q),curlb € H'(Q),r € HYY(Q), 7,7 > L. Then, the error estimate
(u—uy, b —by) and (p — pyu, v — ry) of the solution (18) satisfying the upper bound

H(u - uﬂrb - by)”l

< Cpmm T (wly g + bl + || curl blle + [l + lI7[l14<) (28)
+Cou||F ||«
(e
< Cpm T (w14 + bl + || curl bl + [Iplly + lI7[l14<) (29)
+Cop|| F||

< IV (a1 + [[bl + [ curlblle + [[plly + |7]14c) + Cp

The proof of Theorem 1 is shown in the section of Appendix A.

In the following, the Oseen iteration is used to linearize the stabilized finite element
discrete form (17). The stability and convergence is proven. The stabilized finite element
algorithm based on Oseen iteration is stated as follows: Given (uﬁ’l,bﬁ L p# Ly ” 1)
find (uﬁ,b;‘l,pﬁ,rﬁ) € X x Wy, x Qy x Sy, such that

7

as(uy;, v) + co(u nylf uw v) —c1(bj 1, v, bit) = bs(pf, v) + bs(q,u}) 31)
+G(Pwl1) as( uy, ) <frV>,

am (bl ) +c1(bj~ Lu wy, ©) — bu(ry, ) + bm(s,by) = (g ). (32)

Here, the initial value (uwbg, py,ry) € Xy x Wy, x Qy x Sy is given by
as(u), v) — bs(p5, v) + bs(q,u)) + G(p), q) + %ﬂs(u?ﬂ) = (f,v), (33)

(bY€) — by (1), €) + b (s, b)) = (g, ©). (34)

Rewrite (31) and (32) in compact form as

Ay(uwbz,v c) +C(u uy” 1 by~ 1'“wa'V c) —|—G(pﬁ,q) —B(pﬁ,rz;v,c)

+B(g,5;ul,b) = (F, (v, 0)), (35)
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forn=1,2,--- ,forall (v,c,q,5) € X, x W, x Q, X Sy.

Lemma 2. If the condition 0 < o1 < 1 holds, for all m > 0, then the solution (ug,bg, pZ’,r?})
of (35) satisfies
Conin | (a, D7) 11+ (1 (pji, i) | < ClLF ], (36)

[(Arpu, Azbi)llo < Cl| Fllo. (37)

Proof. Form = 0, taking (v,b,q,s) = (ug,bO py, H) € X x Wy, x Qy x §;,in (33) and (34),
we can access

as ( w,, y) +am(b2/b2) +G(p;upy) + R, 1“5( y,u?,) = <fru](,)¢> + (g,bg),
Using (20), we have
Cmin” u;ubo)Hl < ”]:H*

For m = ], assuming that (36) holds, it is sufficient to prove that it also holds for
m=]+1. Letm =] +1take (v,c,q,5) = (uL+1,bL+l,pL+l Hl) € Xy x Wy x Qu xSy
in (33) and (34), using (8), we get

J+1 ]+1)

as (u]IJ—H I-‘rl) +am(b]+1 b]+1) +G(P{¢+1,P;]4+1) R_ as(uy u

= (f,w,") + (g b)),
and by applying (20) and (8), we derive that
Conin| (™ Byl < 17

Thus, the proof of the first part of (36) has been finished.
Applying (16) to (31), and using (10) in (32) with s = 0, we have

BRIV urllo + llpilo) + BVl
< | (o, b g, by

+c(aucmax||<uy,bm>||1 + |1 7-)-

Combining with the stability of | (u}/, bj') |1, we can complete the proof of (36). Similar
to (27), (37) can be derived. The proof ends. O

Next, we will establish the upper bound of error (uH — ul’?, b, — b;’f, Pu — le, Ty — r’T)
For convenience, let (", b™, 1™, ") = (u, —uj/, by — bii, py — pjl, 1y — 1}}).
Theorem 2. Suppose that 0 < 01 < 1, forallm >0, (e™,b™,n™, ™) satisfies
Chinl| (™, b™)[[1 < o | F L, (7™, ™) < Cro7"|[[F]l-, (38)
I w—wlt,b =By +[l(p — plt,r — )| < Curin{ia 4+ o, (39)

Proof. Subtracting (35) from (21), there holds

Ayu(e”,b";v,c) + C(em_l,bm_l;uy,by;v, o)+ C(uﬂ‘l,b]”f_l; e”, b™;v,c)
+G(y™,q) — B(y™,t™;v,c) + B(q,s;e™,b™) = 0.

Choose (v, ¢c,g,s) = (e™,b™, ™, ™) to obtain

Au(e™, b e, b™") +C(em1,b" L u,, by e, b™) + G(5™, y™) = 0. (40)



Entropy 2022, 24, 1426

8 of 18

It follows from (20), (9) and Lemma 2 that

Coninll (", ™)1 < N ("1, b" 1) |[1]] (uy, by) |1
< 01Cpin | ("1, ™) 3
< 07" Coin | (€%, 0%) 1 < o' || F |

Subtracting (31) from (16), we have

Dy(e™, 1™ v,q) +co(e™ L uy,v) + co(uy =1, e™,v) —c1(b™1,v,by)
+er (b~ v, b™) + Eras (e, v) = 0.

Using the second equation of (17) minus equation (32) and choosing s = 0, we get
b (T, ¢) = am(b™, ) + c1(b™ 1, uy, ¢) + cl(bzkl, e, c).
Applying (16) and (10) to the above two equations, respectively, there holds

B(R:MVe™ [lo+ lly™llo) + Blln™ o
< N ("5 b" D)1 (uy, by)1
N[ (= b 1]l (e, 5™) |14
+opul(e”, b")[ly
< Co" || F ||«

The result (39) can be obtained by (38) and Theorem 1. The proof ends. O

3. Two-Level Stabilized Finite Element Algorithm

In this section, motivated by [38], two-level stabilized finite element algorithm for
incompressible MHD equations is presented. The stability analysis and the optimal error
estimation with respect to the mesh size H and & and the iterative step m are obtained.

It is evident that in Steps 2-5 of Algorithm 1 the iteration is controlled by ||(ug —
u?, by —b™)||; < C||(ut —ul~1, b — bl 1)||o (see Theorem 5 of [4]), which provides
an operable way to acquire the desired solution (ufj, b¥}).

Algorithm 1 Two-level stabilized finite element algorithm

1: Give the initial value (u%,b%, p%,7%) € Xy x Wy x Qu x Sy by (33) and (34) with
u=H.

2: while ||(u?t — =1, b7 — b1 1)||o > e do

3. Solve MHD on the coarse grid: Find (ufj, b}, p¥i, %) € Xg X Wy x Qn x Sy by

(35) with u = H.

o (uf L by pl L) = (uf b P )

5. end while

6: Find (W, brun, Pouns Tin) € X X Wy X Qp X Sy, on the fine grid, for any (v, ¢, q,s) €
X, X Wy, x Qp X Sy, such that

as(Upp, v) + co(ufy, Wy, v) — c1 (b, Vv, byup) — bs(Pun, v) + bs(q, W)

+G(th,q) + %as(umh,v) = (f,v), (41)

Am (bmh/ C) +c1 (bzr Wps C) - bm(rmh/ C) + b (S/ bmh) = (g/ C). (42)

Theorem 3. Under the assumption of Theorem 2, the solutions (W, b,,;,) obtained from (41)
and (42) satisfy
Conin | (s ) 111 < (1 F s (43)

10w = Wy, b =By 11+ (P = Pt 7 = 7o) (44)
< C(H? + H2min{Lyc} 4 gmin{2y+10+1} 4 gy pmin{loch 4 o).
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Proof. Taking (v,¢,q,5) = (W, By, Pouns Tmn) € X X Wi X Qp X Sy in (41) and (42), by
using of (8) and (20), we can easily derive (43).
Subtracting (41) and (42) from (2) and (3), respectively, we have

A(u—uyp, b —byy;v,¢) +C(u—uf],b—bj;u,b;v,c)
+C(ufy, by u =y, b —byy;v,¢) = B(p — pun, T — s v, €) (45)
+B(’7/S;u — Uy, b — bmh) - G(pmh/ ‘]) = %as(umhrv)-

By the two projection operators of (22) and (24) with u = h, letting e,,;, = R(u, p) —
W, €pn = Ab — by, e, = Q(w, p) — puns e = Ar — 1y, and then taking v = ey, ¢ =
€p1, 4 = €ph, S = ey, there holds

Ay (€un, epn; @uns ep) + G(ephr eph)
= C(ufj —u,b}] —b;u—ufj,b—bjj e, ey)
+C(uff —u,b¥; — b;ujj, bl ey, epp)
+C(ulff, b;R(u, p) —u, Ab — b; ey, ep) (46)
+%a5 (u/ euh) + %QS(R(‘J/ P) —-u euh)

+G(p,epn) + G(Q(u, p) — pepn)-
The left-hand side of (46) can be estimated as

Lhs > Cpinll(eun, ebh)”% + Heph - Hheth%

> min{Cyn, 1} (eun ) I3 + ey — Tyepul3)- @)
Making use of (14), the right-hand side of (46) for G(-, -) can be estimated as
G(pepn) = (p—TIyp,epn — Myepy)
< I [pll e~ Tyegnllo 4
G(Q(u,p) —p,epn) < ClQ(w, p) — pllollepn — TTnepnllo (49)

< Chmn W ([l + [12]l) lepn — TTrepnlo-
Using (9), (12) and (37), as well as Theorems 1, 2 and Lemma 2, the right-hand side
of (46) can be estimated that
rhs < N (u—ufy, b — b))l (eun emn)lh
+ N|l(u = up, b = bp) o/l (Arrufy, AzubT) lloll (s epn) 111
+ Nl|(up — uff, by —bi) 4[| (wfy, I |11 ]| (un, enn) |1
+ N (uff, b)) 1]l (w = R(w, p), b — Ab)[[1]|(eu, ew) [l

+ | (u, b) 1| (eun, eon) 1
+hf[(u = R(u, p), b= Ab)|[1[|(eun )1

+ CH™ 0 (a4 + [1plly) llepn — Tnepnlo-
< C(HZmin{l,'y,T} + 0.12m + CHmin{Z,’y+1,T+1} + 2 + 0'{" +h+ hmin{l, 7, T})
1
- (lCeuns w113 + lleps = TTuennll3)”, (50)

Combining (23), (25) and (47) with (50), we can get the first part of (44).
To estimate the pressure, we rewrite (45) with s = 0 as

Dy~ W, p = P %) + co(0 — u,0,) £ co(uf u — V)
_Cl(b - b"I_},V,b) ! (bn[j[/ v,b— bmh) - éa5<umhrv) = G(P/ q)r
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b (r = Tyup, €) = am(b — by, €) +c1(b — b, u —ulff, ¢) + c1(b — b}, u}}, ¢)
+c1 (b}, u—ufj, c).
Applying (16), (10) and the standard technique to the above two equations, we can
derive the second part of (44). We complete the proof. O

4. Numerical Examples

In this section, some numerical experiments are shown to verify the correctness and
effectiveness of the one-level stabilized finite element method and the two-level stabilized
one. Here, the velocity, pressure and quasi-pressure are approximated by P; and the
magnetic field by the first (or second) class Nédélec edge element. SFEM denotes by the
stabilized finite element method (31) and (32). The software FEAIPy V1.0 [39] created by
Huayi Wei, Xiangtan University, Xiangtan, China is used in the numerical examples.

Smooth solution in 2D: Set Q = [0, 1]>and R, = R,; = S = 1,5 = 0.01. Given the source
terms f, g such that the exact solution is

uy = 10x3 (x1 — 1)%x2 (2 — 1) (2% — 1),
Uy = —10x1 (x1 — 1) (2x1 — 1)x3(x2 — 1),
by = cos(mxq) sin(7txy),

by = —sin(7txy) cos(mxy),
p=10(2x; —1)(2x, — 1),
r=20.

Tables 1 and 2 display the errors of SFEM and two-level SFEM for 2D MHD Equation (1).
It is shown that the corresponding errors are smaller and smaller along with the grid getting
finer and finer, the convergence order is optimal. When & = O(H?), the error accuracy of
the two methods is almost the same. From CPU time, compared to SFEM, two-level SFEM
save much computational cost.

Table 1. Convergence of uy, and p;, (first class Nédélec element).

h H [|u— uyllo order [[V(u— up)llo order llp — prllo order CPU(s)
SFEM 1/16 431 x 1073 7.14 x 1072 1.19 x 1071 0.49
1/16 1/4 428 x 1073 7.15 x 1072 1.28 x 1071 0.36
SFEM 1/36 8.80 x 10~* 1.96 2.62 x 1072 1.24 2.93 x 1072 1.73 2.79
1/36 1/6 8.76 x 10~* 1.96 2.64 x 1072 1.23 3.36 x 1072 1.65 1.70
SFEM 1/64 2.81 x10~* 1.98 1.36 x 1072 1.13 1.10 x 1072 1.71 11.13
1/64 1/8 2.81 x 1074 1.98 1.38 x 1072 1.13 1.36 x 1072 1.57 6.16
SFEM 1/100  1.15 x10~* 1.99 8.43 x 1073 1.08 521 x 1073 1.67 35.79
1/100 1/10 1.16 x 10~* 1.97 8.53 x 1073 1.08 6.99 x 1073 1.49 17.78

Table 2. Convergence of by, and r;, (first class Nédélec element).
h H b — byl order || b — bp|cur order llr —rallo CPU(s)

SFEM 1/16 4.01 x 1072 2.09 x 107! 1.22 x 10714 0.49

1/16 1/4 4.01 x 1072 2.09 x 107! 1.42 x 10714 0.36

SFEM 1/36 1.78 x 1072 1.00 9.30 x 1072 1.00 520 x 1014 2.79

1/36 1/6 1.78 x 1072 1.00 9.31 x 1072 1.00 5.03 x 1014 1.70

SFEM 1/64 1.00 x 102 1.00 5.23 x 1072 1.00 1.33 x 10713 11.13

1/64 1/8 1.00 x 102 1.00 5.24 x 1072 1.00 1.43 x 10713 6.16

SFEM 1/100 6.41 x 1073 1.00 3.35 x 1072 1.00 228 x10°13 35.79

1/100 1/10 6.41 x 1073 1.00 3.35 x 1072 1.00 227 x10713 17.78
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The numerical results are listed in Tables 3 and 4 when the magnetic field is approxi-

mated by the second class Nédélec element. Clearly, the convergence order of || b — by||o is
one higher than that in Tables 1 and 2, which is consistent with the general theoretical
analysis results of the Nédélec element.

Table 3. Convergence of uy, and p;, (second class Nédélec element).

h H [|u— uyllo order [IV(u— up)llo order llp — prllo order CPU(s)
SFEM 1/16 431 %1073 7.14 x 1072 1.20 x 1071 0.78
1/16 1/4 428 x 1073 7.15 x 1072 1.28 x 1071 0.47
SFEM 1/36 8.80 x 1074 1.96 2.62 x 1072 1.24 2.94 x 1072 1.73 7.63
1/36 1/6 8.76 x 10~* 1.96 2.64 x 1072 1.23 3.36 x 1072 1.65 3.33
SFEM 1/64 2.81 x10~* 1.98 1.36 x 1072 1.13 1.10 x 1072 1.70 48.23
1/64 1/8 2.81 x 1074 1.98 1.38 x 1072 1.13 1.36 x 102 1.57 18.00
SFEM 1/100  1.15 x10~* 1.99 8.43 x 1073 1.08 5.59 x 1073 1.53 205.89
1/100 1/10 1.16 x 10~* 1.98 8.53 x 1073 1.08 6.99 x 1073 1.49 71.25

Table 4. Convergence of b, and r;, (second class Nédélec element).
h H b — bl order || 'b— bp|cur order llr —rallo CPU(s)

SFEM 1/16 419 x 1073 2.05 x 107! 1.44 x 10714 0.78

1/16 1/4 410 x 1073 2.05 x 107! 1.78 x 10714 0.47

SFEM 1/36 8.33 x 10~% 1.99 9.13 x 1072 1.00 6.62 x 10714 7.63

1/36 1/6 8.39 x 10~% 1.98 9.31 x 1072 1.00 7.60 x 10714 3.33

SFEM 1/64 2.63 x 1074 2.00 5.14 x 1072 1.00 1.49 x 10713 48.23

1/64 1/8 2.71 x 10~% 1.96 5.14 x 1072 1.00 1.74 x 10713 18.00

SFEM 1/100 1.08 x 10~4 1.99 3.28 x 1072 1.00 271 x10~13 205.89

1/100 1/10 1.15 x 1074 1.91 3.29 x 1072 1.00 3.85 x10°13 71.25

p = cos(7rx1) cos(7txp) cos(mxs),
r=0.

1y = 0.5sin(7wxq )cos(7txy)cos(mxs),
uy = 0.5 cos(mxq )sin(mxy)cos(mxs),
ug = — cos(7rxq)cos(7wxy)sin(rmxs),

b1 = 0.5 cos(mxq) sin(7txy) sin(7rxs),
by, = —sin(7txq) cos(7xy) sin(7xs),

by = 0.5sin(7rxy) sin(7txy) cos(7wxs),

Smooth solution in 3D: Set O = [0, 1] and R, = R,, = S = 1,0 = 0.01. Given f, gsuch
that the exact solution is:

In Tables 5 and 6, the variable quantity (u,b, p,r) is approximated by Pj, the first

class Nédélec element, P; and Pj, respectively. Tables 7 and 8 list the results when (u, b, p, )
is approximated by Pj, the second class Nédélec element, P; and P;. It is observed that
the numerical results agree well with the theoretical results of Theorems 1-3. On the
other hand, from Tables 7 and 8, we find that SFEM (35) does not work when H = 1/16,
however two-level SFEM (41) and (42) is valid in the current computing environment for
our computer. On the other hand, the stability results of (43) are checked by Figure 1.
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Table 5. Convergence of uy, and p;, (first class Nédélec element).

h H [|u— uyllo order [IV(u— up)llo order llp — prllo order CPU(s)
SFEM 1/4 7.86 x 1072 1.17 1.39 2.03
1/4 1/2 7.86 x 1072 1.17 1.39 1.44
SFEM 1/9 1.67 x 1072 1.91 533 x 101 0.97 326 x 1071 1.79 28.05
1/9 1/3 1.67 x 1072 1.91 534 x 107! 0.97 3.29 x 107! 1.78 16.26
SFEM 1/16 5.34 x 1073 1.98 2.99 x 107! 1.00 1.08 x 1071 1.91 577.84
1/16 1/4 5.38 x 1073 1.98 299 x 107! 1.00 1.12 x 1071 1.86 189.50
Table 6. Convergence of by, and ry, (first class Nédélec element).
h H [|b— byllo order [|b— bplleun order llr —7nllo CPU(s)
SFEM 1/4 1.38 x 1071 8.38 x 107! 7.86 x 10716 2.03
1/4 1/2 1.38 x 1071 8.39 x 107! 9.82 x 10716 1.44
SFEM 1/9 6.16 x 1072 1.00 381 x 107! 0.97 424 x 10715 28.05
1/9 1/3 6.17 x 1072 0.99 3.83 x 1071 0.96 471 x 10715 16.26
SFEM 1/16 347 x 1072 1.00 2.14 x 1071 1.00 1.59 x 10~14 577.84
1/16 1/4 3.47 x 1072 1.00 2.18 x 1071 0.98 1.42 x 10714 189.50
Table 7. Convergence of uy and p;, (second class Nédélec element).
h H [|u— o order [IV(u— uy)llo order [lp — pullo order CPU(s)
SFEM 1/4 7.86 x 1072 1.17 1.39 2.39
1/4 1/2 7.86 x 1072 1.17 1.40 1.85
SFEM 1/9 1.67 x 1072 1.91 533 x 1071 0.97 3.26 x 1071 1.79 99.42
1/9 1/3 1.67 x 1072 1.91 534 x 107! 0.97 330 x 1071 1.78 42.96
SFEM 1/16 \ \ \ \ \ \ \
1/16 1/4 5.35 x 1073 1.98 2.99 x 1071 1.00 1.11 x 1071 1.86 2877.53
Table 8. Convergence of by, and r;, (second class Nédélec element).
h H [|b— byllo order [|b— bp||curt order [lr = rullo CPU(s)
SFEM 1/4 6.64 x 1072 8.29 x 107! 8.89 x 10716 2.39
1/4 1/2 6.64 x 1072 8.30 x 107! 1.10 x 10715 1.85
SFEM 1/9 1.40 x 1072 1.91 3.76 x 1071 0.98 5.60 x 10715 99.42
1/9 1/3 1.41 x 1072 1.91 3.76 x 107! 0.97 6.19 x 10715 42.96
SFEM 1/16 \ \ \ \ \ \
1/16 1/4 461 x1073 1.95 212 x 107! 1.00 2.26 x 10714 2877.53

Stability
S
Stability

— 6.8]|(up, bp)||1 ’ — 5.4][(up, bp)ll1
— Al 172 — Al

0 20 40 60 80 100 5 10 15 20 25
1/h 1/h

Figure 1. Stability of 2D (left) and 3D (right) problems.
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2D MHD problem with a singular solution: We consider 2D MHD system (1) in the L-
type domain Q := [-1, 12\ ([0, 1] x [~1, 0]). Set R, = S = 1, R,, = 0.001, the analytical
solution in polar coordinates (p, ¢) is given by [40]

u(p, 9) = [ PM(1+A) sin(@)p(¢) + cos(@)y' (¢)) ]
' pH(=(1+A)cos()p(g) +sin(@)¢'(9)) |/
blp, @) = V(p*?sin(2/39)),
plo,@) = =" ((1+ 1%/ () + 9" (9)) /(1= ),
r=0,
P(p) =sin((1+ X)) cos(Aw)/(1+A) —cos((1+A)g)
—sin((1 = A)p) cos(Aw)/(1 —A) +cos((1—A)g),

wzzn,

A =~ 0.54448373678246.

In the 2D case, there holds the regularity u € HI*}(Q), b € H3(Q) and p € H*(Q).

In Tables 9 and 10, (u, b, p, r) is approximated by Py, the second class Nédélec element,
P; and P;. Because the regularity of velocity, magnetic field and pressure is low, the con-
vergence of || u — wylo, [V (w—w)llo, [lp = pallo, [| b= bullo, [[ b = bp|[curt keep the
rate of 1.4, 0.54, 0.59, 0.66, 0.66, respectively, which verify the correctness of the theoretical
analysis (Theorems 2 and 3) results. In Figure 2 we display the streamlines of the velocity
field and magnetic field, and the contours of the pressure, which are consistent with the
numerical results in the literature [40].

Table 9. Convergence of uy and py,.

h H [|u—wpllo order [IV(u— uy)llo order [lp — pullo order CPU(s)
SFEM 1/4 9.97 x 102 1.55 1.74 0.16
1/4 1/2 9.96 x 1072 1.55 1.76 0.16
SFEM 1/16 1.27 x 1072 1.48 741 x 107! 0.54 7.74 x 107! 0.59 1.89
1/16 1/4 1.29 x 1072 1.47 741 x 107! 0.54 7.80 x 107! 0.59 1.11
SFEM 1/36 3.95 x 1073 1.45 478 x 1071 0.54 5.00 x 107! 0.54 12.03
1/36 1/6 4.06 x 1073 1.43 4.78 x 1071 0.54 522 x 107! 0.49 6.04
SFEM 1/64 1.77 x 1073 1.39 3.50 x 1071 0.54 3.76 x 107! 0.49 49.61
1/64 1/8 1.84 x 1073 1.37 3.50 x 1071 0.54 393 x 107! 0.49 22.80

Table 10. Convergence of by, and ry,.

h H [|b— byllo order [|b— bp||cuwt order [lr = rllo CPU(s)
SFEM 1/4 191 x 107! 191 x 107! 598 x 1074 0.16
1/4 1/2 1.90 x 10! 191 x 107! 598 x 10~* 0.16
SFEM 1/16 7.88 x 1072 0.64 7.88 x 1072 0.64 147 x10~* 1.89
1/16 1/4 7.88 x 1072 0.64 7.88 x 1072 0.64 147 x10~* 1.11
SFEM 1/36 4.63 x 1072 0.65 4.63 x 1072 0.65 5.84 x 1075 12.03
1/36 1/6 4.63 x 1072 0.65 4.63 x 1072 0.65 5.84 x 10~° 6.04
SFEM 1/64 3.17 x 1072 0.66 3.17 x 102 0.66 297 x10~° 49.61

1/64 1/8 3.17 x 1072 0.66 3.17 x 102 0.66 297 x 10~ 22.80
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Figure 2. Numerical approximations of 2D singular solution. (a) velocity field; (b) magnetic field;
(c) pressure.

5. Conclusions

Based on the stabilization and the Lagrange multiplier techniques, the stabilized
finite element algorithm is designed for the stationary incompressible MHD. The Lagrange
multiplier technique idea helps us in dealing with the low regular magnetic field sub-
problem by H(curl; ))-conforming element. The stabilized one by using local Gauss
integration allow us to adopt the lowest equal-order elements to approximate the flow field
sub-problem. The stability and optimal convergence analysis are given. Furthermore, the
two-level stabilized finite element algorithms are presented. In the first step we combine the
stabilized finite element method with the Oseen iteration for the nonlinear MHD equations
on a coarse grid. For the second step, we employ the linearized correction on a fine grid.
We give the optimal error analysis, which shows that when the grid sizes satisfy h = O(H?),
the two-level stabilization method not only has the optimal convergence order, but also can
save more computational cost than the one-level method. These theoretical analysis results
have been verified by some numerical experiments.
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Appendix A. Proof of Theorem 1

In this part, we will give the detail proof of Theorem 1.
Proof. Lete, = R(u,p) —uy, e, = Ab—by, e, = Q(u,p) — pu, ey = Ar — 1. Subtract (18)
from (4) and choose v = ey, c = e, = e, 5 = e,, we get

Au(ey, ep;ey ep) +Cley, ep;u,b; ey e) + Glep, ep)
=C(R(u,p) —u,Ab —b;u,b;e,, e,)
+C(uy, by; R(u, p) —u,Ab —b;ey,ep) (A1)

—i—R”]as(u e,) + RV1 as(R(u,p) —u,ey,)

+G(p,ep) +G(Q(w, p) — pep)

Using (9) and (20) and Cauchy-Schwarz inequality, the left-hand side of (A1) can be
bounded by

N
ths. = (G = FIZ Y e, €0) I + ey~ T I

> o(1 — a0) | (ewses)I + lep ~ Tuey
> min{o(1 - 0o), 1} (Il (ew e) I} + llep — e l13), (A2)

where 0y = %

By (14), the two terms of the right-hand side of (A1) with respect to G(-,-) can be
estimated as ( ) I ol I
G(pep) < llp—Ilupllolley —Tueplio
i (A3)
< Cﬂm‘““”}l\Pllvllep — ey llo,

G(Q(u,p) - P/ep) < CHQ.(‘I/P) - P”OHep - HuepHO (A4)
< Cpumin ([fullyy + [[plly)llep — Tepllo.

Thus, from (5), (9), (23), (25) and Lemma 1, the right-hand side of (A1) can be esti-
mated as

rs < K([|(wb) 1 + [[(ws, b)) [[(u = R(w, p), b = Ab) 1| (e, @) 1
(]| (w,b) s + [|(u = R(w, p), b~ Ab) 1)l (e, e5) 1
+Cm ) (July + [l len = Ty o

< N (L2 4 2L )i (u = R(u, p), b — Ab) 1] (eue5) 1
op(IZ1 4w R(,p), b~ AB) 1) [[(ew )]s
+Cﬂ@n{l M (lalliy + Ipllo) ey = Tyeplo

< €m0 (a4 [1ply + [blle + [[eurlblle + i)
ool F) (11 (ews e6) I + llep — Tuey|3)%.

(A5)

It follows from (A2)-(A5) that

I(ew, ep) 1 < Cumm 2T (flullyy + [lplly + [Ib]l<

A6
ll curl bl + [|7lle11) + Cow 1] Fl. (46)

Using triangle inequality, (23), (25) and (A6) to obtain (28).
From (2) and (17), we have

as(u =y, v) = bs(p — py,v) +bs(q,u —wy) + G(p — pp,9)
= co(uy —u,u,v) +co(uy, u, —u,v)+ci(b—byv,b) (A7)
+c1(by, v, b —by) + 1”5(“;!/ v) +G(p.9).
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Using (16), (5), (9), (14) and Lemma 1 to derive

BRIV (= w)llo+ llp = pullo)

< N([[(w,b)[l1 + [[(wy, by ll1) [ (0 — wy, b —by) |1
+ Cinaxopt|| (uy, by)[l1 + Cllp — Tupllo
o1 F | Fl«
en(1Ze y 120Ny, *9)
o min

Cma

Cn

+op | F |+ o™ T pl
m

< 2009 || (u = uy, b —by,) |1 + Cop|| F | + Cumn T |p] .
From (3) and (17), and taking s = 0 to get

b (r —1y,¢) = am(b —by,¢) +c1(b—by,u,c) +ci(by,u—uy,c). (A9)
Applying (10), (5), (9) and Lemma 1, we have

BIV(r—7)llo < Cuaxll(u —uy, b= b))l + N|[(u — uy, b —by)|1]|(w, b) ||y
+ N[ (uy, by) [1]|(w = uy, b —by)1

(A10)
< Conax||(u — u,,b— by)Hl + vop || (u — u,,b— by)Hl
+ Cmin‘ﬁ”(“ - uwb - b#)Hl'

Combining (28) and (A8) with (A10), we can obtain (29).

Further, to obtain (30), we need to introduce the dual problem [11]: For all (v, ¢, q,1) €
XxWxQxS, find (w,®,s,t) € Xx W x Q x §such that

AV, ;w, @) +C(uy, by;v,c;w, @) +C(v,c;u,b;w, ®) — B(s, t;v,¢) (A1)
+B(q,w,®) = (u—uy,b—by;v,c).

Taking (v, ¢;q,1) = (w, ®;s,t) in (A11) and using (9), then

Conin (1 — 1) [ (w, @)[l1 < [[(w = w, b —by)fo.

(A12)

Assuming that the region () is sufficiently smooth (see Theorem 2 of [11]), then the
following regularity error estimates are available

[(w, @)[]2 +[|(s,£) [
< Cfl(u =, b—byu)lo

R, Bl + (g By 1) [ (w, )12 | (w, )12

1 1
< Cll(w = uy, b =by)llo + 2Cpinc || (w, @)]I{ || (w, ®)|I3
< Cll(u =y, b=by)llo + Coifl (w, @)1 + 7| (w, ®)[|2
< Cll(w =y, b =by)llo+ 3] (w, ®)[l2,
thereby

[(w, @)l2+ [|(s, )]+ < Cl[(w =y, b —by)lo. (A13)
Findingv =u —uy,c =b —b,,q =1 = 0such that

A(u—uy,b—b,;w,®) +C(uy,by;u—u,,b—b,;w®)
+C(u —uy,b—by;u,b;w,®) - B(s,t;u —u,,b—by) (A14)
=(u—uy,b—byu—u,b—Dby).
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Subtracting (2) and (3) from (18), and taking g = [ = 0, for all (v,c) € X, x Wy,
we have
A(u—uy,b—by;v,c) +C(uy,by;u—uy,b—byv,c)
—i—CU(u —uy,b—by;ub;v,c)—B(p—pur—ruv,c) (A15)
—ﬁf‘]as(uy,v) =0.
Subtract (A15) from (A14) to get

.A(u w,b—b,;w—-v,®—c)
+C(uy, by;u—uy,b—b;w—v,®—c)
+C(u—uy,b— b;,,ubw v,® —¢)
+B(g), 5,1, — u—w,,b — by) (A16)
(p Pus r ry,w—v,<I>—c) )
+R;l ’15(“14/ v) = [(u— u,, b _by)Ho/

where q;, € Qu and l;, € Sy are the approximation of s and ¢, respectively.
Similar to the derivation in the literature [41] (see the proof of Theorem 3.2), we get

I(w, ®)[l1 < Cull(w, @) ]2, w € HA(Q), @ € H(0Y).
Taking v = R(w, s),c = A® in (A16), Applying (5), (7), (9), (23), (25), (A13) to get

[(u = uy, b —by) 13

<9|/(u—wuy, b —by)[l1[[(Ww— R(w,s), ® — A®)|;
+N(||(wb) 1] (u—wb —by)[l1[[(W — R(w,s), ® — A®)]|;
+ NH(uwa)th(u —uy, b —by)[l1[|[(Ww— R(w,s), ® — A®)|;
+l[(w =, b—by)1ll(s = t = L)l
+ [|(w = R(w,s), ® — A®)|1[|(p = pu,7 — 1)
+ op| (w, by) [l ([[(W = R(w, 5), @ — A®@)|[1 + ||(w, ®)|1)

< Cpul[(u—uy,b—by)|[1](u—uub—Dby)lo
+Cull(p = purr = Il (0 = wp, b = by) [lo + Ci [ (w — wy, b = by) o,

which together with (28) and (29) yield the desired result (30). The proof ends. O
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