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Abstract: We analyze a connection matrix of a d-dimensional Ising system and solve the inverse
problem, restoring the constants of interaction between spins, based on the known spectrum of its
eigenvalues. When the boundary conditions are periodic, we can account for interactions between
spins that are arbitrarily far. In the case of the free boundary conditions, we have to restrict ourselves
with interactions between the given spin and the spins of the first d coordination spheres.
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1. Introduction

Around one hundred years ago, a group of scientists made the Ising model one of the
subjects of their research. They obtained exact solutions [1] for some realistic spin systems;
when the problem could not be solved exactly, methods of computer simulation were
developed. The Ising model is applicable far beyond the investigations of the magnetic
properties of different materials. In the review [2], we can find the formulation of the
combinatorial optimization problems, in terms of the Ising model. The Hopfield model of
the associative neural network [3] is a neural analog of the Ising model with long-range
interaction. The Ising model is helpful in the problems of the socio- and econophysics [4]
and in many other fields of research.

Some time ago, we developed an m-vicinity method for calculation of the partition
function [5], which showed itself rather effective. The necessity to calculate exact expres-
sions for the eigenvalues of the Ising connection matrix arose from this research. The con-
nection matrix J defines the energy E(s) ∼ −sJs+ of the state s = (s1, s2, . . . , sN), si = ±1.
Consequently, the density of the energy distribution and the free energy, as well as all the
macroscopic characteristics of the system depend on the connection matrix J, while the
set of the eigenvalues characterize the connection matrix exhaustively. (Some details we
present in the end of Section 5.)

The authors of paper [6] were the first who obtained the eigenvalues of the connection
matrices of the d-dimensional Ising models for d = 1, 2, 3. They assumed the periodic
boundary conditions and accounted for the interaction with the nearest neighbors.

In paper [7], we succeeded in calculating exact expressions for the eigenvalues, ac-
counting for the interactions with the nearest and the next-nearest neighbors. We also
discussed the periodic boundary conditions. From our results, it became evident that
independently of the lattice dimension d, the result was defined by the one-dimensional
connection matrices J(k), which accounted for the interactions with the k-th neighbors only.

In paper [8], we examined the lattice dimensions d = 1, 2, 3 and accounted for the
interactions with the nearest, the next-nearest, and the next-next-nearest neighbors. In
addition, we found out that there was a principal difference between the periodic and free
boundary conditions. In the first case, all the matrices J(k) commuted. Consequently, these
matrices had the same set of the eigenvectors, and this circumstance crucially simplified
the problem. On the contrary, when the boundary conditions were free, each matrix J(k)
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had its own set of the eigenvectors. These matrices did not commute, and this obstacle
restricted the applicability of our approach.

In paper [9], we assumed the periodic boundary conditions and examined the d-
dimensional Ising system. We showed that the eigenvectors of its connection matrix were
the Kronecker products of the well-known eigenvectors of the one-dimensional model
and obtained the expressions for the corresponding eigenvalues in the form of the poly-
nomials of degree d in powers of the eigenvalues of the one-dimensional system. The
constants of interaction between spins played the role of the coefficients of these polynomi-
als. We found that the account of long-range interactions did not lift the degeneracy of the
discrete spectrum.

Finally, in paper [10], we solved the inverse problem, restoring the interaction constants
from the known spectrum of the connection matrix, when d was equal to 1, 2, and 3. In
the present paper, we generalize these results in the case of the hypercubic lattice of an
arbitrary dimension d > 3.

In Section 4, we present new results obtained in this paper. They are:

(a) The general formulas allow us to determine the interaction constants when we know
the spectrum of the eigenvalues of the connection matrix of some spin system with an
arbitrary long-range interaction on a hypercube lattice of an arbitrary dimension d
(see Equation (11) and below);

(b) An exhaustive analysis of the application of our approach to the spin systems with
free boundary conditions (Section 4.2). This is an important result because of the
difficulties arising when examining such systems.

As we have mentioned above, to construct the connection matrix of the multidimen-
sional model and to write down its eigenvectors and eigenvalues, it is sufficient to know
the one-dimensional matrices J(k), their eigenvectors, and eigenvalues. Consequently, in
Section 2 we discuss briefly the main results for the one-dimensional model with periodic
boundary conditions. In Section 3, we generalize these results to the case of the two-
dimensional model, with the aid of the technique of the Kronecker products. In Section 4,
we derive the final formulas for the connection matrix of the Ising model on the hypercubic
lattice of an arbitrary dimension d and discuss the case of the free boundary conditions.
The conclusions are in Section 5.

2. One-Dimensional Ising Model

Let us examine a one-dimensional chain consisting of L spins and suppose the periodic
boundary conditions. To be definite, we assume that L is odd: L = 2l + 1. This assumption
is not important, since the case of an even L can be examined in the same way.

When L is odd, each spin has two nearest neighbors, two next-nearest neighbors, two
next-next-nearest neighbors, . . . , and two l-th neighbors. By J(k), we denote an (L× L)-
matrix where we account for interactions with the k-th neighbors only. It is easy to see that
J(k) is a symmetric matrix with the ones on the k-th and the (L− k)-th overdiagonals and
underdiagonals. Other elements of these matrices are equal to zero.

We can write the elements of the matrix J(k) as

Jij(k) = δi1,j + δi2,j , (1)

where

xi1 =

{
i + k, i f i + k ≤ L
i + k− L, i f i + k > L

, i2 =

{
i− k, i f i− k > 0
i− k + L, i f i− k ≤ 0

.

In total, we have l matrices J(k). Each matrix J(k) is a circulant matrix that is a square
matrix, where each subsequent row is cyclic-shifted by one element to the right relative to
the previous row. Consequently, all the matrices J(k) have the same set of the eigenvectors
{fα}L

α=1 (see [11,12]). At the same time each matrix, J(k), has its own set of the eigenvalues
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{λi(k)}L
i=1. For our purposes, it is convenient to introduce an L-dimensional vector λ(k)

whose components are the eigenvalues λi(k). The expressions

f j(α) =
1√
L
×


1 ,√

2 · cos [(j− 1) ϕα] ,√
2 · sin[(j− 1)ϕα],

α = 1
2 ≤ α ≤ l + 1
l + 2 ≤ α ≤ L

(2)

λα(k) = 2 · cos(kϕα), (3)

define the vectors fα = ( f1(α), f2(α), . . . , fL(α)) and λ(k) = (λ1(k), λ2(k), . . . , λL(k)),
where ϕα = 2π(α− 1)/L, α = 1, 2, . . . , L, k = 1, 2, . . . , l, and j = 1, 2, . . . , L (see [7]).

The first eigenvalue of J(k) (1) is equal to two and its other eigenvalues are two times
degenerate: λβ(k) = λL+2−β(k); β = 2, 3, . . . , l + 1. It is easy to see that the vectors λ(k) are
mutually orthogonal because each vector λ(k) is collinear to the eigenvector fk+1:

λ(k)λ+(r) = 2L · δkr, λ(k) =
√

2L · fk+1. (4)

Consequently, in the one-dimensional case we have l matrices J(k) and the corre-
sponding l “eigenvalue vectors” λ(k) (k = 1, 2, . . . , l) and L eigenvectors fα, α = 1, 2, . . . , L.
These characteristics are sufficient to analyze the Ising model on an arbitrary d-dimensional
lattice.

We can use the matrices {J(k)}l
k=1 to write down the connection matrix of the one-

dimensional chain in the general form:

U1 =
l

∑
k=1

w(k)J(k). (5)

In Equation (5), w(1) is the constant of interaction with the nearest neighbors, w(2) is the
constant of interaction with the next-nearest neighbors, and so on. Finally, w(l) is the
constant of interaction with the l-th neighbors.

It is evident that the set of the eigenvectors of the matrix, U1, consist of the eigenvectors
{fα}L

α=1, defined in Equation (2). The eigenvalues {µ1(α)}L
α=1 of this matrix can be written

as a combination of the vectors λ(k) (see Equation (5)):

µ1 =
l

∑
k=1

w(k)λ(k). (6)

The equality (6) allows us to solve the inverse problem for the matrix U1. Indeed,
suppose we know the spectrum of the eigenvalues of the matrix U1. That means that we
know all the components of the vector µ1 in the left-hand side of Equation (6). Can we then
restore the matrix U1, that is to determine the interaction constants {w(k)}l

k=1 in Equation
(5)? The answer is very simple. When multiplying both sides of the equality (6) by the
column vector λ+(k) and taking into account the orthogonality condition (4), we obtain

w(k) =
µ1λ

+(k)

‖λ(k)‖2 =
µ1λ

+(k)
2L

, k = 1, 2, . . . , l.

3. Two-Dimensional Ising Model

Let us discuss the same problem for the two-dimensional Ising model with the periodic
boundary conditions. Now the spins are at the nodes of a square lattice of the size L× L,
L = 2l + 1; each spin has l pairs of the neighbors along the horizontal axis, l pairs of the
neighbors along the vertical axis, and a lot of neighbors that are outside these axes.

Let w(k1, k2) be the constant of interaction of the spins spaced by k1 steps along the
vertical axis and by k2 steps along the horizontal axis, 0 ≤ k1, k2 ≤ l. Since there is no
self-interaction in the system, we set w(0, 0) = 0. Next, for the sake of simplicity and
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uniformity we add a unit matrix J(0) = I to the set of the circulant matrices {J(k)}l
k=1 and

an L-dimensional vector λ(0) = (1, 1, . . . , 1) to the set of the λ-vectors (3). Then, according
to [9] in the two-dimensional case, we can present the connection matrix U2 as

U2 =
l

∑
k1=0

l

∑
k2=0

w(k1, k2) · J(k1)⊗ J(k2). (7)

Due to the commutativity of the matrices J(k), the eigenvectors of the matrix U2 are
the Kronecker products of eigenvectors of the one-dimensional model:

Fα1α2 = fα1 ⊗ fα2 , α1, α2 = 1, 2, . . . , L.

The equalities U2F+
α1α2

= µ2(α1, α2)F+
α1α2

define the eigenvalues of the matrix U2. We
can write them in the form of an L2-vector µ2:

µ2 =
l

∑
k1=0

l

∑
k2=0

w(k1, k2) ·Λ(k1, k2), where Λ(k1, k2) = λ(k1)⊗ λ(k2). (8)

Since the vectors λ(k) are mutually orthogonal, any two vectors Λ(k1, k2) that differ
by at least one pair of the indices are also orthogonal.

The equality (8) allows us to solve the inverse problem for the two-dimensional Ising
model, which is to determine the interaction constants w(k1, k2), which generate the known
spectrum µ2 of the connection matrix (7). It is easy to see that

w(k1, k2) =
µ2Λ+(k1, k2)

‖Λ(k1, k2)‖2 , where k1, k1 = 0, 1, . . . l.

Let us note that ‖Λ(k1, k2)‖2 = ‖λ(k1)‖2 · ‖λ(k2)‖2 and if both the indices k1, k2 6= 0,
then ‖Λ(k1, k2)‖2 = (2L)2. However, when one of the indices ki is equal to zero, we need
to keep in mind that ‖λ(0)‖2 = L.

4. d-Dimensional Ising Model
4.1. Periodic Boundary Conditions

In this case, we can directly generalize the arguments of the previous section to the
case of the d-dimensional lattice. Now, the distances k1, k2 . . . kd between the two spins
along all the d axes define the interaction constants w (k1 , k2, . . . , kd). To avoid the self-
interaction, we again introduce an additional constant w (0, 0, . . . , 0) = 0 and make use
of the previously introduced unit matrix J(0) = I. Then, the connection matrix for the
d-dimensional lattice takes the form [9]:

Ud =
l

∑
k1=0

l

∑
k2=0

. . .
l

∑
kd=0

w(k1, k2, . . . , kd)· J(k1)⊗ J(k2)⊗ . . .⊗ J(kd).

Since J(k) are the commute matrices, the eigenvectors of the matrix Ud are the Kro-
necker products of eigenvectors of the one-dimensional model,

Fα1α2 ...αd = fα1 ⊗ fα2 ⊗ . . .⊗ fαd , αi = 1, 2, . . . , L, i = 1, 2, . . . , d,

and the corresponding eigenvalues µα1α2 ...αd are equal to

µα1α2 ...αd =
l

∑
k1=0

l

∑
k2=0

. . .
l

∑
kd=0

w(k1, k2, . . . , kd)
d

∏
i=1

λαi (ki), (9)
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where λαi (0) = 1, αi = 1, 2, . . . , L, and i = 1, 2, . . . , d. The same way as in Equation (8), we
define Ld-dimensional vectors Λ(k1, . . . , kd) as the Kronecker products of the L-dimensional
vectors λ(k):

Λ(k1, . . . , kd) = λ(k1)⊗ . . .⊗ λ(kd). (10)

Because the vectors λ(k) are mutually orthogonal, any two Ld-dimensional vectors Λ(k1, . . . , kd)
and Λ(k1

′, . . . , kd
′) that differ by at least one pair of the indices are also orthogonal. Let us

introduce an Ld-dimensional vector µd, whose coordinates are the values µα1α2 ...αd defined
by the equalities (9). Then, we can rewrite Equation (9) in the vector form

µd =
l

∑
k1=0

l

∑
k2=0

. . .
l

∑
kd=0

w(k1, k2, . . . , kd) ·Λ(k1, k2, . . . , kd).

The last expression allows us to solve the inverse problem for a hypercubic lattice of
an arbitrary dimension d and reconstruct the interaction constants w(k1, k2, . . . , kd) when
we know the spectrum µd. The formulas that define these constants are

w(k1, k2, . . . , kd) =
µdΛ+(k1, k2, . . . , kd)

‖Λ(k1, k2, . . . , kd)‖2 , where k1, k2, . . . , kd = 0, 1, . . . l. (11)

We can write Equation (11) in another form. Indeed, with the account of the collinearity
condition (4) we rewrite Equation (10) as

Λ(k1, . . . , kd) = 2D/2Ld/2Rk1k2 ...kd
,

where

Rk1k2 ...kd
= f(k1 + 1)⊗ . . .⊗ f(kd + 1), D = d−

d

∑
i=1

δ0,ki
.

Then, Equation (11) takes the form

w(k1, k2, . . . , kd) =
1

2D/2Ld/2µdR+
k1k2 ...kd

, k1, k2, . . . , kd = 0, 1, . . . l.

4.2. Free Boundary Conditions

In this case, there are L− 1 matrices J(k), and they do not commute [8]. This means
that we cannot express the eigenvectors of a combination of the matrices J(k) with different
k in terms of the eigenvectors of these matrices. Consequently, the approach described
above does not fully apply. However, even in this problem we can use its restricted version.

Let us explain this statement. The difficulty of this problem is that even analyzing
the one-dimensional Ising system with free boundary conditions, we can account for
the interactions with the nearest neighbors only. However, in the two-dimensional case
each spin has four nearest neighbors, which belong to the first coordination sphere, as
well as four next-nearest neighbors, belonging to the second coordination sphere. In
addition, each spin from the second coordination sphere interacts with two spins from the
first coordination sphere. Then, only the Kronecker products J(0)⊗ J(1) and J(1)⊗ J(1)
enter Equation (7). These Kronecker products have the same set of the eigenvectors and,
consequently, all the arguments of Section 2 remain valid.

In a similar way, we can show that for the three-dimensional model, it is possible to
account for interactions with spins from the first three coordination spheres that is with the
nearest, the next-nearest, and the next-next-nearest neighbors [8]. In the general case of the
d-dimensional system, we can take into account interactions with the spins belonging to
the first d-coordination spheres.



Entropy 2022, 24, 1424 6 of 7

5. Discussion and Conclusions

In the present paper, we summarize a series of our publications where we published
the results of our analysis of the spectral properties of the Ising connection matrix for the
hypercubic lattice of the arbitrary dimension d ≥ 1. The key idea is that the d-dimensional
connection matrix can be reduced to the Kronecker products of the connection matrices for
the one-dimensional Ising model (see [9]).

In the case of the periodic boundary conditions, all the matrices J(k) commute [8,12].
Consequently, all these matrices, their linear combinations ∑k w(k)J(k), or even the prod-
ucts J(k1) · J(k2) · . . . · J(kd) have the same set of the eigenvectors. This property allows us
to include in the consideration the interactions between spins that are arbitrarily far apart.

In the case of the free boundary conditions, the matrices J(k) do not commute [8].
This means that we cannot express the eigenvectors of a linear (or nonlinear) combination
of the matrices J(k) in terms of the eigenvectors of these matrices. Consequently, our
approach does not fully apply. However, here, we can use its restricted version, when
for a d-dimensional lattice we account only for interactions with the spins on the first,
second, . . . , and the d-th coordination spheres (see Section 4.2).

We have checked that our results for periodic boundary conditions coincide with the
results that can be obtained by the Fourier transform approach for translationally invariant
Hamiltonians [13]. However, we would like to stress that our method of the Kronecker
products has a benefit of also being applicable in the case of free boundary conditions, where
translationally invariant basis is not helpful. For both these types of boundary conditions,
our method yields compact expressions for the eigenstates and eigenvectors in the case of a
lattice with arbitrary dimension and with any number of neighbors taken into account. We
believe that this is unique for our method and does not have any known analogues.

In the Ising model, the connection matrix J defines the distribution of the energy
density E(s) ∼ −sJs+ of the states s = (s1, . . . , sN), where si = ±1. Consequently, the
eigenvalues and eigenvectors of the connection matrix define the energy distribution and
such macroscopic characteristics of statistical physics as the free energy, the magnetization,
the internal energy, and the heat capacity. Nevertheless, up to now it was not evident how
the spectral characteristics could help in analyzing the properties of the Ising systems.

However, the authors of a recently published paper [14] successfully applied spectral
characteristics of the connection matrix when examining the elementary excitations of the
multidimensional systems of interacting spins, such as the Ising models, the Heisenberg
models, and the abelian Kitaev anyons. Our results proved to be very helpful for this type
of calculation.
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