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Abstract: Research on the security of lattice-based public-key encryption schemes against misuse
attacks is an important part of the cryptographic assessment of the National Institute of Standards and
Technology (NIST) post-quantum cryptography (PQC) standardization process. In particular, many
NIST-PQC cryptosystems follow the same meta-cryptosystem. At EUROCRYPT 2019, Băetu et al.
mounted a classical key recovery under plaintext checking attacks (KR-PCA) and a quantum key
recovery under chosen ciphertext attacks (KR-CCA). They analyzed the security of the weak version
of nine submissions to NIST. In this paper, we focus on learning with error (LWE)-based FrodoPKE,
whose IND-CPA security is tightly related to the hardness of plain LWE problems. We first review
the meta-cryptosystem and quantum algorithm for solving quantum LWE problems. Then, we
consider the case where the noise follows a discrete Gaussian distribution and recompute the success
probability for quantum LWE by using Hoeffding bound. Finally, we give a quantum key recovery
algorithm based on LWE under CCA attack and analyze the security of Frodo. Compared with the
existing work of Băetu et al., our method reduces the number of queries from 22 to 1 with the same
success probability.

Keywords: learning with problem; lattice-based cryptography; quantum misuse attack; Frodo;
quantum algorithm

1. Introduction

Quantum computing exploits quantum mechanical properties to perform computa-
tions. It enables quantum parallelism and provides much more powerful data processing
capabilities than classical computers [1]. In 1994, Peter Shor proposed an efficient quantum
algorithm [2] that can break most of the current public-key cryptosystems, such as the
Diffie–Hellman protocol [3] and RSA cryptosystem [4]. If large-scale quantum computers
are realized, they would threaten the security of many public-key cryptosystems. In order
to ensure the security of network information systems, NIST initiated a standardization
process for post-quantum algorithms. In 2016, NIST called for proposals for post-quantum
cryptosystems [5]. There are 69 candidates in the first round, based on a variety of hard
problems considered to be intractable by quantum computers. After rigorous scrutiny by
the cryptography community, 17 PKE and key encapsulation mechanisms (KEM) candi-
dates were selected in the second round, where nine are lattice-based. In the third round,
three of the four finalists are still lattice-based. In 2022, NIST has completed the third round
of the PQC standardization process. A total of four candidate algorithms have been selected
for standardization, and four additional algorithms will continue into the fourth round.
The selected algorithms are mostly lattice-based cryptography [6]. Lattice-based cryptogra-
phy is the use of conjectured hard problems on point lattices in Rn as the foundation for
secure cryptographic systems. Attractive features of lattice cryptography include apparent
resistance to quantum attacks, high asymptotic efficiency and parallelism, security under
worst-case intractability assumptions, and solutions to long-standing open problems in
cryptography. Lattice cryptography has some attractive features, including (1) conjectured
security against quantum attacks, (2) algorithmic simplicity, efficiency, and parallelism, (3)
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strong security guarantees from worst-case hardness, and (4) constructions of versatile and
powerful cryptographic objects.

In general, most lattice-based NIST-chosen plaintext attack (CPA) secure candidates
use the Fujisaki–Okamoto (FO) transformation [7] to achieve IND-CCA security. When the
key is reused, the CPA-secure PKE is no security guarantee. Research on key reuse attacks
against lattice-based CPA-secure schemes is an important topic in the post-quantum cryp-
tography. Many key-recovery attacks have been proposed in [8–13]. In 1998, Bleichenbacher
showed the security of IND-CPA secure public-key cryptosystems in the case of key reuse
on RSA encryption standard PKCS#1 [14]. In 2010, Menezes et al. gave the key reuse attack
on reusing ephemeral keys in Diffie–Hellman key agreement protocols [15]. In 2016, Fluhrer
proposed a key reuse attack [16]. In 2017, Ding et al. expanded Fluhrer’s attack to a class of
key agreement protocols based on ring-LWE with signaling [17]. In 2019, Bauer et al. [18]
gave a key-recovery attack on NewHope-CPA-PKE [19]. In 2021, Yue Qin et al. developed a
systematic approach and analyzed key misuse attacks on lattice-based NIST candidates [20].
Although there have been a number of classical key misuse attacks on the lattice-based
public key encryption schemes, quantum misuse attack algorithms are rarely studied. In
2019, Alagic et al. gave a quantum algorithm for learning rounding function and showed
that this algorithm can recover the key of an IND-CPA-secure LWE-based encryption
scheme with constant success probability [21]. At EUROCRYPT 2019, Băetu et al. analyzed
the security of meta-cryptosystems under key reuse by mounting a quantum key recovery
under the chosen-ciphertext attacks [22].

Although NIST did not select Frodo as the initial post-quantum algorithm in the
process of post-quantum cryptography standardization, Frodo remains a post-quantum rec-
ommendation of Germany’s Bundesamt für Sicherheit in der Informationstechnik (BSI) [23].
The FrodoPKE scheme is an instantiation and implementation of the Lindner–Peikert
scheme [24] with some modifications, for example, more balanced key and ciphertext sizes
and new LWE parameters. The IND-CPA security of FrodoPKE is tightly related to the
hardness of a corresponding learning with errors problem. In 2005, Regev [25] defined the
LWE problem, proved the hardness of LWE assuming the hardness of various worst-case
lattice problems against quantum algorithms, and defined a PKE scheme whose IND-CPA
security is based on the hardness of LWE. The LWE problem is a generalization of the
learning parity with a noise problem [26] into large moduli q.

In this paper, we give an improved quantum algorithm for recovering the key of IND-
CPA version of Frodo by using a quantum CCA attack. The security of Frodo’s proposal is
based on a plain LWE problem. In lattice-based cryptography, the plain LWE problem [25]
is to solve a noisy linear system modulo as a known integer.

The main contributions of this paper are as follows:
(1) Based on the improved quantum algorithm for solving the quantum LWE problem,

we first recalculate the success probability when the error follows a discrete Gaussian
distribution. Using Hoeffding bound, we give the success probability for solving quantum
LWE by computing the expectation and variance of the error.

(2) Then, we present a quantum KR-CCA attack which is inspired by the quantum
LWE solving algorithm. Based on the existing quantum LWE solving algorithm, we
recompute the success probability by using a different method. We analyze the security
of Frodo640, Frodo976 and Frodo1344. By computing the expectation and variance of the
error term, we can recover the full key with fewer oracle queries. Compared with the work
of Băetu et al. [22], our algorithm can reduce the number of oracle calls to 1 and meanwhile
keep the same success probability as the AJOP-based quantum KR-CCA algorithm; see
Table 1.
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Table 1. Three types of attacks on several lattice-based cryptosystems. P denotes the success
probability, and O denotes the total number of oracle calls required to recover the full key with
probability 1 by iterating the attack.

GKZ-Based
Quantum KR-CCA

Attack [22]

AJOP-Based
Quantum KR-CCA

Attack [22]

Improved Quantum
KR-CCA Attack

P O P O P O

Frodo 2−13 217 2−2 22 2−2 1

The organization of our paper is as follows. In Section 2, we give basic definitions
and the meta-cryptosystem defined in the algorithm. In Section 3, we review the quantum
algorithm for solving quantum LWE. Then, we recalculate the success probability for
solving quantum LWE problems when the noise follows a discrete Gaussian distribution.
In Section 4, we propose an improved quantum key-recovery attack on LWE-based IND-
CPA schemes and analyze the security of Frodo. We conclude the paper in Section 5. In
addition, we give a table with the acronyms and their meaning in Abbreviations.

2. Preliminaries
2.1. Notation and Definitions

For an integer q ≥ 1, let Zq be the residue class group modulo q such that
Zq = {0, 1, · · ·, q − 1}. Let x → X denote an element x is chosen according to uniform

distribution from a finite set X. x
χ→ X denotes an element x is chosen according to χ

distribution from a finite set X. For a random variable y, E[y] denotes the expectation value
of y, Var[y] denotes the variance of y. Given a matrix A, AT will denote the transpose of A.

Definition 1 ((LWE) [25]). Let n, q be positive integers, χ be a probability distribution on Z and
s be a secret element in Zn

q . We denote by L the probability distribution on Zn
q × Zq obtained

by choosing a ∈ Zn
q uniformly at random, choosing e ∈ Zq by sampling each of its coefficients

according to χ, and returning (a, b) = (a, a · s + e) ∈ Zn
q × Zq. Decision-LWE is the problem of

deciding whether pairs (a, b) ∈ Zn
q × Zq are sampled according to L or the uniform distribution

on Zn
q × Zq. Search-LWE is the problem of recovering s from (a, b) = (a, a · s + e) ∈ Zn

q × Zq
sampled according to L.

Definition 2 ((Quantum LWE) [27]). The samples are given in the form of a uniform quantum
superposition state 1√

qn ∑
a∈Zn

q

|a〉|a · s + ea(mod q)〉 by querying a quantum oracle, where ea are

independent identical distribution random variables from some distribution χ. The goal is to
output s.

Definition 3 (Public key encryption). A public key encryption scheme is a triple of randomized
algorithms as follows:

(1) The key generator: given the security parameter, it outputs a public key and secret key.
(2) The encryption algorithm: takes a public key and a message (from some known set of valid

messages) and outputs a ciphertext.
(3) The decryption algorithm takes a secret key and a ciphertext and outputs either a message

or a distinguished “failure” symbol.
The scheme is said to be correct if generating a key pair, then encrypting a valid message using

the public key, and then decrypting the resulting ciphertext using the secret key yields the original
message (perhaps with all but negligible probability).
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Definition 4 (Quantum Fourier transform). For any positive integer q, the quantum Fourier
transform over Zq is defined by the operation

QFTZq |x〉 =
1
√

q ∑
y∈Zq

ω
x·y
q |y〉 (1)

where ωq = e
2πi

q .

Definition 5 (Hoeffding’s bound). Consider a set of k independent random variables Xi, such
that ai ≤ Xi ≤ bi. Let ci = bi − ai, X = ∑i∈[n] Xi. The expectation value of X is µ = E[X]. Then,
it follows that for any δ > 0,

Pr[X− µ ≤ −δn] ≤ e
−2n2δ2

(bi−ai)
2 (2)

2.2. The Meta-Cryptosystem Defined on the Algebra

The meta-cryptosystem defined on the algebra was given by Băetu et al. [22] in 2019.
Băetu et al. considered six additive Abelian groups Ssk, SA, SB, St, SU , SV and its four
bilinear mappings: SA × Ssk → SB, SU × Ssk → SV , St × SA → SU , St × SB → SV . The
operation satisfies the associative law for bilinear mappings ×, that is (t × A) × sk =
t× (A× sk) for all t ∈ St, A ∈ SA, sk ∈ Ssk.

For any plaintext pt ∈ M, we first define two functions: encode function M → SV
and decode function SV → M such that encode function is injective. As shown in Table 2,
we have

W = V −U × sk

= t× B + f + encode(pt)− t× A× sk− e× sk

= t× (A× sk) + t× d + f + encode(pt)− t× A× sk− e× sk

= t× d− e× sk + f + encode(pt),

(3)

then W = δ + encode(pt) with δ = t× d− e× sk + f , where δ denotes the error introduced
by encoding/decoding.

In fact, in many cryptosystems, the encode and decode functions are different. In
particular, we give the encode and decode functions on Frodo in Section 4.2.

Table 2. The meta-cryptosystem defined on the algebra.

Algorithm setup(1λ): Algorithm enc(pp, pk, pt; coinB):
1: set up the algebra and define pp 1: parse pk = (A, B)
2: return pp 2: pick random sparse t ∈ St, e ∈ SU

and f ∈ SV by using coinB
Algorithm gen(pp; coinA): 3: U = t× A + e
1: pick a random A ∈ SA and random sparse 4: V = t× B + f + encode(pt)

sk ∈ Ssk and d ∈ SB by using coinA 5: return ct = (U, V)
2: B = A× sk + d
3: pk = (A, B) Algorithm dec(pp, sk, ct):
4: return (sk, pk) 1: parse ct = (U, V)

2: W = V −U × sk
3: pt′ = decode(W)
4: return pt′

3. New Method for Solving Quantum LWE Problem
3.1. Quantum Algorithm for Solving Quantum LWE Problem

In 2019, Grilo et al. gave an efficient quantum-solving algorithm for the quantum LWE
problem [28]. After, Wang et al. presented an improved quantum algorithm [27] based
on the work of Grilo et al. In their algorithm, the noise eu is a random variable with the
absolute value at most k. In the following, we first give the algorithm of Wang et al. Then,
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we consider the case where the noise follows a discrete Gaussian distribution and propose
a new method of computing the success probability.

Lemma 1 ([27]). Let u, sk ∈ Zn
q , eu ∈ [−k, k], k < q

4 , q be subexponential in the dimension n.

The algorithm can recover the secret key sk with the probability of at least 1
q2n || ∑

u∈Zn
q

cos
2πeu

q
||2.

From the algorithm process in Algorithm 1, the probability of outputting the key sk is

Pr[sk] =
1

q2n || ∑
u∈Zn

q

ω−eu ||2

=
1

q2n [( ∑
u∈Zn

q

Re(ω−eu))2 + ( ∑
u∈Zn

q

Im(ω−eu))2]

≥ 1
q2n ( ∑

u∈Zn
q

Re(ω−eu))2

=
1

q2n || ∑
u∈Zn

q

cos
2πeu

q
||2

(4)

Since E(∑u∈Zn
q

sin−2πeu
q )→ 0, the first inequality holds.

Algorithm 1: Improved quantum algorithm for solving the quantum LWE problem.

Quantum oracle: |u〉|y〉 → |u〉|u · sk + eu + y〉
1: Set the initial state to |0〉⊗n|1〉
2: Apply a quantum Fourier transform on the all registers

and obtain 1√
qn ∑

u∈Zn
q

|u〉 1
√

q ∑
x∈Zq

ωx|x〉

3: Apply a quantum oracle query and obtain
1√
qn ∑

u∈Zn
q

ω−u·sk−eu |u〉 1
√

q ∑
x∈Zq

ωx|x〉

4: Apply a quantum Fourier transform on the first register

and obtain 1
qn ∑

u,y∈Zn
q

ω−eu |y〉 1
√

q ∑
x∈Zq

ωx|x〉

5: Discard the second register and measure the first register
6: Output sk

3.2. New Method

As shown in Equation (4), Wang et al. can obtain the success probability for solving
the quantum LWE problem by using the method of enlarging and reducing, where the error
eu ∈ [−k, k]. In some lattice-based cryptosystems, the noise follows a discrete Gaussian
distribution, such as Frodo. In this subsection, we recompute the success probability that
the noise follows a discrete Gaussian distribution. The new method is explained as follows:
by using Hoeffding bound in Equation (4), we can obtain the success probability with
expectation value and variance. Then, we consider the case where the error eu follows the
discrete Gaussian distribution and compute the expectation value and variance of eu. The
details are listed as follows.

Let eu follow the discrete Gaussian distributionN (0, σ2), eu ∈ [− q
2 , q

2 ]. The expectation
of eu is E(eu) = 0, the variance of eu is Var(eu) = σ2, then E(e2

u) = E2(eu) + Var(eu) = σ2.
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Using the mathematical analysis method, we first give the Taylor expansion of cosα

cosα = 1− α2

2!
+

α4

4!
− α6

6!
+ · · · (−1)nα2n

2n!
+

(−1)n+1cosξ

(2n + 2)!
α2n+2, ξ ∈ (0, π). (5)

Let α = 2πeu
q , we have cos 2πeu

q ∈ [−1, 1]. We find that starting from the third term,
the positive term is greater than the negative term in two adjacent terms, (i.e., when
n ≥ 1 and n is even, 1

2n! (
2πeu

q )2n − cosξ
(2n+2)! (

2πeu
q )2n+2 > 0; when n ≥ 2 and n is odd,

1
(2n−2)! (

2πeu
q )2n−2 − 1

2n! (
2πeu

q )2n > 0).

So, we have cos 2πeu
q ≥ 1− 1

2 (
2πeu

q )2. Then

E(cos
2πeu

q
) ≥ E(1− 1

2
(

2πeu

q
)2) = 1− 2π2

q2 E(e2
u) = 1− 2π2

q2 · σ
2 (6)

For any 0 < δ < 1, by using Hoeffding bound, we can obtain

Pr[ ∑
u∈Zn

q

(cos
2πeu

q
− E(1− 1

2
(

2πeu

q
)2)) ≤ −δqn]

= Pr[ ∑
u∈Zn

q

(cos
2πeu

q
) ≤ (1− 2π2

q2 · σ
2)− δ)qn]

≤ Pr[ ∑
u∈Zn

q

(cos
2πeu

q
− E(cos(

2πeu

q
)) ≤ −δqn]

< e−2δ2q2n/4,

(7)

Using (6) and (7), we have

∑
u∈Zn

q

cos
2πeu

q
≥ ∑

u∈Zn
q

E(cos(
2πeu

q
)− δqn ≥ (1− 2π2

q2 · σ
2 − δ)qn (8)

Since cos 2πeu
q ∈ [−1, 1], for any 0 < δ < 1, using (4), the probability of outputting sk is

P ≥ 1
q2n ((1−

2π2

q2 · σ
2 − δ)qn)2 = (1− 2π2

q2 σ2 − δ)2 (9)

4. Quantum Misuse Attack

In this section, we first give a KR-CCA attack based on an improved quantum algo-
rithm for solving quantum LWE. Then, we discuss the security of Frodo. In this attack, we
consider an adversary with quantum access to a decryption oracle.

We consider the meta-PKC construction in Section 2.2, let Ssk = Znsk
q , SA = ZnA

q , SB =

ZnB
q , St = Znt

q , SU = ZnU
q , SV = ZnV

q . Define WU = V −U × sk, pt′ = decode(WU), ZU =
V − encode(pt′), where U ∈ SU , V ∈ SV . Hence, for any V

ZU = V − encode(pt′)

= V − encode(decode(V −U × sk))

= V − (V −U × sk) + δU)

= U × sk + δU ,

(10)

δU denotes the error introduced by encoding/decoding and δU follows the uniform distri-
bution. Then, the decryption oracle can make the following mapping:

|U V Z〉 → |U V Z + ZU〉
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In Table 2, the decryption algorithm returns plaintext pt′, so the ZU can be obtained.

4.1. Key Recovery Algorithm

Define Ssk = SB = Znm
q , SA = Zn2

q , St = SU = Zmn
q , SV = Zm2

q . The bilinear mappings
are matrix multiplications; let

U =


U0
U1
· · ·

Um−1


m×n

, sk =
(

sk0 sk1 · · · skm−1
)

n×m

For i ∈ [m], Ui ∈ Zn
q is the ith row of U, and for j ∈ [m], sk j ∈ Zn

q is the jth column of sk.
In the following, we give the quantum key recovery attack algorithm based on LWE

encryption schemes in Algorithm 2. This algorithm can recover the key with constant
success probability.

Algorithm 2: Quantum key recovery attack.

Input: i, j ∈ [m] and V
Quantum oracle: |U V Z〉 → |U V Z + ZU〉

1: Set the quantum state to |0 V (1ij)i=j〉 ∈ Zmn
q × Zm2

q × Zm2
q .

2: Make a quantum Fourier transform on the first and third registers.
3: Make a quantum oracle query and obtain (by writing Z′ = Z + ZU).

1√
qmn

1√
qm2 ∑

U,Z′ ,
(∏

i=j
ω

Z′ij−ZUij )|U V Z′〉.

4: Discard the last two registers and apply the quantum Fourier transform.
5: Measure the first register and output α.

Theorem 1. Let U ∈ Zmn
q , ZUij = (U × sk)ij + δUij , let the expectation value of the error δUij be

µ and the variance of the error δUij be σ2. Then, the algorithm of Algorithm 2 can recover the full
key sk with constant probability β.

Proof. Prepare the state |0 V (1ij)i=j〉 ∈ Zmn
q × Zm2

q × Zm2
q . By making a quantum Fourier

transform on the first and third registers, we obtain

1√
qmn

1√
qm2

∑
U,Z

(∏
i=j

ωZij)|U V Z〉.

After querying a quantum oracle and letting Z′ = Z + ZU , we have

1√
qmn

1√
qm2

∑
U,Z′ ,

(∏
i=j

ω
Z′ij−ZUij )|U V Z′〉.

If we discard the last two registers and apply quantum Fourier transform, we obtain

1
qmn ∑

U,α
(∏

i=j
ω
−ZUij )ωU·α|α〉.

Then, we perform a complete measurement in the computational basis. The probability
of obtaining Pr[α] is given by
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Pr[α] = ‖ 1
qmn ∑

U
(∏

i=j
ω
−ZUij )ωU·α‖2

= ‖ 1
qmn ∑

U
(∏

i=j
ω
−Ui ·skj−δUij )(∏

i=j
ωUi ·skj)‖2

= ‖ 1
qmn ∑

Uij

(∏
i=j

ω
−δUij )‖2

≥ (
1

q2mn (∑
Uij

Re(ω
−δUij ))2)m,

(11)

where α is a matrix of m blocks, and the size of each block is n for α such that Ui · αj = 0
(i.e., αj = 0) for i 6= j and αj = sk j for i = j.

Using (9), we obtain

Pr[α] ≥ (1− 2π2

q2 (µ2 + σ2)− δ)2m (12)

We can further reduce the number of oracle calls with the same success probability.
The specific analysis is as follows.

We can see that the success probability of obtaining one column of sk is p = (1−
2π2

q2 (µ2 + σ2)− δ)2. Suppose we can fully recover sk with constant probability Pr[α] = β

by k queries. Then, the probability of recovering the first column of sk at least once in k
queries is 1− (1− p)k. So, we can fully recover secret sk with probability (1− (1− p)k)m.
We expect

(1− (1− p)k)m ≥ β, (13)

and then we can obtain the value of k. We will analyze it in detail in the following Section 4.2,
using Frodo as the example.

4.2. Application to Post-Quantum Cryptosystem Frodo

We consider the IND-CPA secure public key encryption scheme FrodoPKE, which
is based on the public-key encryption scheme presented by Lindner and Peikert in [24].
FrodoPKE is a family of conservative yet practical post-quantum public key encryptions
with security based on the hardness of the LWE problem.

Before giving the public-key encryption scheme of Frodo, we first describe how bit
strings are encoded as mod-q integer matrices. Let D denote the number of bits used for
encoding. The encoding function ec(·) encodes an integer 0 ≤ pt < 2D as an element in Zq
by multiplying it by q

2D :

ec(pt) := pt · q
2D . (14)

By applying ec(·) to D-bit sub-strings sequentially and filling the matrix row by row
entry-wise, the function Frodo.Encode encodes bit strings of length l = D ·m · n̄ as m · n̄
matrices with entries in Zq in left column of Table 3. The corresponding decoding function
Frodo.Decode is defined as shown in right column of Table 3. It decodes the m · n̄ matrix M
into a bit string of length l = D ·m · n̄ and extracts B bits from each entry by applying the
function de(c):

de(c) := bc · 2D

q
cmod 2D. (15)
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Table 3. Encode and Decode Functions of Frodo.

Frodo.Encode Frodo.Decode

input: bit string pt ∈ {0, 1}l , l = D ·m · n̄ input: matrix M ∈ Zm×n̄
q

output: matrix M ∈ Zm×n̄
q output: bit string pt ∈ {0, 1}l , l = D ·m · n̄

1: for (i = 0; i < m; i← i + 1) do 1: for (i = 0; i < m; i← i + 1) do
2: for (j = 0; j < n̄; j← j + 1) do 2: for (j = 0; j < n̄; j← j + 1) do
3: pt← ∑D−1

l=0 pt(i·n̄+j)D+l · 2l 3: pt← de(Mi,j) = bMi,j · 2D

q emod2D

4: Mi,j ← ec(pt) = pt · q
2D 4: pt = ∑D−1

l=0 ptl · 2l where ptl ∈ {0, 1}
5: return M = (Mi,j)0≤i<m,0≤j<n̄ 5: for (l = 0; l < D; l ← l + 1) do

6: pt(i·n̄+j)·D+l ← ptl
7: return pt

Let m, n, n̄ be integer parameters and q ≥ 2 be an integer power of 2. In Table 4, we
depict the public-key encryption scheme of Frodo. The symbol

χ← denotes a sample is
chosen according to χ. FrodoPKE works with Ssk = SB = Znn̄

q , SA = Zn2
q , St = SU = Zmn

q ,
and SV = Zmn̄

q with L∞ norm, δU ∈ [−ρ+, ρ+], where ρ+ = q
8 , M = encode(pt′) ∈ Zm×n̄

q .

Table 4. The CPA version of Frodo.

Alice Bob

1. Frodo.CPAPKE.Gen()
1.1 Generate matrix A ∈ Zn×n

q

1.2 Sample S, E
χ← Zn×n̄

q 2. pt ∈ {0, 1}lmn̄

1.3 B = A · S + E 3. Frodo.CPAPKE.Enc(B, m)

1.4 Output (B, S) B−→ 3.1 Generate matrix A ∈ Zn×n
q

3.2 S′, E′
χ← Zm×n

q , E′′
χ← Zm×n̄

q
3.3 U = S′A + E′

4. Frodo.CPAPKE.Dec(U, V, S) 3.4 V = S′B + E′′ + encode(pt)

4.1 M = V −US U,V←− 3.5 Output (U, V)
4.2 pt′ = decode(M)
4.3 Output pt′

In FrodoPKE, χ is a discrete Gaussian distribution, and the error δU introduced by
encoding/decoding is chosen according to uniform distribution with range [−ρ+, ρ+]. In
Table 5, we give the other parameters of Frodo.

Table 5. Parameter sets for Frodo.

n q D m × n̄ sk Ranges ρ+

Frodo640 640 215 2 8× 8 [−12, 12] 212

Frodo976 976 216 3 8× 8 [−10, 10] 212

Frodo1344 1344 216 4 8× 8 [−6, 6] 211

For Frodo640, q = 215, δU is chosen according to uniform distribution with range
[−ρ+, ρ+]; this is [−212, 212]. The variance of δU is 5593770.67; then

Pr[sk0] ≥ (1− 2π2

q2 (µ2 + σ2)− δ)2 = 0.81

Using Equation (11), (1− (1− 0.81)k)8 = 0.818, we can obtain k = 1. So, we can fully
recover the secret sk with probability more than 0.818 = 0.18 with only 1 query.
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For Frodo976, q = 216, δU is chosen according to uniform distribution with range
[−ρ+, ρ+], this is [−212, 212]. The variance of δU is 5,593,770.67; then

Pr[sk0] ≥ (1− 2π2

q2 (µ2 + σ2)− δ)2 = 0.95

Using Equation (11), (1− (1− 0.95)k)8 = 0.958, we can obtain k = 1. So, we can fully
recover the secret sk with probability more than 0.958 = 0.66 with only 1 query.

For Frodo1344, q = 216, δU is chosen according to uniform distribution with range
[−ρ+, ρ+]; this is [−211, 211]. The variance of δU is 1,398,784; then

Pr[sk0] ≥ (1− 2π2

q2 (µ2 + σ2)− δ)2 = 0.99

Using Equation (11), (1− (1− 0.99)k)8 = 0.998, we can obtain k = 1. So, we can fully
recover the secret sk with probability more than 0.998 = 0.92 with only 1 query.

5. Conclusions and Discussion

In this paper, we developed a quantum algorithm to recover the key against LWE-
based NIST candidates PKEs. Based on the improved quantum algorithm for solving
LWE, we considered the success probability for solving the quantum LWE problem when
the noise follows a discrete Gaussian distribution. Then, we proposed a new quantum
key-recovery attack algorithm and gave a specific analysis for FrodoPKE. Compared with
the existing algorithm [22], our algorithm can reduce the number of oracle calls with the
same success probability.

In reality, the key is usually misused in a very short time, which leads to the number
of queries being taken as the prime optimization goal with respect to misuse attack. During
this short time, if an adversary can only make one oracle query, the misuse attack that
requires four queries does not work for an adversary. However, our algorithm only needs
one query to recover the key with probability 1. Therefore, the fewer oracle queries required,
the greater the advantage for an adversary.
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Abbreviations
The following acronyms are used in this manuscript:

PKE Public-key encryption
KEM Key encapsulation mechanisms
NIST National Institute of Standards and Technology
PQC Post-quantum cryptography
LWE Learning with error
PKC Public key cryptosystem
KR-PCA Key recovery under plaintext checking attacks
KR-CPA Key recovery under chosen plaintext attacks
KR-CC Key recovery under chosen ciphertext attacks
IND-CPA INDistinguishability against chosen plaintext attacks
IND-CCA INDistinguishability against chosen ciphertext attacks
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