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Abstract: In this paper, we present the multi-stage attentive network (MSAN), an efficient and
good generalization performance convolutional neural network (CNN) architecture for motion
deblurring. We build a multi-stage encoder–decoder network with self-attention and use the binary
cross-entropy loss to train our model. In MSAN, there are two core designs. First, we introduce
a new attention-based end-to-end method on top of multi-stage networks, which applies group
convolution to the self-attention module, effectively reducing the computing cost and improving the
model’s adaptability to different blurred images. Secondly, we propose using binary cross-entropy
loss instead of pixel loss to optimize our model to minimize the over-smoothing impact of pixel loss
while maintaining a good deblurring effect. We conduct extensive experiments on several deblurring
datasets to evaluate the performance of our solution for deblurring. Our MSAN achieves superior
performance while also generalizing and compares well with state-of-the-art methods.

Keywords: motion deblurring; multi-stage attentive network; binary cross-entropy loss

1. Introduction

Motion blur removal is a challenging problem in vision tasks due to the fact that
motion blurs are spatially varying blurs caused by various factors, e.g., camera shaking
or objects quickly moving [1]. The single-image deblurring issue is to restore the latent
sharp image by the given blurred image. Traditional image-deblurring methods based on
simplistic assumptions (e.g., blur kernel K is uniform, partially uniform, or locally linear)
directly model the degradation process of image blurring as a convolution form:

IB = k ∗ IS + b, (1)

where IB, IS and b are the blurred image, original sharp image, and noise, respectively. k is
the blur kernel. The symbol ∗ represents the operation of convolution.

Because the blur kernel in the blind image deblurring is unknown, blind deblurring
methods need to estimate blur kernel k to restore latent sharp image IS. Therefore, accurate
prediction of the blur kernel is essential. Most traditional image-deblurring methods
estimate the blur kernel by making full use of various prior information from natural images,
e.g., non-locally prior [2], framelet based prior [3], `0-regularization based prior [4,5], dark-
channel based prior [6], and salient edges prior [7], etc.

However, most of these methods require expensive computations to estimate the
unknown blur kernel due to complex heuristic parameter optimization algorithms. In
particular, the most essential reason for motion blur is that the large-distance relative motion
of objects in the shooting scene causes the originally collected pixels to change during the
exposure time, and the variation of these pixels is complex and non-uniform [8–10]. These
previous methods cannot deal with complex motion blurs well because finding different
blur kernels for different pixels is a severely ill-posed problem.

Entropy 2022, 24, 1414. https://doi.org/10.3390/e24101414 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24101414
https://doi.org/10.3390/e24101414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-7524-2272
https://orcid.org/0000-0002-1279-6910
https://doi.org/10.3390/e24101414
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24101414?type=check_update&version=2


Entropy 2022, 24, 1414 2 of 14

Recent learning-based end-to-end deblurring methods show their strengths in ad-
dressing these issues because they are free of blur kernels. These end-to-end methods do
not need to estimate blur kernels, rather only the mapping learned between blurred images
and sharp images, so as to directly generate predicted restored images from the blurred
images. In particular, Nah et al. [10] proposed a multi-scale deblurring neural network
based on multi-stage networks (MSNs) for directly estimating latent sharp images from the
blurred images, and other methods [11–24] further advance MSN models for deblurring.
Moreover, generative adversarial network (GAN)-based methods [25–27] have also been
used to achieve end-to-end image deblurring.

Although existing end-to-end approaches have made great progress in motion de-
blurring, there still exist two main issues. First, because the models learn the mapping of
blurred and sharp image pairs is all single determination, most of these methods suffer from
insufficient generalization ability (experimental results to be given in Section 4.2). Secondly,
most MSN methods mainly use pixel loss to train their models. However, pixel loss such as
mean square error (MSE) encourages models to find a reasonable pixel average-wise for
the solution [28]. Models optimized with this loss function tend to produce over-smoothed
outputs. Moreover, although GAN-based methods employ adversarial losses instead of
pixel loss, they often require multiple losses and careful tuning of parameters [29].

To this end, we propose a multi-stage attentive network (MSAN) for motion deblurring
via binary cross-entropy loss. We utilize attention mechanisms to improve the adaptability
of our MSAN for different blurred images. We design a self-attention module (SAM) by
using group convolution to be more suitable for our model to enhance the extraction of rel-
evant features and suppression of irrelevant features in the deblurring process. Our model
can recalibrate the features from different blurred images through SAM, thus improving the
adaptability of the model to different blurred images. In this way, our method can adapt
to different blurred scenes. Moreover, we artfully use binary cross-entropy loss instead of
pixel loss to optimize our model to reduce over-smooth output results. In particular, the
proposed MSAN is cascaded by four sub-networks and trained in an end-to-end manner
without stage-wise optimization.

Notably, in comparison with our previous approach [23], this work has the following
main differences. (1) We insert a self-attention module with group convolution between the
encoder and decoder based on the sub-network structure of the method [23]. That is mainly
inspired by [30,31], enhancing the adaptability of the model by computing the correlation
of relevant positions to obtain the most useful and important features and recalibrate these
features. (2) To reduce over-smooth output results, we introduce binary cross-entropy loss
to train the model to deblur. (3) To demonstrate the validity of our proposed method, we
conduct more comparative experiments by using synthetic and real-world datasets.

Our major contributions can be summed up as follows.

• We propose a new attention-based end-to-end method on top of multi-stage networks.
A self-attention module is introduced to improve the adaptability of the model to dif-
ferent blurred images. In particular, we apply group convolution to the self-attention
module, which effectively reduces the computing cost of self-attention.

• We propose a novel strategy based on binary cross-entropy loss instead of pixel loss
to optimize our model and to reduce the over-smooth impact by pixel loss while
maintaining a good deblurring effect.

• We perform experiments on multiple representative datasets and provide extensive
analyses and evaluations on the results. The results of experiments demonstrate
that our MSAN outperforms SOTA methods when processing different types of
blurred images.

2. Related Work

The purpose of this section is to describe learning-based end-to-end deblurring meth-
ods and attention mechanisms in image deblurring.
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2.1. Learning-Based End-to-End Deblurring Methods

The learning-based deblurring methods avoid blur kernel estimation. These methods
are trained with original sharp and artificially synthesized blurred image pairs for learning
how to map blurred images and sharp images, so as to generate predicted restored images
from the blurred images directly.

Nah et al. [10] proposed a multi-scale deblurring neural network and adopt ResBlock
(a slightly modified version of the residual network structure) as the building block of the
model. This model utilized three cascaded sub-networks to process images of different
scales to simulate the optimization process from coarse to fine to gradually recover po-
tentially sharp images. On the basis of this multi-scale method, Tao et al. [11] presented
a network using scale-recurrent architecture with recurrent modules to reduce the model
size and improve the training stability by sharing weight across different sub-networks.
A later study by Gao et al. [12] suggested that a parameter-selective sharing scheme in
combination with a nested skipping structure of the nonlinear transformation module
further optimizes the multi-scale scheme and achieves more effective deblurring effects
than [10,11]. Different from multi-scale schemes, Zhang et al. [13] proposed a hierarchical
multi-patch network that takes advantage of deblurring cues at several scale patches. This
multi-patch localized-to-coarse approach is used to perform deblurring in the fine-to-coarse
grids. To further improve the performance of the multi-patch model, they also proposed a
stacked version. A recent proposal by Cai et al. [18] has been to integrate dark and bright
channel priors into the multi-stage network in order to achieve effective motion deblurring.
By using the cascade architecture for single-image deblurring, Lim et al. [19] utilize the com-
plementary characteristics of spectral and spatial features. Hu et al. [20] propose a pyramid
neural architecture search network to automatically design hyper-parameters such as scales,
patches, and standard cell operators in the multi-stage deblurring network. Moreover,
Liu et al. [21] propose an image-deblurring framework by using pixel loss combined with a
high-frequency loss to train their model to further improve the deblurring performance.
This framework comprises a high-frequency reconstruction network and a multi-scale grid
network. Despite the recent progress of the above multi-stage methods, they mainly train
their models based on pixel loss and still suffer from the issue of over-smoothed outputs.

Recently, GAN-based methods [25–27] have also been used in motion deblurring. In
particular, Kupyn et al. [25] present DeblurGAN based on conditional motion deblurring.
DeblurGAN uses the generator to restore sharp images from synthetic and real-world
blurry images and makes the discriminator unable to distinguish the generated image from
real, sharp images. Based on DeblurGAN, Kupyn et al. [26] further devise an improved
version (i.e., DeblurGAN-v2). They employ a relativistic discriminator that incorporates
global and local scale evaluations. Another GAN-based method [27] first uses leaning-
to-blur GAN (BGAN) to generate photo-realistic blurry images by learning features from
real-world blurry images, then leverages a learning-to-deblur GAN (DBGAN) to recover
sharp images from these blurry images. However, they usually require multiple losses and
careful tuning of parameters. Moreover, due to the lack of pixel distance constraints, it is
easy to cause different degrees of distortion in the output results.

2.2. Attention Mechanisms in Image Deblurring

With the recent success of transformer architecture [32] in natural language processing,
attention mechanisms have been introduced into image processing tasks [30,33,34]. Recently,
there also has been application of attention mechanisms to image deblurring [14,16,17]. In
particular, Shen et al. [14] propose a deblurring method consisting of three separate branches
for removing foreground humans, background, and global blur. They present a human-aware
attention module to focus on the deblurring for the location of people because the image
regions of the foreground human are usually the most attentive. Suin et al. [16] propose using
both the global attention and adaptive local filters to learn the transformation of features to
improve deblurring performance. Moreover, Purohit et al. [17] propose using self-attention to
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calculate all spatial location correlations for learning non-local connections between features
at different locations.

3. Methodology

This section presents MSAN architecture, attention mechanisms in MSAN, and the
used loss functions for our method.

3.1. MSAN Architecture

Figure 1 presents the overall architecture of the proposed MSAN, which consists of
four sub-networks with the same structure. These sub-networks progressively process
deblurring from top to bottom. The input scale of each sub-network is the same. The
first sub-network uses the original blurred image as input, and the second, third, and
fourth sub-networks use the concatenation of the original blurred image and the previous
sub-network’s output as input. By adding the last sub-network’s output to the original
blurred image, the final deblurred image is obtained.

ResBlcok

Skip  
Connection

Channel
Concatenation

Convolutional 
Layer

Deconvolutional 
Layer

Self-Attention 
Module

+ Element-wise 
Sum

+

+

+

+
+

+
+

+
+

Encoder Decoder

Figure 1. Illustration of MSAN architecture. Our MSAN contains four sub-networks; these sub-
networks process deblurring from top to bottom progressively. The terms B, D, and S denote the
original blurry image, the deblurred image, and the sharp image, respectively.

Each sub-network contains an encoder, a decoder, and a self-attention module. In
particular, the encoder has three convolutional layers. The first convolutional layer trans-
forms the input into feature maps of 32 channels. The second and third convolutional
layers downsample the feature map scale by half, and output feature maps of 64 and
128 channels, respectively. Each convolutional layer is followed by four ResBlocks for
feature extraction. A self-attention module is placed between the encoder and decoder to
recalibrate the extracted features. A decoder has two deconvolutional layers. These two
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convolutional layers upsample the feature map scale by two, and output feature maps of
64 and 32 channels, respectively. Each deconvolutional layer is followed by four ResBlocks
for feature reconstruction. The last convolution of the decoder transforms the feature maps
into a three-channel output.

3.2. Attention Mechanisms in MSAN

The main purpose of attention mechanisms is to get the most useful and important
features by calculating the correlation of relevant positions. These features are then recali-
brated to enhance the adaptability of the model. Inspired by the work of [17,30], we design a
SAM that is more suitable for our model based on the self-attention mechanism to improve
the adaptability of the model to different blurry image datasets. Because self-attention
requires a great deal of memory, the hardware cannot meet the computational demand
when the height and width of the input feature map are too large. We introduce group
convolution to downsample the input of SAM to reduce memory footprint. Meanwhile, we
place SAM between the encoder and decoder to further reduce memory usage. We next
present the details of SAM as follows.

As illustrated in Figure 2, the feature map X ∈ RĈ×Ĥ×Ŵ is the output from the encoder,
where Ĉ, Ĥ, and Ŵ are the channels, height, and width of the feature map X, respectively.
Different from self-attention in [30], we use group convolution to downsample X and get

X′ ∈ RĈ× Ĥ
2 ×

Ŵ
2 . In this way, both the height and width of the feature map are reduced by

half to decrease the computing cost of self-attention.

1 1 Conv

softmax

Matrix multiplication

Element-wise Sum

3 3 
Group
Conv

4 4 Group Deconv

1 1 Conv

1 1 Conv

Reshape
Transpose

attention map

Figure 2. Illustration of the proposed SAM. X′ is obtained by downsampling (using group convolu-
tion) the feature map X and transforming X′ into three feature spaces Q, K, and V. Next, we calculate
the similarity between Q and K to obtain the weights and use the softmax function (performed on
each row) to normalize these weights. We then perform a weighted summation of the weights and
the corresponding V to obtain O and use group convolution to upsample O to obtain Y′. Finally, we
multiply Y′ by parameter λ to add with X to get the final output Y.

Next, X′ is transformed into three feature spaces Q, K and V, where Q, K, V ∈ RĈ× ĤŴ
4 .

We get QT by transposing Q, the ith row of QT represents the values of all channels at the
iposition on X′. And the jth column of K represents the values of all channels at the jth

position on X′. We calculate the position relationship by performing matrix multiplication
between QT and K. The product result uses the softmax layer to calculate the attention map

∈ R ĤŴ
4 ×

ĤŴ
4 as follows,

aji =
exp((QTK)ij)

∑
ĤŴ

4
j=1 exp((QTK)ij)

, (2)



Entropy 2022, 24, 1414 6 of 14

where aji denotes the extent of correlation between the i position and the j position. A
greater correlation between any two positions means greater similarity (greater attention)
between their feature representations.

We transpose A to obtain AT . The matrix multiplication between V and AT produces

an enhanced feature-map residual Õ ∈ RĈ× ĤŴ
4 . We then transform the shape of Õ to

get O ∈ RC× Ĥ
2 ×

Ŵ
2 and use group convolution to upsample O to obtain Y′ ∈ RĈ×Ĥ×Ŵ .

Finally, we multiply Y′ by parameter λ to add with X. Thus, the final output denoted by
Y ∈ RĈ×Ĥ×Ŵ is as follows,

Y = λY′ + X, (3)

where λ is a learnable scalar, which is zero at the initial stage, and the attention module
directly returns X. By training, the attention module gradually learns to add the weighted
Y′ to the original X, thus realizing the adaptive modulation of the deblurring features.

The SAM enhances relevant features and reduces irrelevant features based on the
selective aggregation of self-attention so that the model can focus on processing more
critical features. In addition, different types of features in different images have various
contributions to their deblurring. SAM re-calibrated the extracted features (i.e., ignoring
irrelevant information in the features and focusing on their important information), making
these features more suitable for the decoder. Therefore, the adaptability of the whole model
to different blurred images is improved.

3.3. Loss Function

Most MSN methods employ pixel loss such as MSELoss to train their models. These
models are optimized by MSELoss between ground truth images and predicted results,
which are able to produce better results under the evaluation of peak signal-to-noise ratio
(PSNR). This is because there has been a negative correlation between metric and loss:

PSNR = 10× log10

((
28 − 1

)2

MSE

)
. (4)

Thus, the PSNR value between the deblurring images and the ground-truth images is
maximized when the MSELoss is minimized.

However, as mentioned earlier, models optimized directly by using pixel loss are
prone to over-smoothed outputs. To reduce the impact of pixel loss while maintaining a
good PSNR, we propose a novel strategy based on binary cross-entropy loss to optimize our
multi-stage network. In particular, the definition of the binary cross-entropy loss function
is as follows,

BCELoss = − 1
N

N

∑
i=1

(
yi log

(
p(yi)

)
+ (1− yi) log

(
1− p(yi)

))
, (5)

where yi is the label (1 for class I and 0 for class II), expressions p(yi) and 1− p(yi) are the
predicted probability of class I and class II of the ith sample, and N is the total number
of samples. In particular, we denote the output D of MSAN to represent a set including
C×H×W samples (where C, H, and W represent the channel number, height, and width
of D), and define the two labels, class I and class II as blur (y = 1) and sharp (y = 0),
respectively. Then, we use S to denote the ground-truth image and ri to denote the
difference between deblurring image D with ground-truth image S at the ith pixel position,
where ri is defined as follows:

ri = |Di − Si|. (6)

Our approach assumes that the predicted probability of blur label of the ith sample is
linearly related to ri. When ri is larger, the probability that the sample is blur labeled is
greater. The absolute difference between two pixels (i.e., ri) is at most 255 due to the value
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of each pixel ranging from 0 to 255. We thus denote the probability that the ith sample is a
blur label as follows,

p(yi) =
ri

255
=
|Di − Si|

255
. (7)

Therefore, Equation (5) used for our model can be rewritten as follows:

BCELoss = − 1
C×H×W

C×H×W

∑
i=1

(
yi log

( |Di − Si|
255

)
+ (1− yi) log

(
1− |Di − Si|

255
))

. (8)

Because the sample set output by MSAN is still the set of pixel values of the deblurring
image D, the corresponding image is sharper when the probability of the pixel values being
predicted as sharp labels is greater. In particular, we predict each sample from D as a sharp
label without considering the case of a blur label, i.e., yi is always equal to 0. Therefore, the
loss function of MSAN can be defined as follows:

LMSAN(D, S) = − 1
C×H×W

C×H×W

∑
i=1

log
(
1− |Di − Si|

255
)
. (9)

The optimization goal of our model is to reduce the loss (i.e., LMSAN(D, S)). As
shown in Figure 3, the smaller value of the expression log

(
1− |Di−Si |

255
)
, the closer Di is to

Si, indicating the effect of the deblurring image is better.

Figure 3. Loss function curve.

4. Experiments

In this section, we demonstrate the effectiveness of the proposed MSAN. We first
present the experimental implementation. We then provide a detailed performance com-
parison between our method and other SOTA methods in both quantitative evaluations
and visual comparisons. Finally, we investigate the contributions of SAM and loss function
in the proposed MSAN by ablation study.

4.1. Implementation
4.1.1. Datasets

We used three representative datasets (i.e., GoPro [10], HIDE [14], and RealBlur [35])
for experiments. The GoPro and HIDE datasets use high-frame-rate cameras to capture
high-frame-rate image sequences, which are then stacked to synthesize both blurred and
sharp images aligned at pixel level. The RealBlur dataset captures blurred and sharp image
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pairs simultaneously by using a dual-camera system consisting of a beam splitter and two
cameras. Whereas HIDE is divided into HIDE I for objects with long-shot depth and HIDE
II for objects with close-up depth, and ReadBlur is divided into RealBlur-R from raw images
and RealBlur-J from JPEG images. We follow the same configuration as [10] and all models
are trained with 2103 image pairs from the GoPro dataset [10]. For generalization testing,
we use several testing datasets: 1111 image pairs in the GoPro dataset [10], 1063 image
pairs in the HIDE I dataset [14], 962 image pairs in the HIDE II dataset [14], 980 image pairs
in the RealBlur-R dataset [35] and 980 image pairs in the RealBlur-J dataset [35].

4.1.2. Training Details

Our model is implemented by using the PyTorch [36] library. The source code and
model are available at: https://github.com/CaiGuoHS/MSAN, accessed on 21 September
2022. For fairness, unless noted otherwise, all comparative experiments are based on the
Cuda toolkit 10.2 and conducted on the same machine with a single NVIDIA RTX 2080Ti
GPU. We use the Adam solver to optimize the MSAN, and train the model on 3000 epochs
with 256× 256 pixel images and a batch size of 8. In the initial warming-up phase [37],
the initial learning rate of MSAN is set to 10−4, then gradually reduced to 10−6 by using
the cosine annealing procedure. Furthermore, we use the same techniques to process the
training data as we do for data augmentation.

4.2. Comparison with SOTA Methods

We compare our method with other SOTA motion-deblurring methods, including SRN-
Deblur [11], DeblurGAN-v2 [26], DSDeblur [12], Stack(4)-DMPHN [13], MTRNN [15], and
HFRSN-MSGSN [21]. For comparison fairness, the experimental results from other compar-
ative approaches are obtained by the source code and pre-trained models of these methods.

Quantitative Evaluations

We utilize PSNR and structural similarity index measure (SSIM) as metrics for quan-
titative evaluations. In general, PSNR and SSIM scores that are higher indicate better
deblurring. We first quantitatively evaluate the comparative methods on the GoPro [10]
testing set. In addition to PSNR and SSIM, we also compare the model size and average pro-
cessing time per image for each method, as shown in Table 1. We observe that the proposed
MSAN reaches the highest scores, 32.24 and 0.956, in terms of PSNR and SSIM, respectively,
and its model size and running time rank second and third among these methods. The
second-best model for PSNR score is HFRSN-MSGSN [21], which has 0.39 dB less PSNR
than ours, and its model size and runtime are three times and twice that of our MSAN,
respectively. Likewise, the third-best one for PSNR score (i.e., Stack(4)-DMPHN [13]) has a
much larger model size and runtime than our MSAN. Although DeblurGAN-v2 achieves
a running time of 142 ms (i.e., the best), it uses Inception-ResNet-v2 [38] as the backbone,
making its model size much larger than other methods. Although MTRNN has the smallest
model size, its recurrent network architecture makes its running time still larger than our
MSAN. In contrast, our MSAN has obvious advantages over other SOTA models because
its running time is slightly higher than 400 ms, and its model size is less than 36 MB. The
methods in [11,12] use multi-scale inputs to increase the receptive field to restore blurry
images and spend more computing time than DeblurGAN-v2 [26].

Table 2 shows PSNR and SSIM values on HIDE and RealBlur testing sets for the
generalization tests. The best results are highlighted in bold. We observe that the ranking of
PSNR and SSIM scores on the HIDE and RealBlur testing sets by other methods differs from
the ranking on the GoPro testing set. The second-best model (i.e., HFRSN-MSGSN [21])
on the GoPro is also ranked second on the HIDE (including HIDE I and HIDE II) but
performs poorly on the RealBlur, especially on the RealBlur-J. The third-best one (i.e.,
Stack(4)-DMPHN [13]) on the GoPro is the third-ranked only on the HIDE II, and the
performance on other datasets is mediocre, even the last one on the RealBlur-J. On the
contrary, despite DeblurGAN-v2 being the last one on the GoPro, HIDE I, HIDE II, and

https://github.com/CaiGuoHS/MSAN
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RealBlur-R, it ranks second on the RealBlur-J. In contrast, our model performs the best
on all testing sets, indicating that our model generalizes better than other models on
these datasets.

Table 1. Quantitative evaluation of MSAN and other methods using the GoPro testing set. The best
scores are highlighted in bold.

Models
GoPro

PSNR SSIM Model Size Time 1

SRNDeblur [11] 30.20 0.933 33.6 MB 814 ms
DeblurGAN-v2 [26] 29.08 0.918 244.5 MB 142 ms

DSDeblur [12] 30.96 0.942 49.8 MB 805 ms
Stack(4)-DMPHN [13] 31.39 0.948 86.9 MB 637 ms

MTRNN [15] 31.13 0.945 10.6 MB 492 ms
HFRSN-MSGSN [21] 31.85 0.951 108.3 MB 899 ms

VDN [23] 31.65 0.951 23.4 MB 236 ms
MSAN (Ours) 32.24 0.956 35.9 MB 419 ms

1 The time is an average time taken to deblur images on the GoPro testing set. To measure this time we use
torch.cuda.synchronize() because PyTorch’s CUDA calls are asynchronous.

Table 2. Quantitative evaluation of MSAN and other methods using the HIDE and RealBlur
testing sets. The best scores are highlighted in bold.

Models
HIDE I HIDE II RealBlur-R RealBlur-J

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRNDeblur [11] 29.18 0.912 27.46 0.891 35.27 0.937 28.48 0.861
DeblurGAN-v2 [26] 28.29 0.896 26.65 0.872 35.11 0.935 28.69 0.866

DSDeblur [12] 29.98 0.923 28.14 0.902 35.39 0.938 28.39 0.859
Stack(4)-DMPHN [13] 29.80 0.925 28.34 0.910 35.48 0.947 27.80 0.847

MTRNN [15] 29.98 0.926 28.24 0.908 35.79 0.951 28.44 0.862
HFRSN-MSGSN [21] 30.30 0.929 28.58 0.911 35.40 0.934 28.31 0.854

VDN [23] 30.09 0.929 28.43 0.912 35.54 0.948 28.18 0.855
MSAN (Ours) 31.42 0.944 29.40 0.926 35.96 0.953 28.83 0.878

4.3. Visual Comparisons

We visually compare the deblurring results of each method on different testing sets.
Because the blurred input image has artifacts and most of the methods trained by MSE
loss tend to smooth the input artifacts while performing deblurring, the deblurring results
obtained by these methods are still not sharp enough. In contrast, our method trained
by BCE loss reduces these over-smoothing effects in the output, making the deblurring
results sharper.

We choose three images from the GoPro testing set and divide the deblurring results
into three columns. As shown in Figure 4, although all methods achieve deblurring, our
MSAN model reduces over-smoothing effects in output and produces the best image
quality compared to other methods. In particular, the letters and license plate numbers of
the magnified parts in the first and second columns, the deblurring results of our method
have fewer artifacts and sharper images. Moreover, for the windows in the magnified part
of the third column, we can also observe that our method handles the details better than
other methods. For example, our deblurring result is more accurate for the restoration of
the edge of the window and the shadow part on the right.

We also compare the deblurring results of our MSAN and these SOTA methods on
HIDE I, HIDE II, RealBlur-R, and RealBlur-J testing sets, as shown in Figure 5. Because
our method generalizes better than other methods, we can observe that our MSAN model
achieves significantly better deblurring results than other models on the generalization test.
Compared to other deblurring methods, our deblurring results are affected by relatively
little over-smoothing, so they are much sharper and closer to ground-truth images. For
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example, in the magnified parts in the first and third columns, only our MSAN restores the
correct letters, especially the tiny letters in the third column. Likewise, for the zoomed-in
sections in the second and fourth columns, only our MSAN restores accurate detail.
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Figure 4. Visual comparison of deblurring results of MSAN and other methods on the GoPro dataset.
All three images are from the GoPro dataset. The first and last rows show blurred images and
ground-truth images, respectively. The second to seventh rows from top to bottom are deblurring
images obtained by SRNDeblur [11], DeblurGAN-v2 [26], DSDeblur [12], Stack(4)-DMPHN [13],
MTRNN [15], HFRSN-MSGSN [21], and our MSAN, respectively. A partially magnified image also
accompanies each image (see red box).
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Figure 5. Visual comparison of deblurring results of MSAN and other methods on the HIDE and Real-
Blur datasets. The four images from left to right are from HIDE I, HIDE II, RealBlur-R, and RealBlur-J
datasets. The first and last rows show blurred images and ground-truth images, respectively. The
second to seventh rows from top to bottom are deblurring images obtained bySRNDeblur [11],
DeblurGAN-v2 [26], DSDeblur [12], Stack(4)-DMPHN [13], MTRNN [15], HFRSN-MSGSN [21], and
our MSAN, respectively. A partially magnified image also accompanies each image (see red box).

4.4. Ablation Study

We also carry out ablation experiments to evaluate the effectiveness of the proposed
SAM and the BCELoss strategy. We examine the following three variants of MSAN:
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• M1 (MSAN without SAM and uses MSELoss);
• M2 (MSAN without SAM and uses BCELoss);
• M3 (MSAN uses MSELoss).

We retrained models M1, M2, and M3, respectively. The quantitative evaluation of
ablation experiments is shown in Table 3. We can observe that in the generalization test
(i.e., based on HIDE I, HIDE II, RealBlur-R, and RealBlur-J testing sets), the model with
SAM outperforms the model without SAM (i.e., M3 > M1 and MSAN > M2). This shows
that the proposed SAM can effectively improve the generalization ability of the model. For
different loss strategies, in the case without SAM (i.e., M1 and M2), M2 using BCELoss
slightly outperforms M1 using MSELoss on most testing sets. When SAM is used (i.e., M3
and MSAN), MSAN using BCELoss is significantly better than M3 using MSELoss. This
shows that the proposed BCELoss strategy can effectively improve the performance of the
model, especially for the model using SAM. We further compare the two loss strategies. As
shown in Figure 6, we quantitatively evaluate two strategies on different testing sets every
200 epochs, and we can see that MSAN using BCELoss offers better performance.

Table 3. Ablation experiments for MSAN on the GoPro testing set. The best scores are highlighted
in bold.

Models MSE BCE SAM
GoPro HIDE I HIDE II RealBlur-R RealBlur-J

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

M1 X 32.06 0.953 30.40 0.932 28.81 0.916 35.55 0.947 28.25 0.857
M2 X 32.18 0.955 30.69 0.936 28.92 0.919 35.53 0.946 28.30 0.860
M3 X X 32.00 0.953 31.13 0.940 29.19 0.921 35.91 0.953 28.74 0.874

MSAN X X 32.24 0.956 31.42 0.944 29.40 0.926 35.96 0.953 28.83 0.878
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(a) PSNR curves of GoPro testing set.
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(b) PSNR curves of HIDE I testing set.
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(c) PSNR curves of HIDE II testing set.

Figure 6. PSNR curves of various tests of MSAN using different loss strategies.

5. Conclusions

We present a motion deblurring model, MSAN, that is efficient and has good general-
ization performance for handling motion-blur images. We introduce a new self-attention
module to the encoder–decoder to effectively reduce the computing cost and improve
the model’s adaptability to different blurred images. Furthermore, the proposed binary
cross-entropy loss strategy is more suitable for training the deblurring model than the
pixel-loss strategy and effectively improves the deblurring performance of the model.
Extensive experiments on several benchmark datasets demonstrate that MSAN achieves
SOTA performance for motion deblurring tasks.
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