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Abstract: The states of the qubit, the basic unit of quantum information, are 2× 2 positive semi-
definite Hermitian matrices with trace 1. We contribute to the program to axiomatize quantum
mechanics by characterizing these states in terms of an entropic uncertainty principle formulated on
an eight-point phase space. We do this by employing Rényi entropy (a generalization of Shannon en-
tropy) suitably defined for the signed phase-space probability distributions that arise in representing
quantum states.
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1. Introduction

The maximum entropy method was introduced into physics as a way of deriving
the Boltzmann distribution of statistical mechanics (Jaynes [1]). In this paper, we apply
entropy methods to characterize the basic unit of quantum information, namely, the qubit.
Our work fits into the ongoing program to identify principles or axioms yielding quantum
mechanics. This program goes back at least to Birkhoff and von Neumann [2] and their
investigation of quantum mechanics as a non-classical logic. More recently, Hardy [3]
reconstructed quantum theory from five axioms couched in terms of operations that can
be conducted on a physical system. His work spurred many other axiomatizations based
on communication complexity (Van Dam [4]), information causality (Pawlowski et al. [5]),
information capacity (Dakić and Brukner [6]), and purification (Chiribella, et al. [7]), among
other principles.

We aim to characterize the simplest quantum system, namely, a two-level system
such as the spin of a particle. Empirically, the experimenter can observe a property such
as spin in three arbitrarily chosen mutually orthogonal directions. In each direction, the
outcome is binary (up or down). An empirical model gives the frequencies of these
outcomes when identical copies of the same two-level system are prepared and one of
the three measurements is performed on a given copy. We want to associate an entropy
with an empirical model. This step is not immediate because entropy is a measure of the
uncertainty in a single probability distribution, and an empirical model contains three
distinct probability distributions (one for each direction). The solution is to move to phase
space, where an empirical model is represented by a single probability distribution. Our
phase space for a two-level system contains eight points, where each point specifies the
outcome (up or down) of each of the three possible measurements. The possibility of a
non-deterministic response to measurement—as in quantum mechanics—is allowed for by
specifying a probability of each point in phase space. Later, we comment on the relationship
between our phase-space framework and the finite-field representations due to Wootters
and collaborators (e.g., Wootters [8]; Gibbons et al. [9]).

Our phase-space representation of an empirical model can be thought of as a particular
(canonical) type of local hidden-variable model (Bell [10]), where the possible values of
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the hidden variable are precisely the possible points in phase space. It follows from Bell’s
Theorem (Bell [10]) that there are empirical models which arise in quantum mechanics
and which cannot be represented in phase space with ordinary probabilities. One answer
is found in the Wigner distribution (Wigner [11]), which can take on negative values at
certain locations in phase space. Dirac [12] and Feynman [13] also argued for admitting
negative probabilities in quantum calculations. We emphasize that although we will allow
phase-space probabilities to take negative values, the frequencies of all observable events
remain non-negative. Further support for the use of negative probabilities comes from
Abramsky and Brandenburger [14], who prove that the family of empirical models that
can be represented in phase space this way is precisely the family of no-signaling theories
(Popescu and Rohrlich [15]).

We are now ready to associate entropies with probability distributions on phase space.
Within quantum mechanics, the most common entropy measure is the von Neumann
entropy (von Neumann [16]). This is unsuitable for our purpose because it is defined
within the quantum formalism, which we want to derive not assume. Shannon entropy
(Shannon [17]) is also unsuitable when applied to probabilities in phase space, since, if the
latter can be negative, then it would take complex values. Instead, we work with the more
basic notion of Rényi entropy [18] and impose real-valuedness and smoothness. Rényi
entropy satisfies the basic requirement of extensivity, i.e., it is additive across statistically
independent systems. In fact, it is defined by this property together with some technical
axioms (Daróczy [19]). Rényi entropy is used in various applications in quantum mechanics
(Wehner and Winter [20]; Bialynicki-Birula and Rudnicki [21]; Coles et al. [22]).

The next step is to state an entropic uncertainty principle as an axiom on phase
space. Note that different from other entropic uncertainty principles in quantum mechanics
(Everett [23]; Hirschman [24]; Beckner [25]; Bialynicki-Birula and Mycielski [26]), our
principle is formulated in phase space. Furthermore, we do not derive the principle
from quantum mechanics but introduce it as an axiom. Our main result is that the set
of probability distributions on phase space whose Rényi entropy exceeds a certain lower
bound is exactly equal to the set of probability distributions that induce the qubit.

A paper that, broadly speaking, goes in the opposite direction to ours is Wootters and
Sussman [27]. These authors work in a finite-field phase-space representation of discrete
quantum systems and are able to identify certain minimum-uncertainty states. In particular,
they show that a particular class of states (the “rotationally invariant states”) minimize
Rényi 2-entropy (a special case of our family of entropy functionals, as we shall see).

We consider our axiomatization of the qubit as in line with the program enunciated by
Fuchs [28] to find “deep physical principles” that yield quantum mechanics. This said, we
do not claim that our axiom is self-evident. In relativity theory, the principle of light speed
invariance is not an intuitive axiom—the point is that it is physically intelligible. (This
comparison between quantum theory and relativity theory is also made in Onggadinata
et al. [29].) Our interest in an uncertainty principle is similar. Ever since the initial formu-
lation by Heisenberg [30], uncertainty principles have been viewed as one of the notably
unintuitive features of quantum mechanics. However, even though they are mysterious at
the everyday macroscopic level, uncertainty principles are physically interpretable, and
they are evidently true of microscopic systems.

2. Preliminaries

A basis for the space of 2× 2 Hermitian matrices is given by {σ0, σ1, σ2, σ3}, where
σ0 = I is the 2× 2 identity matrix and σ1, σ2, σ3 are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A 2× 2 Hermitian matrix M satisfies Tr(M) = 1 if and only if

M =
1
2
(I + r1σ1 + r2σ2 + r3σ3)
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for some vector r = (r1, r2, r3) ∈ R3.

Definition 1. A 2× 2 Hermitian matrix M with Tr(M) = 1 is called a potential quantum state.
If, in addition, M is positive semi-definite, then M is a quantum state, or a state of the qubit. We
also refer to the corresponding vectors r as potential quantum states and quantum states.

This is the model of the simplest quantum system, namely a two-level system such as
the spin of a particle. Empirically, the experimenter can observe a property such as spin in
three arbitrarily chosen mutually orthogonal directions x1, x2, and x3. In each direction,
the outcome of a measurement will be labeled +1 or −1. The expectation of the outcome in
direction i is (see, e.g., p. 181 in Sakurai and Napolitano [31]).

Tr(Mσi) = ri.

We want to associate an entropy with an empirical model. This step is not immediate
because entropy is a measure of the uncertainty in a single probability distribution, and
an empirical model contains three probability distributions (one for each direction). Our
solution is to move to phase space, where an empirical model is represented by a single
probability distribution. The phase space for a two-level system contains eight points,

{+1,−1}3 = {en | n = 1, .., 8},

where en(i) = (−1)ni for (n1, n2, n3) the base-2 digits of n− 1. Each point in phase space
specifies the outcome of each of the three possible measurements. Non-deterministic
responses to measurement are incorporated by specifying probabilities over the points in
phase space. Let

Q = {q ∈ R8 | Σ8
i=1qi = 1}

denote the set of all signed probability distributions on phase space. That is, we do not
require the probabilities to be positive, only that they sum to 1. We define a map φ from Q
to the set of potential quantum states by

φ(q) =
1
2
(I + r1σ1 + r2σ2 + r3σ3),

where
ri = ∑

{n|en(i)=+1}
qn × (+1) + ∑

{n|en(i)=−1}
qn × (−1).

The map φ gives the correct transformation from phase space to the space of potential
quantum states, in the sense of preserving the empirical probabilities. This map is linear
and it will be helpful to fix some notation surrounding a matrix representation. Note we
have folded the condition that q is a probability distribution in as the last equation in the
definition of representation below.

Definition 2. Let A denote the matrix
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1

.

For r ∈ R3 define r̂ = (r1, r2, r3, 1) ∈ R4. For q ∈ R8 and r ∈ R3 we say q represents r if Aq = r̂.



Entropy 2022, 24, 1412 4 of 12

3. Rényi Entropy

We are going to use phase space to formulate an entropic uncertainty principle as an
axiom, and derive the quantum states this way. In particular, we will allow only those
potential quantum states r for which there is a phase-space representation q whose entropy
exceeds a lower bound. The non-classicality of the qubit becomes apparent because there
are quantum states for which the only representations with entropy exceeding the bound
are signed probability distributions. The use of negative probabilities on phase space
to represent quantum systems goes back to the Wigner quasi-probability distribution
(Wigner [11]). The first task then is to choose a suitable definition of entropy for signed
probabilities.

We extend Rényi entropy ([18]) to signed probabilities and impose a smoothness condi-
tion that identifies a particular family of entropy functionals. Fix a finite set X = {x1, ..., xn}
together with an ordinary (unsigned) probability distribution q on X. Rényi entropy is the
family of functionals

Hα(q) = −
1

α− 1
log2(

n

∑
i=1

qα
i ),

where 0 < α < ∞ is a free parameter. (Shannon entropy is the special case, via L’Hôpital’s
rule, when α = 1.) We can preserve the real-valuedness of entropy under signed probabili-
ties by taking absolute values

Hα(q) = −
1

α− 1
log2(

n

∑
i=1
|qi|α).

This formula can also be derived axiomatically. (see Brandenburger and La Mura [32]
who modify the original axioms for Rényi entropy in Rényi [18] and Daróczy [19].) We
next impose a smoothness condition, requiring that Hα be smooth on the space of signed
probabilities. That is, we require Hα(q1, . . . , qn−1, (1−∑n−1

i=1 qi)) to be C∞ on Rn−1. Now, if
α is not an integer let k be the least integer with k > α. Then

∂k Hα

∂qk
i
(q) =

f (q)
g(q)

,

where f (q) 6= 0 and g(q) = 0 for any q with qi = 0. Thus, α must be an integer. If α is an
odd integer then ∂α Hα/∂qα

i (q) is undefined for q with qi = 0. Therefore, Rényi entropy
takes the following form under our smoothness assumption.

Definition 3. Rényi entropy for signed probability distributions is the family of functionals

H2k(q) = −
1

2k− 1
log2(

n

∑
i=1

qi
2k) = − 2k

2k− 1
log2(‖q‖2k),

where k = 1, 2, . . . is a free parameter.

Finally in this section, we give an example of a quantum state such that the only
representatives with Rényi entropy satisfying the lower bound are signed probabilities.
Consider the quantum state (r1, r2, r3) = ( 1√

3 , 1√
3 , 1√

3 ). Set k = 1. The (unique) maximum
2-entropy representation is

q =
1
8
(1 +

√
3, 1 +

1√
3

, 1 +
1√
3

, 1− 1√
3

, 1 +
1√
3

, 1− 1√
3

, 1− 1√
3

, 1−
√

3),

with negative final component. The 2-entropy of q is 2, which is the lower bound we
impose below, so we cannot find a representation with all non-negative components with
sufficiently high 2-entropy. In fact any state with |r1|+ |r2|+ |r3| > 1 will have this property.
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4. Main Theorem

We can now state an entropic uncertainty principle as an axiom on phase space. The
axiom is inspired by the use of entropic uncertainty relations in quantum information
(Wehner and Winter [20]; Bialynicki-Birula and Rudnicki [21]; Coles et al. [22]).

Uncertainty Principle: A potential quantum state r satisfies the Uncertainty
Principle if for every k, there is a phase-space probability distribution q that
represents r and satisfies H2k(q) ≥ 2.

This says that we allow as potential quantum states only those states r containing a mini-
mum amount of uncertainty, as measured by the entropy of a corresponding probability
distribution q on phase space. Note that our Uncertainty Principle is a sequence of condi-
tions, one for each k. This is because Rényi entropy itself is not a single functional but a
sequence of functionals (indexed by k).

Theorem 1. The potential quantum states satisfying the Uncertainty Principle are precisely the
states of the qubit.

Proof. We first show that the potential quantum states satisfying the Uncertainty Principle
at k = 1 are the states of the qubit. Note that

H2(q) ≥ 2 if and only if ‖q‖2
2 ≤

1
4

.

For a general r, the representation q∗ which maximizes 2-entropy is given by

q∗ = AT(AAT)−1r̂.

Using the fact that AAT = 8I we have

‖q∗‖2
2 = r̂T(AAT)−1r̂ =

1
8

rTr +
1
8
≤ 1

4
if and only if

r2
1 + r2

2 + r2
3 ≤ 1,

and the result follows since the matrix 1
2 (I + r1σ1 + r2σ2 + r3σ3) is positive semi-definite

if and only if r2
1 + r2

2 + r2
3 ≤ 1.

We now show that if a potential state r satisfies the Uncertainty Principle at k = 1 then
it satisfies the Uncertainty Principle at all k. This is the main mathematical argument. Fix
k > 1 and let r ∈ R3 be a state of the qubit. Choose a q to maximize the 2k-entropy of a
representative of r. We want to show H2k(q) ≥ 2 which is equivalent to ‖q‖2k ≤ ( 1

2 )
2k−1

k .
Observe that q solves the norm minimization problem

min
q∈R8
‖q‖2k

subject to Aq = r̂.

The dual problem is

max
x∈R4

r̂Tx

subject to ‖ATx‖ 2k
2k−1
≤ 1.
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(see pp. 221–222 in Boyd and Vandenberghe [33].) Note that ‖ · ‖ 2k
2k−1

is the dual norm of

‖ · ‖2k. Strong duality holds so the values of the primal and dual problems are equal. Let
y1, yk be the maximizers of the dual problems for 2-entropy and 2k-entropy, respectively. Let

C1 = {x ∈ R4 | ‖ATx‖2 ≤ 1}

and

Ck = {x ∈ R4 | ‖ATx‖ 2k
2k−1
≤ 1}.

Note that Ck ⊆ C1 are both convex and, in fact, C1 is the ball of radius 1√
8
. Let

zk = (r̂Tyk/‖r̂‖2
2)r̂

be the projection of yk onto r̂. Since r̂Ty1 = ‖r̂‖2√
8

cos θ, where θ is the angle between them,
we must have θ = 0 and so

y1 = (r̂Ty1/‖r̂‖2
2)r̂.

Since the values of the primal and dual problems are equal, these values are positive,

so ‖z
k‖2

‖y1‖2
is equal to the ratio of the value of the general k problem to the value of the k = 1

problem. By assumption

r̂Ty1 ≤ 1
2

,

so it is enough to show

‖zk‖2

‖y1‖2
≤ (

1
2
)

k−1
k .

We will bound this expression by a function that can be explicitly maximized. Note
that for every nonzero vector w there are unique λ < ν such that

‖ATνw‖2 = 1

and

‖ATλw‖ 2k
2k−1

= 1.

This follows immediately from linearity, homogeneity, the fact that A has full rank, and the
fact that 2k

2k−1 < 2. Now let

f (w) =
‖ATw‖2

‖ATw‖ 2k
2k−1

.

By the previous observation and the fact that f (λw) = f (w) for any nonzero scalar λ,
we see that f (w) is the ratio of the distance to the boundary of C1 along the ray through w
to the distance to the boundary of Ck. Let w1 = νyk belong to the boundary of C1. Figure 1
depicts the situation in the plane containing r̂ and yk.

Claim 1. ‖z
k‖2

‖y1‖2
is bounded by a value of f .

Proof. We claim that

‖zk‖2

‖y1‖2
≤ ‖y

k‖2

‖w1‖2
.
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⋅
⋅
⋅

⋅y1

zk

yk

w1

C1Ck

̂r

Figure 1. Comparing the maximizers of the dual problem.

Note that

r̂Tw1 ≤ r̂Ty1,

so the length of the projection of w1 onto r̂ (call this vector v) cannot exceed the length of
y1. By similar triangles then

‖yk‖2

‖zk‖2
=
‖w1‖2

‖v‖2
≥ ‖w

1‖2

‖y1‖2
,

so ‖z
k‖2

‖y1‖2
≤ ‖yk‖2
‖w1‖2

= f (w1). �

To complete the proof of Theorem 1, it suffices to show that

max{ f (w) | w ∈ R4} = (
1
2
)

k−1
k ,

which we do in the Appendix A. �

5. Conclusions

We have shown that an entropic Uncertainty Principle formulated on an eight-point
phase space characterizes the states of the qubit. We see our result as contributing to the
program that aims to reconstruct quantum mechanics from physically interpretable axioms.
Of course, our derivation is only for the simplest, two-level quantum system. We anticipate
that to characterize an n-qubit system, methods will be needed that go beyond those in
this paper. In particular, it may be necessary not only to extend our entropic Uncertainty
Principle to the n-qubit case, but to identify new axioms. The Wootters and Sussman [27]
analysis may be an important guide in this direction in that they are able to identify certain
minimum-uncertainty states in an n-qubit system. A full characterization may be possible
combining techniques across the two papers.

We re-emphasize that our paper is aimed at a derivation not a representation of the
qubit. This explains why our phase space contains eight points while in Wootters [8] and
Gibbons et al. [9] the phase space for a single qubit comprises four points. A four-point
space is the appropriate domain for the discrete Wigner function, but we do not assume a
Wigner representation.

A related derivation of the qubit is Onggadinata et al. [29]. Similar to our paper, they
employ Rényi entropy, but fix α = 2. This instance of Rényi entropy is often called collision
entropy. Their postulate is that the collision entropy is constant under any dynamics (not
necessarily deterministic) on a finite one-dimensional lattice. From this, they recover the
qubit with its full dynamics as defined on the Bloch sphere.
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Both Wootters and Sussman [27] and Onggadinata et al. [29] work with Rényi 2-
entropy. By contrast, we are able to obtain our results not just for 2-entropy, but for
the entire family of 2k-entropies, which we derived from basic principles. It would be
interesting to see if our methods could be employed to generalize the results in these papers.
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Appendix A

Let w ∈ R4 and v = wA. Let t ∈ R8 be defined by ti = v
1

2k−1
i . Note that the critical

points of f are the same as the critical points of

f 2(w)

8
=

‖v‖2
2

8‖v‖2
2k/2k−1

=
wAATwT

8‖v‖2
2k/2k−1

=
‖w‖2

2
‖v‖2

2k/2k−1
,

which are the solutions of the system of first-order conditions

wi = h(w)ritT i = 1, 2, 3, 4,

where

h(w) =
‖w‖2

2

‖v‖2k/2k−1
2k/2k−1

> 0

and ri is the ith row of the matrix A. It is helpful to write out the system with γ denoting
1

2k−1 for readability:

w1 = h(w)[(w1 + w2 + w3 + w4)
γ − (−w1 + w2 + w3 + w4)

γ + (w1 − w2 + w3 + w4)
γ−

(−w1 − w2 + w3 + w4)
γ + (w1 + w2 − w3 + w4)

γ − (−w1 + w2 − w3 + w4)
γ+

(w1 − w2 − w3 + w4)
γ − (−w1 − w2 − w3 + w4)

γ],

w2 = h(w)[(w1 + w2 + w3 + w4)
γ + (−w1 + w2 + w3 + w4)

γ − (w1 − w2 + w3 + w4)
γ−

(−w1 − w2 + w3 + w4)
γ + (w1 + w2 − w3 + w4)

γ + (−w1 + w2 − w3 + w4)
γ−

(w1 − w2 − w3 + w4)
γ − (−w1 − w2 − w3 + w4)

γ],

w3 = h(w)[(w1 + w2 + w3 + w4)
γ + (−w1 + w2 + w3 + w4)

γ + (w1 − w2 + w3 + w4)
γ+
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(−w1 − w2 + w3 + w4)
γ − (w1 + w2 − w3 + w4)

γ − (−w1 + w2 − w3 + w4)
γ−

(w1 − w2 − w3 + w4)
γ − (−w1 − w2 − w3 + w4)

γ],

w4 = h(w)[(w1 + w2 + w3 + w4)
γ + (−w1 + w2 + w3 + w4)

γ + (w1 − w2 + w3 + w4)
γ+

(−w1 − w2 + w3 + w4)
γ + (w1 + w2 − w3 + w4)

γ + (−w1 + w2 − w3 + w4)
γ+

(w1 − w2 − w3 + w4)
γ + (−w1 − w2 − w3 + w4)

γ].

Claim A1. The system w = h(w)AtT has the following properties:

1. If w is a solution then so is λw for any λ 6= 0.
2. If w is a solution then v is a solution, where v is obtained from w by permuting coordinates.

Proof. For (1) we have h(λw)tT(λw) = λ2λ1/2k−1

λ2k/2k−1 h(w)tT = λw. For (2) we have

w1 = h(w4, w2, w3, w1)r4tT(w4, w2, w3, w1)

and

w4 = h(w4, w2, w3, w1)r1tT(w4, w2, w3, w1),

and similarly for w2, w3.

Claim A2. Assume w4 6= 0. Let i, j < 4. Then

|wi| = |wj| or wiwj = 0.

Proof. We may assume w4 > 0. For N sufficiently large we have ‖w− a‖2 < ‖a‖2 where
a = (0, 0, 0, N). Thus, the Taylor series expansion of ritT at the point a converges at w.
We have

w1 = 8h(w) ∑
α1∈O

α2,α3∈E
α4∈N

(w− a)α

α!
C(

4

∑
i=1

αi),

w2 = 8h(w) ∑
α2∈O

α1,α3∈E
α4∈N

(w− a)α

α!
C(

4

∑
i=1

αi),

w3 = 8h(w) ∑
α3∈O

α1,α2∈E
α4∈N

(w− a)α

α!
C(

4

∑
i=1

αi),

w4 = 8h(w) ∑
α1,α2,α3∈E

α4∈N

(w− a)α

α!
C(

4

∑
i=1

αi),

where α ∈ N4 is a multi-index, N = E ∪O = {0, 2, 4, ...} ∪ {1, 3, 5, ...},

α! = α1!α2!α3!α4!,

(w− a)α = wα1
1 wα2

2 wα3
3 (w4 − N)α4 ,

and C is defined by



Entropy 2022, 24, 1412 10 of 12

C(0) = 1, C(1) =
1

(2k− 1)N
2k

2k−1
, and

C(n) =
(−1)n−1 ∏n−1

j=1 (j(2k− 1)− 1)

(2k− 1)nN
n(2k−1)−1

2k−1

for n > 1.

Note that C(∑4
i=1 αi) > 0 if and only if ∑4

i=1 αi ∈ O. Assume w1, w2 6= 0. We have

w1 ∑
α2∈O

α1,α3∈E
α4∈N

(w− a)α

α!
C(

4

∑
i=1

αi) = w2 ∑
α1∈O

α2,α3∈E
α4∈N

(w− a)α

α!
C(

4

∑
i=1

αi),

equivalently

∑
α2∈O

α1,α3∈E
α4∈N

(w− a)α+(1,0,0,0)

α!
C(

4

∑
i=1

αi) = ∑
α1∈O

α2,α3∈E
α4∈N

(w− a)α+(0,1,0,0)

α!
C(

4

∑
i=1

αi).

Re-indexing we have

∑
α1,α2∈O

α3∈E
α4∈N

α1
(w− a)α

α!
C(

4

∑
i=1

αi − 1) = ∑
α1,α2∈O

α3∈E
α4∈N

α2
(w− a)α

α!
C(

4

∑
i=1

αi − 1).

Collecting terms we have

∑
α1<α2

α1,α2∈O
α3∈E
α4∈N

(α1 − α2)(w
α1
1 wα2

2 − wα2
1 wα1

2 )wα3
3 (w4 − N)α4

C(∑4
i=1 αi − 1)

α!
= 0,

equivalently

∑
α1<α2

α1,α2∈O
α3∈E
α4∈N

(α1 − α2)w
α1
1 wα2

2 (1− (
w1

w2
)α2−α1)wα3

3 (w4 − N)α4
C(∑4

i=1 αi − 1)
α!

= 0.

The key point is that

(α1 − α2)w
α1
1 wα2

2 wα3
3 (w4 − N)α4

C(∑4
i=1 αi − 1)

α!
always has the same sign as w1w2. Thus, since α2 − α1 ∈ E we conclude that |w1| = |w2|.

Claim A3. If wi, wj 6= 0 then |wi| = |wj|.

Proof. By Claim A1 and Claim A2 we may assume that w1, w4 6= 0 and w2, w3 = 0. We
may further assume that w4 = 1. Thus, the equation for w1 becomes

w1 =
(w1 + 1)1/2k−1 − (−w1 + 1)1/2k−1

(w1 + 1)1/2k−1 + (−w1 + 1)1/2k−1

so
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(w1 + 1)(−w1 + 1)1/2k−1 = (−w1 + 1)(w1 + 1)1/2k−1,

from which we conclude that w1 ∈ {−1, 1} as desired.

We have thus shown that for every i, j ≤ 4 either |wi| = |wj| or wiwj = 0 so we need
only consider critical points with

wi ∈ {0, 1,−1}

for each i = 1, ..., 4. It is easy to check that the maximum of the original function f occurs
when exactly two of the weights are 0 and this maximum value is ( 1

2 )
k−1

k , completing the
proof of Theorem 1.
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