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Abstract: This review provides an overview of the progress made by computational and systems
biologists in characterizing different cell death regulatory mechanisms that constitute the cell death
network. We define the cell death network as a comprehensive decision-making mechanism that
controls multiple death execution molecular circuits. This network involves multiple feedback and
feed-forward loops and crosstalk among different cell death-regulating pathways. While substantial
progress has been made in characterizing individual cell death execution pathways, the cell death
decision network is poorly defined and understood. Certainly, understanding the dynamic behavior
of such complex regulatory mechanisms can be only achieved by applying mathematical modeling
and system-oriented approaches. Here, we provide an overview of mathematical models that have
been developed to characterize different cell death mechanisms and intend to identify future research
directions in this field.
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1. Introduction

Mathematical modeling is a powerful tool that allows one to connect molecular biology
to cell physiology by associating the qualitative and quantitative features of dynamical
molecular networks with signal–response curves measured by cell biologists [1]. Mathe-
matical and systems-oriented approaches have been successfully applied to describe the
dynamics of complex molecular networks that control cell cycle [2,3], nutrient signaling [4],
checkpoints [5], signaling dysregulation in cancer [6], and cell death [7–13]. Systems-
oriented mathematical approaches are especially useful for analyzing complex systems that
cannot be understood by intuitive reasoning. Undoubtedly, cell death regulation is one such
molecular mechanism that cannot be fully understood without mathematical modeling.
Here, we provide an overview of mathematical models that have been successfully applied
to quantitatively characterize death signaling networks.

Cell death mechanisms are directly involved in regulations of tissue homeostasis,
inflammation, immunity, development and other physiological processes [14]. Charac-
terization of new genes and molecular components, involved in signaling pathways by
regulating cell death, continues to progress. A detailed characterization of cell death
regulation can help identify novel targets and develop effective therapeutic protocols to
strike acquired drug resistance in cancer cells. Accurate predictive mechanistic models
of complex molecular networks regulating cell death can be used to test the effects of
new drugs on the system, and to search for synergistic drug combinations and effective
treatment protocols. Different modeling approaches have been already successfully ap-
plied to model extensive cell death molecular networks. Ordinary differential equations
(ODEs), Boolean logic, pharmacokinetic-pharmacodynamic (PK-PD), Petri nets, agent-
based modeling (ABM), cellular automata and hybrid approaches are the common choices
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available to model molecular mechanisms involved in cell death control, decisions and
execution [6,12,13,15–19].

Cell death execution is an all-or-none, irreversible process [20]. Mathematically the
activation of irreversible cell death can be described by an irreversible bistable switch with
a stable survival steady state, a stable death steady state, and a third unstable steady state
separating the survival and death states [21–24]. A pro-death signal can induce cell death by
driving the bistable system from the survival to the death state. The transition occurs when
the pro-death signal reaches a threshold that corresponds to the limit point bifurcation.
Transition in the reverse direction, from death to survival, is impossible because the second
limit point bifurcation, where the death steady state vanishes, occurs in the biologically
irrelevant negative signal values (i.e., the concentration of a death-inducing ligand or
stressor cannot be negative). Therefore, the activation of the cell death execution in such a
bistable system cannot be reversed, even if the initial cell death trigger is removed. This
mathematical description of the cell death activation is consistent with a threshold mecha-
nism for cell death induction [25] and an all-or-none death decision [22,26,27]. Importantly,
understanding how cells control the cell death/survival switch can help to identify targets
that can force cancer cells to flip the switch to activate the irreversible cell death execution.

Complexity of cell death regulatory networks, a requirement to account for all impor-
tant regulating molecular details and pathways, availability of merely small sets of sparse
data for model calibration, as well as under- and over-fitting of the model are issues that
must be routinely solved in order to develop a predictive model of cell death [6,15]. This re-
view describes mathematical models that have been successfully applied to quantitatively
characterize such cell death control mechanisms as apoptosis, necroptosis, ferroptosis,
pyroptosis and immunogenic cell death.

2. Apoptosis

Apoptosis is one of the most well-studied and characterized programmed cell death
mechanisms. The detailed characterization of molecular interactions involved in apopto-
sis, and the growing amount of related quantitative data, has encouraged computational
and systems biologists to develop mathematical models of apoptosis [12,13,17]. Over the
last twenty years, several dozen mathematical models of apoptosis regulation have been
described. These apoptosis models aim to explain different data or effects of different
treatments on cell death. While the core molecular components regulating apoptosis are
shared by all models, variations in molecular circuit designs, components, data, mathe-
matical approaches, and study goals make each model a unique tool to study apoptosis.
Most often, molecular mechanisms of apoptosis are mathematically represented using
ODEs [7,21,22,25–33], Boolean logics [34–36], and Petri nets [16]; other computational
approaches have also been applied [18,37,38].

The execution core of apoptosis regulation involves a family of proteases termed
caspases. Caspases can be separated into the following two groups: effector or executioner
caspases (caspase-3, -6, -7), and active initiator caspases (e.g., caspases-8, -9). Activation
of the caspases initiates the cleavage of several important cellular proteins, such as actin
and nuclear lamins, which results in cell body and nuclear shrinkage and cell death [39].
Apoptosis can be processed through mitochondria-dependent (intrinsic apoptosis) and
mitochondria-independent (extrinsic apoptosis) caspase-3 activation pathways [14]. The
core components involved in these two pathways are commonly included in all math-
ematical models of apoptosis and can be found in the earliest mathematical models of
apoptosis [7].

Extrinsic apoptosis is characterized by high amounts of active caspase-8 that activates
the downstream effectors caspase-3, caspase-6, and caspase-7. The activation of caspase-8
is receptor-mediated, which occurs upon receipt of a death signal that is processed by a
surface death receptor such as FAS (a member of the tumor necrosis factor gene superfam-
ily) [14]. Therefore, extrinsic apoptosis is a receptor-mediated cell death mechanism, as
shown in Figure 1 (left). By contrast, intrinsic apoptosis can be executed even in cells with
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lower levels of active caspase-8 but requires an additional amplification that involves activa-
tion of the pro-apoptotic functions of the mitochondria. For example, stress-related factors
(e.g., DNA damage) can induce activation of the executioner caspases via a mitochondria-
dependent pathway in the absence of an external death signal [40] (Figure 1, right panel).
The mitochondria-dependent pathway begins with the cleavage of anti-apoptotic Bcl-2
family members, which causes the aggregation of pro-apoptotic proteins such as Bax and
Bak. Aggregation of pro-apoptotic proteins is followed by the release of cytochrome c from
the mitochondria, which induces the formation of a large protein complex known as the
apoptosome. The apoptosome recruits and activates caspase-9, allowing it to cleave the
downstream effectors pro-caspase-3, pro-caspase-6, and pro-caspase-7. Notably, the expres-
sion of anti-apoptotic Bcl-2 family members can block the intrinsic apoptosis signaling in
cells. By contrast, extrinsic apoptosis cannot be blocked by the expression of high levels of
Bcl-2 proteins because large amounts of caspase-8 are already generated.
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The earliest mathematical models of apoptosis described both mitochondria-dependent
and independent death activation pathways. In early 2000, Fussenegger et al. published
a mechanistic ODE-based mathematical model of apoptosis that describes both receptor-
mediated and stress-induced caspase activation mechanisms [7]. The receptor-mediated
feature of the model describes the FAS surface receptor that activates procaspase-8. Acti-
vation of apoptosis initiator caspases involves the following reactions: the binding of an
extracellular death ligand to the FAS receptor, the binding of FAS-associated death domain
(FADD) protein to the FAS death domain, and the binding of caspase-8 to a domain on
FADD that enables caspase-8 activation by proteolytic cleavage. Each binding process is
described by a specific rate parameter in the model. Simulation results show that about
50% of procaspase-8 is activated within two hours after the death signal is received. After
procaspase-8 activation, the executioner caspase is activated within minutes, and then the
initiation of procaspase-9 occurs with the lag time ~20–30 min. The activation curves have
a sigmoidal shape indicating, that the transition between the inactive to the active state
is characterized by a threshold. If the binding between FADD and clustered FAS death
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domains is disrupted, then only <0.1% of active caspase-8 is observed upon receipt of the
death signal, which is consistent with experimental observations [41].

Fussenegger’s model of stress-mediated apoptosis regulation describes the activation
of procaspase-9 by cytosolic cytochrome c, and the apoptotic protease-activating factor
1 (Apaf-1) complex. Activated caspase-9 then activates apoptosis executioner caspases
at some specific rate. Formation of the Apaf-1–cytochrome c complex is inhibited by
antiapoptotic Bcl-2 family members such as Bcl-xL. Proapoptotic Bcl-2 family members
(e.g., Bax, Bak) can bind to antiapoptotic family members and remove their inhibitory
effect. The ratio of anti- versus pro-apoptotic Bcl-2 family members is controlled by
the p53 transcription factor that is activated in cells under stress conditions. Simulation
results of stress-induced caspase activation dynamics were consistent with experimental
observations [42]. Specifically, the model shows that cytochrome c is released within 10 min
after a stress death signal is received, which results in procaspase-9 activation, 35–40% of
the executioner caspase being active within 1 h, and 70% of the executioner caspase being
active at 2 h. In addition, simulations revealed that the active fraction of both initiator
and executioner caspases is reduced in p53 mutant cells as compared to wild-type cells.
Overexpression of antiapoptotic Bcl-2 family members is predicted to block the activation
of procaspase-9. The model also confirms that the ratio of anti- versus pro-apoptotic Bcl-2
family members determines whether or not executioner caspases will be activated. The
model was then used to predict the effects of combined therapies based on simultaneous
receptor- and stress-induced caspase activation.

The model developed by Fussenegger et al. was successful in explaining qualita-
tive experimental observations. However, more quantitative data would be required to
complete the model calibration. Quantitative information on reaction rates and molecular
concentrations is required to perform reliable mathematical simulations of signal trans-
duction in the apoptosis regulatory network. In 2004, Eissing et al. developed a reduced
receptor-induced apoptosis, using parameter values from the literature to evaluate the
system behavior within a wide range of parameters [21]. The model revealed that caspase
activity remains low for a time that is inversely proportional to the stimulus strength,
followed by a steep rise in activity when the input exceeds the threshold; caspase activity
then ceases at some maximum level. Bifurcation analysis of the model confirmed that
the apoptosis regulation system exhibits a bistable behavior. The same year, Bentele et al.
developed a data-based model of receptor-induced apoptosis with parameters estimated
on the basis of quantitative experimental data [25]. The time series data for concentra-
tions of 15 different molecules after activation of FAS receptors were used to calibrate
the core model of the FAS-induced apoptosis. In addition, data from distinct apoptosis
activation scenarios in response to different initial values of ligand concentration were used
to improve the estimation of model parameters. The model predicted that apoptosis is
not executed when a ligand–receptor concentration ratio is below a critical value, which
was also confirmed by experimental observations. In conclusion, Bentele et al. proposed a
threshold mechanism for induction of receptor-induced apoptosis. A year later, Hua et al.
published a FAS-induced apoptosis model to investigate the effects of altering the level of
Bcl-2 on the kinetics of caspase-3 activation [43]. The model predicts that Bcl-2 blocks the
mitochondrial pathway by binding to proapoptotic Bax, Bak, and tBid proteins. Further,
the model predicts that apoptosis signaling flow can be switched between mitochondria-
dependent and mitochondria-independent pathways by varying molecular component
levels without changing network structure.

In 2006, Legewie et al. developed a quantitative kinetic model of intrinsic (stress-
induced) apoptosis, which displays an all-or-none behavior of caspase activation in re-
sponse to an apoptotic stimulus [22]. The model helped to identify the positive feedback
mechanism that allows cells to achieve ultrasensitivity and bistability in cell death decision
making. The pathway molecular regulators that control the apoptotic threshold stimulus
and integrate multiple inputs into an all-or-none caspase output were also determined.
Time-course simulation results agreed with experimental observations that the induction
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of maximal caspase-3 cleavage after exogenous addition of cytochrome c occurs within
~15–60 min. Furthermore, cytochrome c-induced activation of caspase-3 was observed
to be bistable and irreversible. The bistable and irreversible caspase-3 activation arises
in the system due to XIAP-mediated feedback that cooperates with caspase-9 cleavage
by caspase-3. X-linked inhibitor of apoptosis (XIAP) inhibits the catalytic activities of
caspase-9 and caspase-3 through reversible binding. The feedback cleavage of caspase-9 by
caspase-3 leads to autoamplification of the apoptotic signal. Simulation results show that
XIAP-mediated feedback is observed only if caspase-9 and caspase-3 compete for binding to
XIAP. Depletion and re-addition experiments using different Apaf-1, caspase-3, caspase-9,
and/or XIAP concentrations were proposed to test the all-or-none caspase activation.

Also in 2006, Rehm et al. published a computational model of apoptosome-dependent
caspase activation based on biochemical data from HeLa cells [26]. The model predicts that
the all-or-none apoptotic response depends on caspase-3-dependent feedback signaling
and XIAP, which was then verified quantitatively using single-cell experiments with a
caspase fluorescence resonance energy transfer substrate. A concentration threshold of
XIAP between 0.15 and 0.30 µM, controlling the substrate cleavage by effector caspases,
was identified. The model suggested that high levels of XIAP may promote apoptosis
resistance and sublethal caspase activation. This result agrees with a computational analysis
that was performed earlier, which also suggested that the inhibitor of apoptosis plays an
important role in both the induction and prevention of apoptosis [44]. Conversely, Bagci
et al. proposed a mathematical model of mitochondria-dependent apoptosis to study both
the role of Bax and Bcl-2 synthesis, degradation rates and the number of mitochondrial
permeability transition pores involved in the cell response to a death signal [23]. The
main finding was that the transition from bistable to monostable (survival) cell behavior is
controlled by the synthesis and degradation rates of Bax and Bcl-2 and by the number of
mitochondrial permeability transition pores. Also, the model results suggested that cooper-
ative apoptosome formation is a much more robust mechanism to induce bistability than
feedback mechanisms involving, for example, the inhibition of caspase-3 by the inhibitor of
apoptosis. Later, Chen and Cui et al. analyzed the robustness of Bax and Bcl-2 apoptotic
switches using both deterministic and stochastic models [38,45,46]. These mechanisms
were confirmed to be bistable and robust to noise and wide ranges of parameter variation.

Albeck et al. developed a mathematical model of extrinsic, receptor-induced apoptosis
to explain the molecular mechanism of the variable-delay, snap-action switch function
that determines the cell choice between life and death [27]. The model was calibrated by
experimental data collected from live-cell imaging, flow cytometry, and immunoblotting
of cells perturbed by protein depletion and overexpression. The model was then used
to reveal the mechanism by which a steady and gradual increase in caspase-8 activity is
converted into a snap-action downstream signal. Permeabilization of the mitochondrial
membrane and relocalization of proteins are the key factors in the extrinsic apoptosis
network by which a graded signal that activates caspase-8 and promotes the formation of
pores in the mitochondrial membrane is transformed into an all-or-none death decision.
Importantly, such snap-action behavior at the level of the mitochondrial outer membrane
permeabilization occurs independently of caspase-dependent feedback mechanisms. The
formation of pores in the mitochondrial membrane involves the pore-forming proteins
Bax and Bak that can self-assemble into transmembrane pores, which are antagonized
by anti-apoptotic Bcl-2 proteins [47]. Cytochrome c is released into the cytosol when the
level of active pore-forming proteins exceeds the threshold set by anti-apoptotic Bcl-2
proteins. Using experimental and modeling techniques, Spencer et al. demonstrated that
cell-to-cell variability in time-to-death significantly depends on the activation rate of the
tBid protein that activates the pore-forming proteins, Bax and Bak [33]. Therefore, in
the case of receptor-mediated apoptosis, the timing and probability of death relies on the
differences in the protein levels that can be caused, for example, by noise in gene expression.
Furthermore, the stochastic protein turnover in a receptor-mediated apoptosis model can
result in fractional killing [48].
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Later models were developed to investigate crosstalk between apoptosis regulation
and NF-κB pathways [32], the estrogen signaling network [31], endoplasmic pathways [28],
and autophagy regulation [29]. Neumann et al. described a model of the crosstalk between
receptor-mediated apoptosis regulation and NF-κB signaling that are activated by the same
receptor in parallel to the apoptotic signaling and on a similar time scale [32]. Model and
experimental analysis suggested that the balance between apoptotic and NF-κB signaling is
shaped by the proteins that regulate the assembly dynamics of the death-inducing signaling
complex (DISC). Therefore, the assembly of DISC acts as a signal processor, determining
life/death decisions in a nonlinear manner. Tyson et al. provided a roadmap for a detailed
mathematical model that would allow researchers to characterize the crosstalk among
the estrogen signaling network, apoptosis, autophagy, and cell cycle regulations in breast
epithelial cells [31]. Later, the same research lab published a detailed mathematical model to
examine the decision process that moves a cell from autophagy to apoptosis [29]. The model
was successful in explaining quantitative time-course data of autophagy and apoptosis
under cisplatin treatment. Further, the model allows for characterization of the prosurvival
and prodeath cell responses to cytotoxic stress. Also, in 2012, Hong et al. published
a model of cisplatin-induced apoptosis that integrates the death receptor pathway, and
mitochondrial and endoplasmic reticulum stress response mechanisms [28]. The model
predicts the relative contribution of each signaling pathway to apoptosis. Simulation results
revealed that the mitochondrial and death receptor pathways as well as crosstalk among
pathways make the greatest contribution to the level of apoptosis, whereas the contribution
of the endoplasmic reticulum stress pathway is negligible.

The Role of p53 in Apoptosis

The tumor suppressor gene p53 (TP53) has been reported as an upregulated modulator
of apoptosis and as a driver of cell fate transition from cell cycle arrest to apoptosis [49].
Mathematical models that characterize the p53 contribution to apoptosis have been devel-
oped by several groups [7,23,28,30,50]. p53 targets many genes regulating cell apoptosis,
including BCL2 and BAX genes [51]. Computational study of apoptosis regulation shows
that the balance between anti- and proapoptotic Bcl-2 family members is altered in p53
mutant cells [7]. Also, the active fraction of both initiator and executioner caspases is
reduced in p53 mutant cells as compared with wild-type cells. The mathematical model
also predicts that overexpression of the death ligand and the FAS receptor can be used
to initiate executioner caspase activation in p53 mutant cells [7]. Bagci et al. have shown
that apoptosis is not sensitive to caspase-3 activation when p53 expression is low, and that
bistability to apoptotic stimuli is observed when p53 level is high [23]. Predictions from this
apoptosis model agree with experimental data [52]. Another study reported that inhibition
of p53 protects against cisplatin-induced apoptosis [28]. Cisplatin induces DNA damage
that results in the phosphorylation and activation of p53. There, the activation of Bax
by p53 induces mitochondrial membrane permeabilization and apoptosis [53]. Also, p53
mediates caspase-2 activation and the mitochondrial release of apoptosis-inducing factor.
The model predicts time courses for p53, caspase-2, Bax activation, apoptosis-inducing
factor release and apoptosis activation. Simulation results agree with experimental data
that p53 inhibition prevents the mitochondrial release of apoptosis-inducing factor and
cisplatin-induced apoptosis [54]. Overexpression of p53 results in caspase-2 activation and
also the mitochondrial release of apoptosis-inducing factors [54].

Ballweg et al. developed a mathematical model that integrates p53 signaling, cisplatin-
induced events, and apoptosis regulation that was used to study the dynamics of fractional
killing induced by cytotoxic drugs [30]. Many drugs activate not only apoptosis execution
signaling but also expression of anti-apoptotic genes, which results only in fractional killing
amongst a population of treated cells [55]. Thus, fractional killing may occur due to crosstalk
between the apoptosis and survival pathways [56]. The model predicts that the probability
of apoptosis depends on the dynamics of p53 and the rate of p53 activation determines
the cell fate [30]. Slow activation of p53 results in cell survival, whereas fast p53 activation
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induces cell death. This result also agrees with the experimental observation showing that
apoptotic cells accumulate p53 much earlier than cells that survive the treatment [55]. In
the model, activation of Bax and subsequent execution of apoptosis occur when the level
of p53 exceeds a threshold value. However, the apoptosis initiation threshold depends on
the inhibitor of apoptosis, cIAP. Cells with an elevated level of cIAP require a higher level
of p53 to induce apoptosis. Because the level of apoptosis regulator cIAP increases with
time, the rate of p53 activation plays an important role in the determination of cell fate.
Cell-to-cell variability due to stochastic gene expression and environmental noise can also
set different apoptosis initiation thresholds in different cells, resulting in fractional killing.

Up to this point, we have reviewed mathematical models of apoptosis that use ODEs to
describe the mechanism of cell death (apoptosis) regulation. However, other mathematical
approaches have been also used to study apoptosis regulation [16,18,34–37]. Several apopto-
sis models have been developed using a Boolean (logical) approach that can analyze exten-
sive regulatory networks with many molecular components and their interactions [34–36].
Schlatter et al. developed an apoptosis regulation model that comprises 86 nodes and
125 interactions [34]. Mai et al. developed a model that describes 37 internal states of
signaling molecules involved in apoptosis regulation, 2 extracellular signal inputs, and
the DNA damage event as an output [35]. Calzone et al. developed a model to study
crosstalk between receptor-mediated apoptosis regulation, NFκB pro-survival pathways,
and RIP1-dependent necroptosis regulation [36]. These models were used to characterize
feedback loops in the apoptosis regulation network structure.

While Boolean models are excellent tools to reproduce the qualitative behavior of a
regulatory network, they are weak at addressing detailed quantitative questions about
molecular mechanisms [19]. Petri nets have been applied to analyze and validate a qualita-
tive model of extensive apoptosis regulation [16]. Agent-based modeling turned out to be a
more appropriate approach for modeling the death-inducing signaling complex assembly
than an ODE-based model that must describe a large number of intermediate products
involved in DISC assembly [37]. A cellular automata approach has been applied to study
apoptosis blocking in the immunological response of T cells by varying the inhibitor actions
such as FLIP and IAP [18]. The model predicts that only joint suppression of both FLIP and
IAP apoptosis inhibitors can effectively act to kill cancer cells through apoptosis.

In conclusion, comprehensive data and extensive experimental characterization of
apoptosis allowed computational and systems biologists to develop several mathematical
models of apoptosis regulation. These models not only increase our understanding of mech-
anisms of apoptosis execution induced by stress or signals, but also predict perturbations
that can prevent or enhance apoptosis. An accurate mathematical model of apoptosis can
help find novel combinations of existing therapies that can induce the death of cancer cells
using low doses. Further studies that integrate apoptosis with other cell death regulations
will help to understand the cell death decision mechanism that determines the execution of
a specific cell death fate.

3. Necroptosis

Necroptosis is a regulated cell death that can be initiated by changes in extracellular
or intracellular homeostasis, detected by specific death receptors [14]. Triggering necrop-
tosis primarily involves the receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed
lineage kinase domain-like protein (MLKL). Necroptosis can be induced by the binding
of tumor necrosis factor (TNF) or other ligands to cell surface receptors that trigger the
sequential phosphorylation of receptor-interacting protein kinases. At a cell physiology
level, necroptosis results in cell volume expansion, cell membrane rupture, and intracel-
lular material overflow that leads to a local inflammatory reaction and immune response
activation. Necroptosis-inhibiting drugs can be used to treat inflammatory diseases [57].
Necroptosis-promoting drugs are potential anticancer therapies [58]. Studies of necrop-
tosis regulation can help to identify molecular targets that can be used to reprogram the
necroptosis execution in a desired direction. While many molecular components involved
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in necroptosis regulation are known, the precise interaction network, signaling spread,
dynamic behavior of necroptotic regulation, and the decision-making processes within the
molecular network, remain poorly understood. Several mathematical models have been
developed recently to characterize the dynamics of necroptosis regulation [8,59].

Xu et al. have developed a computational model of the cellular necroptosis signaling
network [8], to study the necroptosis signaling dynamics that lead to cell death in the form
of oscillation-induced trigger waves. The study focused on the core cellular necroptosis
signaling module that includes four components: TRADD, RIP1, caspase-8, and RIP3. The
activities of key components are regulated either by phosphorylation, dephosphorylation,
or cleavage. The corresponding mathematical model described 4 variables and involved
10 interaction terms. Xu et al. used a Latin hypercube sampling method to randomly
scan the model network parameters and evaluate the stable oscillation behavior of the
cellular necroptosis signaling circuit. Bifurcation analysis and potential landscape theory
were applied to explore oscillation modes in different cellular necroptosis signaling circuits.
The results indicate that the cellular necroptosis signaling circuit more likely produces
oscillations when the total amount of RIP1 or caspase-8 is high, while fluctuations in the
value of RIP3 have no significant effects on the oscillation probability. Also, oscillations are
often obtained when the activation of caspase-8 by RIP1 is fast, while RIP3 phosphorylation
by RIP1 is relatively slow. Further, oscillations are more robust when the reaction rate
constants that describe RIP1 activation by RIP3 are stronger than rate constants describ-
ing other interactions. Overall, oscillation robustness analysis revealed three regulatory
feedback loops formed by RIP1, caspase-8, and RIP3 interactions. These loops comprise
a negative feedback loop: RIP3 activates RIP1, which activates caspase-8, that inhibits
RIP3; a positive feedback loop: RIP1 activates RIP3, which inhibits caspase-8, that inhibits
RIP1; and an incoherent feedforward loop: RIP1 activates both caspase-8 and RIP3, and
caspase-8 inhibits RIP3. Importantly, for oscillations to be robust, the reactions in the posi-
tive feedback loop must be slower than reaction rates in the negative feedback loop. Also, a
stochastic parameter analysis indicated that the incoherent feedforward loop is the essential
molecular mechanism that allows the necroptosis signaling system to generate oscillations.

Xu et al. classified oscillations that occur in cellular necroptosis signaling circuits
into four groups according to amplitude and oscillation period. About 50% of observed
oscillations had a high-amplitude (above the median value of all the counted amplitudes)
and fast period (>100 min based on the oscillation period of NF-κB [60,61]), about 37% of
oscillations had a low-amplitude and fast period, ~12% of oscillations had high-amplitude
and slow period, and ~1% of oscillations had a slow and low-amplitude period. Further
analysis revealed that the inhibition rates of RIP1 and RIP3 by caspase-8 play an important
role in determining the amplitude behavior of fast oscillations. In addition, bifurcation
analysis revealed that the dynamic behavior of the system can be switched from slow
high-amplitude oscillations to slow low-amplitude oscillations by tuning the parameters
that describe the activation of caspase-8 by RIP1. However, the transition from fast to slow
oscillation behavior cannot be achieved by changing any single reaction rate constant. Also,
the system changes dynamics from slow high-amplitude oscillations to fast low- or high-
amplitude oscillations when two parameters that describe RIP1 inhibition with caspase-8
and RIP1 phosphorylation with RIP3 are simultaneously tuned. Robustness analysis
revealed that the period of fast oscillations was more robust to parameter perturbations
than the period of slow oscillations. The amplitude of slow low-amplitude oscillations was
robust to parameter perturbations, while the robustness of amplitude of fast high-amplitude
oscillations was the weakest. Overall, the study provides a quantitative characterization
for the mechanism of oscillation mode-switching behavior in the necroptosis signaling
network. Xu et al. proposed that MLKL can decode the information according to the
amplitude and period of RIP3, which can be an important mechanism that allows cells to
generate different responses in various stressful conditions.

A more recent detailed computational model of tumor necrosis factor (TNF)-induced
necroptosis has been developed by Ildefonso et al. [59]. The model was derived from
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the literature-curated molecular mechanisms of necroptosis regulation, which involves
14 proteins, 37 biochemical species, and 40 reactions. The simplified molecular mechanism
that shows key species involved in necroptosis execution is shown in Figure 2. Dynamics
of species were described by a set of ordinary differential equations where all reactions
were described by the mass action law. The model was calibrated and validated using
experimental protein time-course data from a well-established necroptosis-executing cell
line. Simulations then confirmed that the model is successful in explaining the dynamics of
necroptosis reporter, phosphorylated mixed lineage kinase domain-like protein (pMLKL).
Furthermore, four distinct necroptosis execution modes were identified by using a dynami-
cal systems analysis and a spectral clustering algorithm. While the temporal dynamics of
pMLKL were similar in each mode of necroptosis execution, the sequences of molecular
events that led to MLKL phosphorylation and subsequent necroptotic cell death were dif-
ferent. The modes primarily differed in the values of rate constants across the necroptosis
execution pathway. For example, the rate constant for binding of A20 to ubiquitinated RIP1
was significantly smaller in mode 4 than in the other modes, and also smaller in mode
2 relative to modes 1 and 3. Also, mode 4 has a significantly larger activation rate and
smaller deactivation rate constant for caspase-8 in complex II. The activation/deactivation
of caspase-8 in complex II is a critical step in the pathway for determining whether the
cell will progress to necroptosis. Differences in rate constant values create the difference in
the action of A20 and CYLD enzymes across four modes that are then able to effectively
operate as an inhibitor or activator of necroptosis.
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Taken together, the computational analysis helped to resolve the controversy in ex-
perimental observations by showing that CYLD- and A20-driven deubiquitination of RIP1
may act as pro- and anti-necroptotic in different cell types. According to Ildefonso et al.’s
model, knocking out A20 decreases the probability of necroptosis execution (necroptosis
sensitivity) in mode 1, and increases the sensitivity to necroptosis in mode 2 [59]. Con-
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versely, knocking out CYLD increases the sensitivity to necroptosis in modes 1 and 4, and
decreases the sensitivity to necroptosis in mode 2. Knocking out CYLD or A20 has no effect
in mode 3. Also, A20 knockout has no effect in mode 4. These results have been compared
to cell phenotype observations in A20 and CYLD knockdown experiments in different cell
types. For example, it has been reported that RIP1 is deubiquitinated by both A20 and
CYLD in mouse fibrosarcoma cells, but inhibition of CYLD protects cells from necroptosis,
while A20 depletion can sensitize cells to death by necroptosis [62]. Thus, A20 and CYLD
depletion experiments in mouse fibrosarcoma cells are consistent with the model results
obtained for A20 and CYLD knockouts in mode 2.

TNF, TNFR, and MLKL are three common protein modulators of necroptosis across
the four modes of necroptosis execution. Furthermore, rate constants that control the
association of TNF to TNFR, ubiquitination of RIP1 by cIAP in complex I, and association
of LUBAC to complex I can be used to efficiently modulate necroptosis execution across the
four modes. Therefore, targeting these modulators can be used to induce or prevent necrop-
tosis, potentially useful for both cancer therapy and treatment of inflammatory diseases.

Apoptosis and necroptosis regulation networks share common nodes and edges and
may suppress each other [63]. Either apoptosis or necroptosis can be induced by TNF and
the cell death decision depends on the cell state. Complex II can recruit RIP3 to form a
necrosome or recruit caspase-8 to stabilize its active conformation, resulting in the release
of an activated caspase 8 homodimer that then can induce apoptosis [64]. Li et al. [65] per-
formed a quantitative study of crosstalk between the apoptosis and necroptosis pathways.
Specifically, mathematical modeling was used to investigate three possible mechanisms
of caspase-8 activation by (i) TRADD, (ii) RIP1, and (iii) TRADD and RIP1 together. The
law of mass action was used to convert the proposed molecular mechanisms into a system
of ODEs. Simulations of each mechanism were compared with data obtained using the
sequential window acquisition of all theoretical fragment ion spectra mass spectrometry
methods. All three mechanisms reproduced the amounts of major components in TNFR1,
RIP1, and RIP3 complexes. However, only mechanism (ii) could explain a negative regula-
tion of RIP3 phosphorylation by the increase in RIP1 levels. This result was also supported
by a sensitivity analysis showing that the most robust negative regulation of RIP3 phos-
phorylation by RIP1 is achieved when mechanism (ii) is used in the model. To test this
prediction, Li et al. experimentally knocked down RIP1 to three different expression levels
by using RIP1-specific short hairpin RNA and measured the increase in TNF-induced
phosphorylation of RIP3 and MLKL. Deletion of RIP1 completely blocks TNF-induced RIP3
phosphorylation [65]. In addition, simulation results show that pro-caspase-8 activity is
necessary for the up-regulation of RIP3 phosphorylation by decreasing RIP1 expression.
The mechanism was further refined to make it in agreement with the observation that
TNF induces quick caspase-8 activation and apoptosis in RIP1 KO cells [62]. Specifically,
TRADD-dependent caspase-8 activation was added to the mechanism (ii). The final model
successfully explained both RIP1′s biphasic roles in necroptosis, where RIP1 promotes
necroptosis within an extremely low-level range (<∼2% of wildtype) and inhibits necropto-
sis at higher levels, and the activation level of caspase-8 in RIP1 KO cells. Also, the response
of pro-caspase-8 to RIP1 level is linear, whereas RIP3 phosphorylation is determined by the
nonlinear (ultrasensitive) threshold pattern.

Overall, a quantitative approach has been applied successfully to describe the roles of
RIP1 in cell death determination. In conclusion, Li et al. proposed a “speed competition”
decision mechanism in which cells decide to execute apoptosis or necroptosis by the
pathway that reaches the final destination first. Interestingly, simultaneous execution of
necroptosis and apoptosis has been observed in some individual cells [65].

4. Pyroptosis

The regulated cell death that is associated with the formation of plasma membrane
pores by members of the gasdermin protein family is called pyroptosis [14]. The induction
of pyroptosis may occur as a consequence of inflammatory caspase activation that can
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be triggered by pathogen invasion such as Gram-negative bacteria. The critical role of
caspase-driven pyroptosis for innate immune responses against invading bacteria has been
confirmed in experiments with mice carrying gene mutations that disrupt normal activity
of caspase proteins [66]. By killing the host cell, pyroptosis removes the replication com-
partment of intracellular pathogens and thus prevents their spreading. Hence, pyroptosis
has an important role in innate immunity against intracellular pathogens.

Pyroptosis induced by inflammatory caspases is driven by the gasdermin protein
GSDMD. Caspases activate GSDMD that then translocates to the plasma membrane where
GSDMD induces pore formation and thus rapid plasma membrane permeabilization. The
simplified molecular mechanism of the pyroptosis induced by inflammatory caspases is
shown in Figure 3. In this scheme, pyroptosis relies on caspase-1 activation.
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Beyond inflammatory settings, pyroptotic cell death can be induced by TNF, various
DNA-damaging agents, and infection with vesicular stomatitis virus [67,68]. In these cases,
pyroptosis is driven by other members of the gasdermin family, specifically GSDME. This
form of pyroptosis releases fewer inflammatory cytokines than is observed when pyropto-
sis is induced by inflammatory caspases. Pyroptotic signaling relies on the activation of
caspase-3 that catalyzes proteolytic cleavage of GSDME. The identification of other gasder-
min family members that execute pyroptosis in conditions that are beyond inflammatory
settings has been significantly expanded [14].

A computational study of the crosstalk between caspase-1- and caspase-3-driven
pyroptosis pathways was performed by Zhu et al. [9]. The molecular regulatory network
that executes pyroptosis via activation of GSDMD and GSDME is shown in Figure 3. The
crosstalk between caspase-1- and caspase-3-driven pyroptosis pathways is realized through
tBid, caspase-9, and caspase-8 components. Zhu et al. developed a mathematical model
that describes the dynamics of seven molecular components and the dynamics of the cell
population governed by cell proliferation and death processes. The model consists of
eight coupled ODEs and 83 parameters. Hill functions were used to describe activation
and inactivation reactions for molecular components. The values of 44 parameters were
estimated from sources available in the literature and 39 parameters were estimated using
138 time-course data points that were measured for eight variables (the death rate and
seven molecular components) in wild-type cells and cells with single, double, and triple
knockouts of the molecular components.

The pyroptosis decision mechanism was analyzed using bifurcation and sensitivity
analysis methods. Bifurcation analysis revealed that the change in expression levels of
caspase-1, caspase-3, and GSDMD can switch between GSDMD- and GSDME-executed
pyroptosis death modes. Furthermore, the transition between pyroptosis death modes
could not be efficiently controlled by varying the expression levels of caspase-8, caspase-9,
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tBid, or GSDME. According to the model, GSDMD-driven pyroptosis is more likely when
the caspase-1 total expression level is below∼1.5 nM and GSDME-driven pyroptosis occurs
when the caspase-1 level is above 14 nM. For caspase-1 levels ranging from 1.5–14 nm,
bistability is observed when either GSDMD- or GSDME-driven pyroptosis may occur.
Similarly, when GSDMD level is lower than 88 nM, GSDME-driven pyroptosis is induced,
whereas cells can selectively execute either pyroptosis mode when the level of GSDMD
is between 88 nM and 165 nM. GSDMD-driven pyroptosis occurs when GSDMD level is
higher than 165 nM. Also, cells execute GSDMD-driven pyroptosis when caspase-3 level is
lower than 250 nM, and selectively induce either GSDMD- or GSDME-executed pyroptosis
with higher levels of caspase-3.

Sensitivity analysis confirmed that the expression levels of GSDMD and caspase-1
can efficiently change the pyroptosis death modes. This result agrees with experimental
observations [69,70]. In addition, bifurcation analysis predicts that the expression level of
caspase-3 can also change the pyroptosis death mode between caspase-1- and caspase-3-
driven pyroptosis. Overall, the model predicted 3 molecular components and 12 reactions
that can be targeted to control the switch between modes of pyroptosis execution. Drugs
that can switch between pyroptosis death modes can help to improve treatment protocols
for cancer and inflammasome-mediated diseases. For example, GSDME-induced pyroptosis
can act as a tumor suppressor [71,72] and also releases fewer inflammatory cytokines when
compared to pyroptosis that is executed by GSDMD.

Li et al. extended the GSDMD-induced pyroptosis model by adding apoptosis regula-
tion [73]. The model allows one to study the crosstalk between pyroptosis and apoptosis
and inflammasome-induced cell death under different perturbation conditions. Simulation
results reproduce the dynamics of cell death executioners in multiple knockout cells. Py-
roptosis and apoptosis events are determined by the level of cleaved GSDMD and cleaved
caspase-3, respectively. Sensitivity analysis was performed to determine the molecular
components that can significantly affect the occurrence of pyroptosis and apoptosis. The
model predicted that caspase-1 and GSDMD are key molecular regulators directing the sig-
nal flow that can switch cell death modes between pyroptosis and apoptosis. Decreases in
caspase-1 or GSDMD gradually inhibit pyroptosis and enhance apoptosis induction. These
model predictions were validated by caspase-1 and GSDMD-knocked down experiments.
Furthermore, the model results helped to suggest the death signal propagation pathways,
resulting in pyroptosis or apoptosis in cells expressing different levels of caspase-1 or
GSDMD. To understand the roles of caspase-1 and GSDMD in triggering the cell death
modes, Li et al. employed a potential landscape approach. The cell death landscape was
represented by potential wells corresponding to pyroptosis and apoptosis death modes.
In the double-well potential landscape, the system evolved into one of the two wells from
any initial condition. Caspase-1 or GSDMD could change the potential landscape from
monostable to bistable. A monostable landscape corresponding to pyroptosis is obtained in
cells with a high expression level of caspase-1 or GSDMD; the potential landscape changes
to bistable and then to an apoptotic monostable as the expression level of caspase-1 or
GSDMD decreases. Overall, the model helps to understand the inflammasome-induced cell
death, crosstalk between pyroptosis and apoptosis, and may be used to determine potential
molecular targets for driving cells into a desired death execution mode.

5. Ferroptosis

Ferroptosis is another regulated cell death mechanism that involves iron-catalyzed
lipid damage [14,74,75]. Cell death occurring by ferroptosis correlates with the accumula-
tion of markers of lipid peroxidation and can be suppressed by iron chelators, inhibitors of
lipid peroxidation, and lipophilic antioxidants [75]. Ferroptotic cell death can be modu-
lated pharmacologically and genetically by perturbing lipid repair systems that involve
glutathione and glutathione peroxidase 4 (GPX4) that convert toxic lipid hydroperoxides (L-
OOH) into non-toxic lipid alcohols (L-OH) [76]. Depletion or inactivation of GPX4 results in
overwhelming lipid peroxidation that causes cell death. Ferroptosis also depends on a set of
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enzymatic reactions that regulate the biosynthesis of membrane polyunsaturated fatty acids
(PUFA)-containing phospholipids, which are the substrates of pro-ferroptotic lipid peroxi-
dation products [75]. Also, the formation of coenzyme-A-derivatives of PUFAs (PUFA-CoA)
and their insertion into phospholipids are necessary for the induction of a ferroptotic death
signal. Two enzymes, ACSL4 and LPCAT3 are involved in the biosynthesis and remodeling
of PUFAs [75,77]. Depletion of PUFAs can suppress the occurrence of ferroptosis, and loss
of ACSL4 and LPCAT3 gene products increases resistance to ferroptosis [75].

Iron induces the accumulation of lipid peroxides and thus is important for the exe-
cution of ferroptosis. Intracellular iron levels depend on the iron efflux pump ferroportin
and the iron importer TFR1 and other proteins that regulate iron import, export, and
storage [78–80]. Also, for ferroptosis to start, phospholipid molecules containing polyun-
saturated fatty acids (LH-P) are formed from PUFA-CoA, which are then oxidized into
lipid hydroperoxides (L-OOH) and eventually into lipid radicals (LO*). LH-P generation
is regulated by LPCAT3 and inhibited by monounsaturated fatty acids (MUFAs). Pro-
duction of MUFAs depends on desaturation of the saturated fatty acids (SFAs) which is
catalyzed by the desaturase SCD1 [81]. Formation of lipid radicals LO* is promoted by
reactive oxygen species (ROSs) and lipid peroxidation enzymes including ALOX15 [74,82].
The generation of endogenous lipid radicals initiates ferroptosis. In addition, ferroptotic
cell-death responses can be modulated by p53 activity [83]. For example, induction of SAT1,
a transcription target of p53, is correlated with the expression levels of ALOX15 [83]. The
influence diagram that reflects the molecular mechanism of ferroptosis is shown in Figure 4.
Overall, ferroptosis is morphologically and mechanistically different from all other types of
regulated cell death. Regulation of ferroptosis has great potential for cancer therapy, and
molecular targets that promote ferroptosis are being actively explored [84].
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Konstorum et al. developed a stochastic, multistate, discrete mathematical model of
ferroptosis regulation [10]. The model describes states of eleven variables that represent
ALOX15, GPX4, L-HP, LIP, LO*, L-OOH, LPCAT3, MUFA, PUFA-CoA, ROS, and SLC7A11.
Each variable can take on three values that respectively represent low, medium, and high
molecular species activity or expression level. Variables are updated using updating rules
and an asynchronous update scheme at each discrete time step. Five external inputs
representing ACSL4, ferroportin, p53, SCD1, and TFRC, which do not change during
the course of the simulation, are used to study the sensitivity of ferroptosis induction to
different signaling and perturbation conditions.

Konstorum et al. used a system-level analysis to study how different input conditions
and parameters alter ferroptosis sensitivity. They found that ferroptosis sensitivity depends
on PUFA synthesis and PUFA incorporation into the phospholipid membrane, as well as the
balance between levels of pro-oxidant species (ROS, lipoxygenases) and antioxidant factors
(GPX4). Ferroptosis sensitivity can be reduced by altering parameters that minimize the
production of L-OOH species. High ACSL4 and low SCD1 levels result in high ferroptosis
sensitivity. The model also predicted that a high level of SCD1 can inhibit ferroptotic
induction even when levels of ACSL4 are high. These model predictions were validated
using an in vitro experimental system of an ovarian cancer stem cell culture [10]. Overall,
the model allows us to better understand the crosstalk between pathways transmitting
signals from different inputs that induce the execution of ferroptosis.

6. Immunogenic Cell Death

Immunogenic cell death (ICD) is a regulated cell death mechanism that induces an
immune response in the hosts [14]. Basically, ICD is an immunostimulatory form of apop-
tosis that is characterized by the ability of dying cells to generate robust adaptive immune
responses [85]. The immune response is promoted by damage-associated molecular pat-
terns (DAMPs), which are released by dying cells [86]. DAMPS communicate a state of
danger to the organism by activating pattern recognition receptors (PRRs) that are present
on the surface of innate immune cells such as monocytes, macrophages, and dendritic cells
(DCs) [87]. Activated macrophages and dendritic cells can migrate to the lymph node and
pass the antigens to CD8+ and CD4+ T lymphocytes, which results in an adaptive immune
response. Tumor cell systems are often used to study ICD regulation and dynamics [88].
The immune responses against cancer- or pathogen-driven antigens that induce ICD are
well characterized [85]. Importantly, over the past years, developments of ICD-related
cancer immunotherapy approaches are gaining great momentum [89].

To study the ICD dynamics of cancer cells, Checcoli et al. developed a mathematical
model that integrates intracellular mechanisms involved in ICD and intercellular interac-
tions among cancer cells, DCs, CD8+, and CD4+ T cells [11]. The modeling approach is
based on a continuous time Boolean Kinetic Monte-Carlo formalism that was successfully
applied to model different complex molecular mechanisms [90]. The aim of the mathemati-
cal characterization of ICD processes was to identify the regulatory molecular targets and
combinations of pharmacological compounds that can increase anticancer immunity. The
model can predict the time-dependent size of different cell populations involved in ICD
that is induced by a treatment exposure.

To determine the role of each of the main cell types involved in ICD, Checcoli et al.
first simulated a core ICD mechanism that is merely sufficient to reproduce ICD events
observed experimentally [11]. The core regulatory mechanism describes the release of
CALR, ATP, and HMGB1 molecules from dying tumor cells, and inner-state activation
or evolution of immature DC, activated DC, migrating DC, lymph node DC, T cell, and
cytotoxic T lymphocyte cell types. As shown in Figure 5, also included are two processes:
tumor cell division, which is inhibited by T cells, and death, which is promoted by cytotoxic
T lymphocytes. The states of molecules and cells are described by Boolean variables that
can take two values: 1 for active or present and 0 for inactive or absent. The system state is
described by a vector of Boolean values that represent each molecule, process, and cell type
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in the system. In the probabilistic description, the probability is assigned to each system
state, such that the sum of probabilities over all possible system states is equal to 1. Then,
to determine the number of cells in a given system state, the system state probability is
multiplied by the overall size of the cell population.
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The core model can reproduce the series of events following an ICD-inducing inter-
vention. The release of CALR, ATP, and HMGB1 molecules by dying cancer cells occurs
within hours, a slow increase in T cells begins after 100 h, which peaks at 200 h, and the
tumor cells are eliminated in about 220 h when a rapid increase in cytotoxic T lymphocyte
cell population begins. When the clonal expansion of the cytotoxic T lymphocytes was
blocked in the model, tumor cell clearance became less efficient and depended mostly on
the direct cytotoxicity of the treatment.

To improve the predictive power of the model, Checcoli et al. extended their core
model by including more cell types and molecular components as well as the ligand–
receptor dynamics that determines intercellular communication. The extended model
describes 57 entities and provides more detailed representations of the series of events that
were explored by the core model. Simulation results of the extended model also reproduce
the succession of events resulting in ICD. Simulations were performed starting with 80% of
tumor cells, 10% of dendritic cells, and 5% of inactive CD4+ and CD8+ cells. The population
of tumor cells rapidly decays starting from 250 h when cytotoxic T lymphocytes are engaged
to eliminate tumor cells.

To assess the extended model robustness to parameter changes, Checcoli et al. per-
formed a sensitivity analysis measuring the variations in sizes of tumor cell populations
within the 220 h and 280 h time frame when the tumor cell population decreases in the
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standard conditions (WT) of the extended model [11]. The decrease in size of the tumor
cell population was seen to be delayed only for a few parameter changes when compared
with the WT condition. Changes in parameters that control the number of DCs gave the
strongest effect. A lower amount of DCs delayed the time of death, whereas a higher
amount enhanced the death process. Changes in parameters controlling the rate of T cell
clonal expansion give a similar effect on the cell death process. Sensitivity analysis also
suggested the points of intervention that had the strongest effect on ICD. For example, a
complete knockout of CD28 or CD80 (costimulatory molecules for T cell activation) resulted
in a failure of the ICD-inducing treatment (80% of the tumor cell population persists at
t = 280 h). By contrast, an external treatment that increases Interleukin-2 (IL-2) could kill
the tumor cells faster, at t = 200 h.

The Boolean approach does not provide quantitative details and different regimens
of drug treatments. Nevertheless, the model characterizes ICD events and dynamics in
cancer cells and predicts molecular targets that could increase tumor clearance. For future
directions, Checcoli et al. suggested to include specific in vitro and in vivo experiments
to identify parameter values that will agree with experimentally observed timing of the
different events leading to tumor clearance [11]. Further extension of the model including
effects of IFNγ or TGFβ on the immune cells, and major signaling pathways inside each
cell type, will allow the model to predict more feasible pharmacological interventions that
can boost ICD for killing tumor cells.

7. Discussion

The significant progress that has been made in the mathematical characterization of
different cell death execution pathways offers quantitative insight into cell death control
and mechanistically explains why and how a living cell may die. Table 3 summarizes cell
death mathematical model development over a 22-year period. We include the modeled
cell death mechanism, methods, a mathematical description of the cell death event used
in each model, and the main modeling results obtained in each work. ODE and Boolean
logic-based approaches are the most common mathematical techniques used to model
cell death mechanisms. However, a physical description based on the potential landscape
theory has been recently applied to study stochastic dynamics and global stability of cell
death signaling pathways [8,73]. In this approach, the steady state probability distribution
of a system Pss and a dimensionless potential function E are related via Boltzmann relation:
E = −ln(Pss) [91]. The physical description allows one to employ thermodynamics to
analyze cell death regulatory circuits. Conversely, entropy-based approaches have been
applied to analyze biological networks [92] and a cell fate selection process [93,94], they
have not been yet applied to characterize cell death decision mechanisms. Therefore, one
promising future direction is to describe cell death networks using physical approaches
that could help to reveal new functional system states and unknown properties of cell
death regulatory mechanisms.

Table 1. Summary of cell death mechanism models.

Authors, Year, Cell Death Mechanism
Modeled Methods. Death Rule (DR) Results

Fussenegger et al., 2000 [7], receptor- and
stress-induced apoptosis

ODE approach. DR: the ratio of
executioner caspase to free Bcl-xL is

greater than a threshold value

Qualitative explanation of observed
caspase activation dynamics

Eissing et al., 2004 [21], receptor-induced
apoptosis

ODE approach, stability and bifurcation
analysis methods. DR: The bistable
system is in apoptotic steady state

Bistable behavior of caspase-3 activation

Bentele et al., 2004 [25], receptor-induced
apoptosis

ODE approach, sensitivity analysis. DR:
receptor–ligand ratio is greater than a

threshold value

A threshold mechanism for induction of
receptor-induced apoptosis
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Table 2. Cont.

Authors, Year, Cell Death Mechanism
Modeled Methods. Death Rule (DR) Results

Hua et al., 2005 [43], receptor-induced
apoptosis

ODE approach, sensitivity analysis. DR:
caspase-3 activation

Bcl-2 blocks the mitochondrial apoptosis
pathway by binding to proapoptotic

proteins

Legewie et al., 2006 [22], intrinsic
apoptosis

ODE approach, stability and bifurcation
analysis methods. DR: irreversible

caspase-3 activation

Bistable and irreversible caspase-3
activation arises in the system due to

XIAP-mediated feedback

Rehm et al., 2006 [26], intrinsic apoptosis
ODE approach, sensitivity analysis. DR:
complete caspase-dependent substrate

cleavage

All-or-none apoptotic response depends
on caspase-3-dependent feedback

signaling and XIAP

Bagci et al., 2006 [23],
mitochondria-dependent apoptosis

ODE approach. DR: caspase-3 activation
is above a threshold that depends on Bax

degradation and expression rates.

The transition from bistable to
monostable (survival) cell behavior is

controlled by the number of
mitochondrial permeability transition

pores

Chen and Cui et al., 2007, 2008 [38,45,46],
intrinsic apoptosis

Deterministic and stochastic approaches,
robustness analysis. DR: one-way
bistable switch of Bax-activation

Apoptotic switches are bistable and
robust to noise

Albeck et al., 2008 [27], extrinsic
apoptosis

ODE approach, compartmental modeling.
DR: mitochondria-to-cytosol cytochrome
c and Smac translocation in an all-or-none

manner

Permeabilization of the mitochondrial
membrane and relocalization of proteins
are the key factors in all-or-none death

decision

Spencer et al., 2009 [33], extrinsic
apoptosis

ODE approach. DR: levels of activated
tBid, Bax, and Bak exceed a threshold set

by inhibitory Bcl-2 proteins

Cell-to-cell variability in time-to-death
depends on activation of the

pore-forming proteins Bax and Bak

Neumann et al., 2010 [32], crosstalk
between receptor-mediated apoptosis

and NF-κB signaling

ODE approach, sensitivity analysis. DR:
the maximum level of active caspase-8 is

used as a readout for apoptosis

Assembly of DISC acts as a signal
processor determining life/death
decisions in a nonlinear manner

Hong et al., 2012 [28], crosstalk between
apoptosis and ER stress response

mechanisms

ODE approach, sensitivity analysis. DR:
the level of apoptosis is determined by an

ODE that depends on caspases-2,3,9,8
and apoptosis-inducing factor

Crosstalks among the mitochondrial,
death receptor and ER stress response

pathways contribute to the level of
apoptosis

Tavassoly et al., 2015 [29], crosstalk
between autophagy and apoptosis

ODE approach. DR: apoptosis occurs as
soon as proapoptotic BH3 exceeds

antiapoptotic Bcl2 protein

Time courses of the relative level of
autophagy for different levels of stressor

and percentage of apoptotic cells

Ballweg et al., 2017 [30], crosstalk
between p53 signaling and apoptosis

ODE approach, dynamical analysis. DR:
the level of p53 is elevated higher than a

threshold that depends on cIAP level

The probability of apoptosis depends on
the dynamics of p53

Schlatter et al., 2009 [34], apoptosis Boolean logic and multi-value logic
approach

High connectivity, crosstalks, and
feedback loops in apoptosis regulatory

network are significant and essential for
apoptosis signaling

Mai et al., 2009 [35], intrinsic and
extrinsic apoptosis

Boolean logic approach. DR: the “DNA
Damage Event” node has remained in the

ON state for 20 successive steps

The feedback loops directly involving the
caspase 3

are essential for maintaining
irreversibility of apoptosis

Calzone et al., 2010 [36], apoptosis and
non-apoptotic cell death (necroptosis)

Boolean logic approach. DR: “Apoptosis”
node or “NonACD” node is in ON state

Transient activation of key proteins in
necroptosis and mutual inhibitory

crosstalks among apoptosis, survival and
necroptosis pathways
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Table 3. Cont.

Authors, Year, Cell Death Mechanism
Modeled Methods. Death Rule (DR) Results

Xu et al., 2021 [8], cellular necroptosis
signaling circuits

ODE approach, sensitivity analysis,
bifurcation and potential landscape

methods.

The structure and distribution
characteristics of all parameters are

essential for stable oscillation behavior of
necroptosis circuits

Ildefonso et al., 2022 [59], necroptosis
regulation

ODE approach, DREAM parameter
estimation method, sensitivity analysis.
DR: phosphorylated MLKL exceeds a

hard threshold of 2772 molecules

Four distinct necroptosis execution
modes

Li et al., 2021 [65], crosstalk between
apoptosis and necroptosis regulatory

networks.

ODE approach. DR: apoptosis occurs
when RIP1 level < ∼1000 molecules/cell,

co-occurrence of
apoptosis and necroptosis when ∼46,000

mpc< RIP1 > ∼1000 mpc,
necroptosis alone when RIP1 >∼46,000

mpc

Characterization of RIP1’s biphasic roles
in necroptosis

Zhu et al. [9], crosstalk between caspase-1
and caspase-3 driven pyroptosis

pathways

ODE approach, bifurcation and
sensitivity analysis methods. DR: Cell
death rate is defined using a ratio of

dying cell population to the initial cell
population

The change in expression levels of
caspase-1, caspase-3, and GSDMD can

switch between GSDMD- and
GSDME-executed pyroptosis death

modes

Li et al., 2022 [73], crosstalk between
pyroptosis and apoptosis regulations

ODE and potential energy landscape
approaches. DR: by levels of cleaved

GSDMD (pyroptosis) and cleaved
caspase-3 (apoptosis)

Caspase-1 and GSDMD are key proteins
that regulate the switching between

pyroptosis and apoptosis

Konstorum et al., 2020 [10], ferroptosis
regulation

Stochastic, multistate, discrete
mathematical approach. DR:

intermediate and high levels of the lipid
radical LO*

Ferroptosis sensitivity depends on PUFA
synthesis, PUFA incorporation into the

phospholipid membrane, and the balance
between levels of pro-oxidant species and

antioxidant factors

Checcoli et al., 2020 [11], immunogenic
cell death (ICD) mechanism

Boolean Kinetic Monte-Carlo approach.
DR: Death node is at 1

The succession of events resulting in ICD.
Points of intervention that had the

strongest effect on ICD

Importantly, many different cell death pathways share common molecular compo-
nents, and thus all these pathways can interact together at any time to form a complex
mechanism. Therefore, we hypothesize that cell death can be controlled by a singular,
highly integrated cell death decision network, see Figure 6. This network enables cells
to alter the signal flow through the shared nodes but with different edges and so select
alternative cell death execution pathways within a single control network of cell death.
A stress death signal can thus initiate multiple death mechanisms but not all reach an
execution threshold. Currently, the molecular mechanism that regulates the selection of
each specific death execution pathway remains elusive. In addition, mathematical models
developed to study crosstalk between necroptosis and apoptosis [65], pyroptosis and apop-
tosis [73], autophagy and apoptosis [29] support the hypothesis that signals propagating
through different cell death pathways are integrated to process the execution of specific
cell death. We are developing a mathematical model of the cell death decision network to
predict the molecular species and interactions that direct the signal flow towards a specific
irreversible cell death fate. Such a model will provide new insights into the integrated
control of cell death. Model predictions will help develop new approaches to either block
or initiate irreversible cell death and identify which cell death pathways are blocked and
which pathways remain accessible to execute cell death. Thus, model predictions will
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suggest alternative interventions to overcome a block in cell death activation that can occur
in cancer cells that acquire drug resistance.
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