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Abstract: Synaptic plasticity is characterized by remodeling of existing synapses caused by strength-
ening and/or weakening of connections. This is represented by long-term potentiation (LTP) and
long-term depression (LTD). The occurrence of a presynaptic spike (or action potential) followed by a
temporally nearby postsynaptic spike induces LTP; conversely, if the postsynaptic spike precedes the
presynaptic spike, it induces LTD. This form of synaptic plasticity induction depends on the order
and timing of the pre- and postsynaptic action potential, and has been termed spike time-dependent
plasticity (STDP). After an epileptic seizure, LTD plays an important role as a depressor of synapses,
which may lead to their complete disappearance together with that of their neighboring connections
until days after the event. Added to the fact that after an epileptic seizure the network seeks to
regulate the excess activity through two key mechanisms: depressed connections and neuronal death
(eliminating excitatory neurons from the network), LTD becomes of great interest in our study. To
investigate this phenomenon, we develop a biologically plausible model that privileges LTD at the
triplet level while maintaining the pairwise structure in the STPD and study how network dynamics
are affected as neuronal damage increases. We find that the statistical complexity is significantly
higher for the network where LTD presented both types of interactions. While in the case where the
STPD is defined with purely pairwise interactions an increase is observed as damage becomes higher
for both Shannon Entropy and Fisher information.

Keywords: information theory; Band and Pompe; plasticity; STDP; triplets; deep learning

1. Introduction

The multiple sensations experienced by our body are accompanied by exchanges of
information in the form of electrical signals within the brain. These electrical signals can be
waves, like the way radio waves are used to broadcast music from the transmitter to the
users. The main difference of a radio transmitter with the brain is that different areas of
the brain can function as transmitters or receivers of signals depending on the situation [1].
Neuronal oscillations, or brain waves, are rhythmic or repetitive patterns of neuronal
activity in the cerebral cortex. Interaction between neurons can result in oscillations with a
frequency different from the firing frequency of individual neurons depending on possible
plasticity rules between them [2].

The generated mechanisms that have been proposed as the cellular basis of learning
and memory in the brain are defined as synaptic plasticity [3,4]. This form of plasticity
refers to processes that modify the efficiency of synapses. These manifests themselves
in two ways: as an alteration in the concentration of neurotransmitter released at the
presynapse and as changes in the number, composition, and/or function of postsynaptic
receptors that respond to neurotransmitters [5].

Furthermore, synaptic plasticity is characterized as a remaining property even after
synaptic signaling has terminated, and are classified according to their type (whether
synaptic efficacy increases or decreases) and duration (short- or long-term). It is within
the long-term temporal classification that LTD and LTP are defined. The induction of
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each depends on the type of synaptic stimulation and its frequency [6,7]. That is, the
point at which the terminating of presynaptic neurons is sooner than that of postsynaptic
neurons, there is a potentiation of the associations between them. Nonetheless, there are
arrangements that produce the contrary outcome. Depression of a connection can occur in
two ways. The first is when triplets of firings occur in which the spike of a postsynaptic
neuron is followed by the spike of a presynaptic neuron, ending with a new firing of the
initial postsynaptic neuron [7]. The second form is when the firing of postsynaptic neurons
precedes that of presynaptic neurons [7].

Neurodegenerative diseases are disorders that may or may not trigger an increase in
cell death, but all involve a loss of function and/or neural structures [8]. Neural damage
usually has various origins, among them, one of the most important is damage to the
neuronal membrane, which is responsible for propagating the action potential or spike.
Axonal damage results in different degrees of neuronal degeneration due to unregulated
ionic entry, followed by oxidative damage, which finally triggers neuronal apoptosis [9].

The induced neuronal damage could lead to epileptic seizures and even more severe
irreversible pathological brain changes after these seizures. Although it is essential to control
seizures clinically, the consequences of neuronal damage caused by recurrent seizure [10]
cannot be ignored. It has been experimentally observed that sustained stimulation of
excitatory pyramidal receptors (such as we might observe in the case of an epileptic
seizure) leads to the death of receptive neurons, and a close correspondence was observed
between excitatory amino acid induction of neuronal degeneration and calpain I-mediated
degradation of spectrin [11,12]. The occurrence of neuronal damage leads to loss of neuronal
function resulting in the inability to transmit action potentials [13,14]. That is, the damage
is usually modeled as an inability of the neuron to transmit an impulse or what would
be the same as its potential being always constant [13,14]. It is possible to observe this
deterioration, for instance, in neurological pathologies that generate similar tissue damage
to the one observed during the brain ischemia [13,14].

In addition, for the Alzheimer’s disease, epilepsy, or Parkinson’s disease, this distin-
guished as a gradual destruction of brain neurons. The induced neuronal damage could
lead to epileptic seizures and even more severe irreversible pathological brain changes
after these seizures. Different percentage of damaged neurons in the excitatory population
are usually considered when simulating brain injury, as there is in principle no direct
relationship between the type of pathology and the fraction of neurons affected by it [15].
Neural network modeling has a myriad of applications, from programs implemented in the
medical area for the detection of pathologies to its use in purely scientific areas where one
wants to study the goodness of prediction of a model [16–19]. The polysynchronization
model developed by Izhikevich [16] fulfills this purpose because it is biologically plausible
and computationally efficient. However, this computational model only implements inter-
actions between pairs of spikes when studying LTP and LTD [16]. We consider the inclusion
of interactions between spike triplets relevant since it has been shown to generate better fits
to experimental data, either from visual cortex or hippocampus [20]. In this work we focus
on characterizing the information dynamics of neural networks when spike triplet interac-
tions are included in LTD generation and compare it to a classical pairwise STDP model
when different degrees of damage to the networks are induced. In this study we consider
the effect of synaptic interaction as well as structural connectivity on the synchronization
transition in regular spiking neuron network models with different neuronal rhythms [1,2].
Aiming to characterize the dynamics of different neuronal rhythms, by means of estimates
of Shannon Entropy, Statistical Complexity and Fisher Information [21–24]. The following
sections present the computational modeling, the Bandt and Pompe methodology that
allows to account for signal causality and a brief description of the Information Theory
tools implemented in this study.
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2. Materials and Methods
2.1. Computational Modelling

Limitations in obtaining experimental data generate a partial lack of knowledge about
connectivity between cortical neurons of different types and different layers, or within
groups of neurons of the same type and of the same layer [25]. This lack of knowledge
extends to how this varies from species to species and within the same animal over time [26].
To shed light on these questions, a network was devised to simplify its characteristics with-
out losing biological reproducibility. Using as a basis a network created by Izhikevich [16]
we took this idea forward by generating some modifications to the network. First, based
on what we discussed above, the number of synapses per neuron has been decreased,
giving a connection probability of 0.05. Second, the type of excitatory (regular spiking
by intrinsic bursts) and inhibitory (fast spiking by low-threshold spikes) neurons, which
are another type of neurons present in the cortex, has modified. Third, the interaction of
triplets of spikes was incorporated in the LTD generation with respect to the model that
only presented interactions between pairs of spikes. The implemented neural network has
a population of 1000 neurons, 800 excitatory and 200 inhibitory, consistent with the values
observed in cell culture [15,27]. Each neuron in the network is capable of reproducing the
firing patterns exhibited by real neurons, and its dynamics can be described in terms of the
following equations:

ν̇ = 0.04ν2 + 5ν + 140− u + I, (1)

and
u̇ = a(bν− u), (2)

where the variable v represents the membrane potential of the neuron and the variable u
represents the membrane recovery, denoting activation of Potassium currents and inacti-
vation of Sodium currents, providing negative feedback for v. Notice that a, b, c and d are
parameters. In addition, the return condition after triggering is included:

if ν > 30 mV, then {
ν← c

u← u + d.
(3)

After the action potential reaches its maximum (+30 mV), the membrane potential and
the recovery variable are reset according to the Equation (3). The variable I takes into
account both the synaptic current and the injected current (DC) during the experiment.
The parameter a describes the time scale for the recovery variable u . Small values mean
slow recovery. A typical value is a = 0.02. The parameter b describes the sensitivity of the
recovery variable u to subthreshold fluctuations of the membrane potential v. Large values
of b couple more strongly to v and u, resulting in possible sub-threshold oscillations and
low-threshold firing dynamics. A typical value for b is 0.2. The parameter c describes the
return value of the membrane potential v after the action potential, caused by fast, high-
threshold Potassium conductances. A typical value is c = −65 mV. Finally, the parameter d
describes the return value of the recovery variable u after the action potential, caused by
slow and high threshold Sodium and Potassium conductances. A typical value is d = 2. The
segment ν̇ = 0.04ν2 + 5ν + 140 was obtained by adjusting the spike onset dynamics of a
cortical neuron so that the membrane potential is expressed in mV and the time in ms. The
resting potential of this model is in−70 and−60 mV, depending on the value of b. Different
choices of parameters result in different intrinsic firing patterns, in this case to achieve
intrinsically bursting (IB) and low-threshold spiking (LTS) (see Ref. [18]) type behavior the
parameters used are depicted in the following Table 1:
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Table 1. Values implemented in the neural network.

Type of Neuron a b c d

IB 0.02 0.2 −55 4

LTS 0.02 0.25 −65 2

The firings generated in the network are able to potentiate or depress connections. In
the case where potentiation is generated, this is due to a presynaptic neuron firing moments
before the firing of a postsynaptic neuron to which it is connected (see Figure 1). The weight
or strength of the connection is defined in this case as [20]:

W(t)→ w(t) + A+
2 e−

(tpre−tpost)
τ+ to tpre − tpost > 0. (4)

In the case of a depression, it can be generated in two ways: by interactions between pairs
of spikes or due to interactions between triplets of spikes (see Figure 1). In the first case it is
generated by firing of a postsynaptic neuron followed by firing of a presynaptic neuron
with which it is connected, if the time difference is not much greater than τ−. The second
case is produced by firing generated in the following order: firing of a presynaptic neuron,
followed by a postsynaptic neuron with which it is connected, with subsequent firing of a
presynaptic neuron if the interval between the two presynaptic spikes is not much greater
than τx . The weight is defined in this case as [20]:

W(t)→ w(t)− e−
t

τx [A−2 + A−3 − e−
t

τ− (t− ε)] i f t = tpre. (5)
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Figure 1. A description is presented for the potentiation of a connection between neurons in the
network, including that of the triplet as in Ref. [20]. where τ+ = 16.8 ms is the potentiation time
constant and τ− = 33.7 ms is the trough time constant for both the interaction between pairs of
spikes. where τx = 101 ms is the trough time constant. The coefficients A+

2 , A−2 and A−3 are those
implemented in Ref. [20] from electrophysiological measurements performed in the laboratory.

The small positive constant ε and the coefficients A+
2 , A−2 and A−3 are those imple-

mented in Ref. [20]. These coefficients were obtained from electrophysiological measure-
ments performed in the laboratory (note that in the present study we set A+

3 = 0). The
network is allowed to evolve temporarily for one hour (program). During this period,
the membrane potential corresponding to each neuron is stored and then implemented in
various calculations.

We simulate a hypercolumn that considers the firing of cortical neurons with axonal
conduction delays and STDP as in the Ref. [28]. The temporary network resolution is 1 ms.
For the simulation, we consider a network formed by a population of N = 1000 neurons
and taking 1000 ms of sustained activity, with a number Ne of excitatory neurons IB, and
the number of remaining neurons, let us call it Ni, will be of inhibitory type LTS, such that
N = Ne + Ni . Each excitatory neuron will be randomly connected to Mc = 50 neurons,
so the probability of connection is Mc/N = 0.05. Excitatory weights evolve according to
the mechanism defined by STDP explained above. Each synaptic connection has a fixed
delay of Dsc between 1 ms and 20 ms. Inhibitory connections are assigned a delay of 1 ms,
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while for all excitatory connections the delay will be an integer between 1 and 10 ms. Each
neuron in the network is described by the simple firing neuron model [28]. To better explore
the information underlying neural dynamics during the oscillation process, we estimate
the histogram of the number of action potentials in the network in each millisecond and
perform a power spectrum analysis using the Fast Fourier Transform (FFT) [28]. The FFT
breaks down the signal into a series of sine and cosine components [28]. The square of the
coefficients is called power, and the peak population spectrogram reveals the presence of
oscillations. We set the simulation to stop when it finds the oscillation band of interest.

2.2. Information Theory Quantifiers
2.2.1. Bandt and Pompe Methodology

Given a set of neurons in which the firings are randomly generated. A probability
distribution function P is associated to a time series constructed based on the membrane
potential of each neuron v, using the methodology provided by Band-Pompe [29]. The
construction of the time series is going to be explained in Section 2.2.3.

Set a scalar and one-dimensional time series χ(t) = {xt; t = 1, . . ., M}, the minimum
acceptable length that one needs M � D∗! and letting n = D∗ ≥ 2 be the number of
immersion dimension (D∗ ∈ N) and τ∗ the delay time (τ∗ ∈ N, note that τ∗ is different
from the τx, τ+, τ− mentioned above), to each time s we assign a D*-dimensional vector

(s)→ (xs−(D∗−1)τ∗ , xs−(D∗−2)τ∗ , . . . , xs−τ∗ , xs), (6)

which results from the evaluation of the time series χ at times s− (D∗ − 1)τ∗, s− (D∗ − 2),
. . ., s − τ∗ and s. It can be seen that the higher the value of D∗, the more temporal
information is embedded in the patterns about the element’s past.

Then, to the ordinal pattern of order D∗ related to time s is associated the permutation
π = (r0, r1, . . ., r∗D − 1), that we simplify as [0; 1; . . .; D∗ − 1], whose elements satisfies
the relation

xs−rD∗−1τ∗ ≤ xs−rD∗−2τ∗ ≤ xs−r1 . . . ≤ xs−r0 . (7)

Thus, the vector defined in the Equation (6) is represented by the symbol π. Then, the total
number of possible permutations πi will be D∗! when the immersion dimension is D∗.

As clarified above, ri < ri−1 is proposed if xs−riτ
∗ = xs−ri−1τ∗ for the unlikely cases

where ambiguities exist.
The relative frequency can be simply computed according to the number of times that

this particular order of sequence occurs in the time series, divided by the total number
of sequences:

p(πi) =
#{s|s ≤ M− (D∗ − 1)τ∗; (s) is of type πi}

M− (D∗ − 1)τ∗
, (8)

where # denotes cardinality (number of occurrences). In this way, by applying the BPM to
the time series χ, the PDF P = {p(πi), i = 1, . . . D∗!} can be obtained by constructing the
ordinal patterns.

Finally, for the generation of the PDF by means of the BPM it is necessary to or-
der the obtained probabilities in some way. In this work we chose to use (among sev-
eral existing options) the lexicographic ordering provided by Lehmer’s algorithm due
to the optimal distinction of the different dynamics [30,31]. This algorithm consists of
the manipulation and generation of permutations in lexicographic order by using the
factoradic system. The following example is intended to clarify the methodology used. Let
χ(t) = {5, 6, 7, 14, 28, 10, 18} be a time series with M = 7, the BPM is applied in order to
evaluate the PDF for D∗ = 3 and τ∗ = 1. The vectors (5,6,7),(6,7,14) and (7,14,28) are repre-
sented by the ordinal pattern [012] as they are in strictly increasing order. On the other hand,
(14,28,10) is represented by the pattern [120] and finally (28,10,18) is represented by [201]. In
this case, from the permutation of the immersion dimension, the number of possible states
turns out to be D∗! = 6, which correspond to the ordinal patterns seen in Figure 2. The
probabilities of occurrence associated with each mutually exclusive permutation are given
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by: p([012]) = 3/5, p([120]) = p([201]) = 1/5 and p([210]) = p([021]) = p([102]) = 0.
These results will end up generating the PDF P = {p1, p2, p3, p4, p5, p6} associated with the
time series χ.

Consider as an example a generic 3-tuple (x0, x1, x2) with x0 6= x1 6= x2. For order
n = 3, the n! = 3! = 6 possible ordinal patterns are denoted as:

Ω3 = {012, 021, 102, 120, 201, 210}. (9)

In Figure 2 we can observe the different diagrams of the 6 ordinal patterns corresponding
to Ω3. In the implemented network the causal information was estimated using BP with
embedding dimension D∗ = 3, which satisfies the requested condition to have a reliable
estimate if M � D∗! (M time series length) is satisfied. In addition, the lag time used
was τ∗ = 1, which gives a convergent statistic and a measure of optimal information
quantifiers [32]. The estimates in the present work were performed for a time series with
1000 points for each window, ensuring M = 1000� D∗! = 6 in all cases.

.

.

.
. .

.

.

..
. .

.

.

.
.

       123                       132                    213                        231                      312                   321                     

.
.

.
Figure 2. Schematic representation of the 6 possible ordinal patterns for the order n = 3.

2.2.2. Shannon Entropy

The information content of an event E, is a function that grows as the probability P(E)
of an event decreases. When P(E) is close to 1, the surprise is low, while if P(E) is close
to zero the surprise of the event is high. The information I contained in an event E can be
defined as

I(E) = − log2(P(E)) = log2
1

P(E)
(10)

The normalized Shannon entropy H of a discrete variable X with possible values
x1, . . . , xn and a probability function P(x) [21–24]. Is defined by the expected value E of
the information contained in x

H(x) = E(I(x)) = E[− log2(P(x))] (11)

H(x) = −
n

∑
i=1

P(xi) log2(P(xi)) (12)

This measure of information is implemented in two stages of calculations. In a
first instance it is calculated to be used in the determination of the root of the Jensen
Shannon divergence which will be discussed in the next section. In a second instance it is
implemented after obtaining the relative frequency of the implemented metric [21–24].

2.2.3. Metrics

The Jensen-Shannon divergence DJS is a method for measuring the similarity between
two probability distributions. It is a symmetrized and smoothed version of the Kullback-
Leibler divergence, with some notable differences, including that it is symmetric and always
has a finite value. The square root of the Jensen-Shannon divergence is a proper metric
often referred to as the Jensen-Shannon distance [33,34]. It is defined as:

DJS(P, Q) = −1
2
(H[P] + H[Q]) + H

[P(x) + Q(x)
2

]
(13)
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H being the normalized Shannon entropy, while P and Q correspond to the wooed proba-
bility distributions.

A first step in obtaining this metric is the calculation of the probability distributions P
and Q from the Band and Pompe methodology explained above Section 2.2.1. This required
collecting the membrane potentials of all the neurons in the network at the time when the
network was active. Then, the Shannon Entropy between the probability distributions
corresponding to all the neurons in the network was calculated. We use the root of the
Jensen Shannon divergence because it has all the properties of a good metric [33,34].

2.2.4. Fisher Information

Fisher information is a way of measuring the amount of information carried by an
observable random variable x with a distribution function f (x; θ) about an unknown
parameter theta. Fisher information is defined as the variance of the score:

I(θ) = E(I(x)) = E[( ∂

∂θ
log f (x, θ))2] =

∫
<
(

∂

∂θ
log f (x, θ))2 f (x, θ)dx (14)

F[P] = F0

n−1

∑
i=1

(
√

pi+1 −
√

pi)
2 (15)

where F0 is a normalization constant given by F0.

F0 =

{
1 if pi∗ = 1 for i∗ = 1 or i∗ = N and pi = 0 ∀i 6= i∗

1/2 otherwise
. (16)

We use Fisher information as a quantifier of the information contained in the series
generated from the Jensen Shannon divergence root [21–24]. In this way, we analyze the
global-scale behavior of the neural network.

2.2.5. Statistical Complexity

Complexity characterizes the behavior of a system or model whose components
interact in multiple ways. It is usually implemented to characterize a system composed
of multiple elements in which they interact with each other in different ways, generating
intricate patterns. In these intricate patterns, they have properties that are not observed
when looking at their components individually [21–23]. Complexity can be represented in
multiple distinguishable regimes for a given system as [21–23]:

C[P] = QJ [P, Pe]H[P]. (17)

The complexity is governed by both the normalized Shannon entropy H and the non-
equilibrium QJ [21–23]. That is QJ [P, Pe] is the measure of non-equilibrium, which is a
distance between the probability distributions P and Pe, where P is associated with the
series under study, Pe is the equiprobable distribution and is given by

QJ [P, Pe] = Q0 JJS[P, Pe], (18)

Where Q0 of the Equation (18) is defined as the inverse of this maximum possible value, i.e.,

Q0 = −2{N + 1
N ln(N + 1)− ln(2N ) + ln N}−1, (19)

with N equal to the number of possible states of P. Thus, 0 ≤ QJ ≤ 1. And JJS[P, Pe]
corresponds to the Jensen Shannon distance explained above but [P, Pe] indicates that it is
now computed between P and the uniform probability distribution Pe

Everything presented up to this point can be studied from the confection of a C× H
plane. In this plane different states can be visualized. Starting at the extremes of the system,
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we would observe that for one of these extremes entropy and complexity are zero, which
corresponds to an ordered system, as could be the case of a crystal. While at the opposite
extreme the entropy becomes maximum but the complexity returns to zero, this is the
case of a totally disordered system, as could be the case of an ideal gas. Between the two
extremes there is an intermediate state that we define as chaotic, in which both entropy and
complexity are non-zero.

3. Results

Let us remark that to accomplish the analysis presented in this section, we estimate first
the histogram of the action potentials in the network in each ms and performed an analysis
of the power spectrum using Fast Fourier Transform (FFT) as in Ref. [28]. The spectrogram
of the population spikes reveals the presence of oscillations. We set the simulation to stop
when there are the different rhythms of interest as in [28]. Importantly, the probability distri-
bution of the signal associated with each neuron is estimated through the Bandt and Pompe
approach [29]. We then evaluate the Jensen-Shannon distance between all the possible pairs
of neurons, characterizing the different configurations of the network (see Methodology
described in [28]). Then using the information theoretical quantifiers [21–24,28], described
above in the previous section, we characterize the dynamics of the network configurations
for different frequencies bands and proportions of neuronal damages, estimating H × F,
H × C, and C× H × F.

Neuronal plasticity, is the ability of the nervous system to modify or adapt to change,
allows neurons to reorganize themselves by forming new connections and adjusting their
activities in response to changes in the environment. The activity within the modified
network is characterized by membrane potentials. The time series defined by the membrane
potentials belonging to each of the neurons in the network are the fundamental tools for
all the calculations presented in this work. The features implemented in the network,
such as the type of excitatory and inhibitory neuron, the number of connectivity and the
incorporation of triplets can reproduce the experimental measurements. This is captured in
the H × C plane, both indicators calculated from a global variable of the network called
local field potential. This global variable is constructed by adding for each time instant the
potentials of each of the neurons of the network. Once the time series were obtained, both
from the networks and from experimental measurements, the Shannon entropy and the
Statistical Complexity were calculated in the same way as explained above in Section 2.2.1
(we always used D∗ = 3 and τ∗ = 1). Figure 3 shows a comparison in the C× H plane
between the behavior of the model proposed in this work, the Izhikevich model of Ref. [16]
and experimental local field measurements which were taken from the Refs. [35–37]. Each
point corresponds to a time window extracted from the time series. Note the similarities
between the dynamics of the model proposed in this work and the experimental data.

As mentioned above, one behavior observed in neurons is that they show differences in
their firing rate when they are firing alone in contrast to generating group firing. The basis
for this, is attributed to the interaction between the impulse conduction delays described
in [16,38] and the STDP. This causes neurons to spontaneously self-organize into clusters,
giving rise to stereotyped polychronic activity patterns [18]. The activity present in the
firing patterns is reflected in the membrane potentials, and storage of this variable over the
time the program is active is essential for subsequent calculations. To observe the impact
of different degrees of damage in the networks, both in the one proposed by us and in
the network published by Izhikevich [16], different planes generated from information-
theoretic indicators are represented. Also, in order to observe activities discriminated by
frequency band, a filtering according to the following bands is generated:

• Delta bandwidth: 0.2 to 4 Hz
• Theta bandwidth: 4 to 8 Hz
• Alpha bandwidth: 8 to 12 Hz
• Beta bandwidth: 12 to 30 Hz
• Gamma bandwidth: 30 to 100 Hz
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• HFO bandwidth 1: 100 to 150 Hz
• HFO bandwidth 2: 150 to 200 Hz

Figure 3. The C×H plane for the model proposed in this work is presented, in addition to the one gen-
erated for the reference network [16] and finally the one produced for the experimental measurements.
Although the behavior of the proposed network is not the same as that of the reference network [16],
there are similarities between the proposed network and the experimental measurements.

Knowledge of the function of neuronal rhythms is fundamental for a complete under-
standing of brain function and the impact that alterations in these rhythms could have on
neurodegenerative diseases. Thus, what we hope to achieve is a deeper understanding
of LTD and its role in neuronal dynamics at the triplet level, which would be helpful in
gaining a better understanding in future research on neurodegenerative diseases [2]. The
filtering of the neuronal firing to visualize the neuronal activity in a single band or rhythm
is generated by implementing the Fourier transform. In this way, we moved from the time
domain to the frequency domain as in Ref. [28].

In the following we consider 1000 neurons with a network of 800 excitatory neurons
and 200 inhibitory neurons. We investigate the neuronal dynamics when we incorporate
different degrees of damage in the number of excitatory neurons in the neuronal network.
We would like to point out that from Figures 4–12 the circles correspond to the case of
a network in which the interactions are purely through pairwise STDP. In addition the
triangles conform the case of a network “mixed-STDP interactions”. The most intense blue
colour corresponds to the undamaged STDP and as it turns to green the damage increases
until it reaches its maximum in yellow with a maximum of 300 damaged excitatory neurons.

In Figure 4a,b we show the Fisher information versus Shannon Entropy for the Delta
and Theta bands, respectively. Note that in both cases the STPD with purely pairwise
interactions shows higher Fisher information and lower Shannon Entropy than the one
with “mixed-STDP interactions”. Moreover, as the damage increases, the Shannon Entropy
tends to become larger.

Figure 5a,b depicts the Fisher information versus Shannon Entropy for the beta and
Alpha bands, respectively, depicting a similar behavior to the one presented in Figure 4a,b.

Figure 6a–c shows the Fisher information versus Shannon Entropy for the Gamma,
HFO1 and HFO2 bands, respectively. In all cases, the maximum values of Fisher infor-
mation is reached for the pairwise case and without any induced damage, and when
considering the “mixed-STDP interactions” the Fisher information decreases and the Shan-
non Entropy is enhanced as the damage becomes higher.
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In Figures 7a,b and 8a,b, we show the Statistical Complexity versus Shannon Entropy
for the Delta, Theta, Alpha and Beta bands, respectively. In all these cases, the Statistical
complexity remains significantly lower for the pure pairwise STDP.

In Figure 9a–c we show the Statistical Complexity versus Shannon Entropy for the
Gamma, HFO1, and HFO2 bands, respectively. Figure 9a–c depict that for the “mixed
STDP interaction” the Statistical Complexity decreases non linearly as the neuronal damage
increases. In contrast, the Shannon Entropy values are higher as the damages increases.
Let us remark that the Statistical Complexity is higher for the “mixed-STDP interactions”
case. The planes H × C allow us a direct distinction between the dynamics of mixed and
pairwise STDP interactions.
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Figure 4. (a,b) depict Fisher vs. the Shannon Entropy, H× F, for the delta and theta bands, respectively.
Circles and triangles correspond purely pairwise STDP and “mixed-STDP interactions”, respectively.
The most intense blue colour corresponds to the undamaged population, as it turns to green the
damage increases until it reaches its maximum value in yellow.
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Figure 5. (a,b) depict Fisher vs. the Shannon Entropy, H × F, for the beta and alpha bands, respectively.
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Figure 6. (a–c) depict Fisher vs. the Shannon Entropy, H× F, for the Gamma, HFO1 and HFO2 bands,
respectively.
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Figure 7. (a,b) depict the Statistical Complexity vs. the Shannon Entropy, H × C, for the delta and
theta bands, respectively. The most intense blue colour corresponds to the undamaged population; as
it turns to green the damage increases until it reaches its maximum value in yellow.
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Figure 8. (a,b) depict the Statistical Complexity vs. the Shannon Entropy, H × C, for the alpha and
beta bands, respectively.
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Figure 9. (a–c) depict the Statistical Complexity vs. the Shannon Entropy, H × C, for the Gamma,
HFO1 and HFO2 bands, respectively.
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(a)

(b)

Figure 10. (a,b) depict the C× H × F three dimensional representation for the delta and theta bands,
respectively. The most intense blue colour corresponds to the undamaged population; as it turns to
green the damage increases until it reaches its maximum value in yellow.
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(a)

(b)

Figure 11. (a,b) depict the C× H × F three dimensional representation for the alpha and beta bands,
respectively.
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(a)

(b)

Figure 12. Cont.
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(c)

Figure 12. (a–c) depict the C× H × F three dimensional representation corresponds to the gamma,
the HFO1 and the HFO2 bands, respectively.

Finally, in order to present a clear distinction between the different dynamics of the
pairwise and mixed STDP interaction for different damages, we present the 3D plot with
the quantities of interest. Figures 10a,b, 11a,b and 12a–c we show the C × H × F three
dimensional representation for the Statistical Complexity versus Shannon Entropy and
versus the Fisher Information for the Delta, Theta, Alpha, Beta bands, Gamma, HFO1 and
HFO2 bands, respectively.

It can be seen from Figures 10–12 that as the neuronal damage increases the statistical
complexity decreases, the Shannon entropy reaches higher values and the Fisher informa-
tion is reduced. Importantly, the statistical complexity remains higher for the mixed-STDP
interactions when compared to the pairwise case. The maximum complexity value is
reached for the “mixed-STDP interactions” in the cases when there is no induced damaged.

Summarizing the STDP with purely pairwise interactions shows higher Fisher informa-
tion and lower Shannon Entropy than the one with “mixed-STDP interactions”. Moreover,
as the damage increases, the Shannon Entropy tends to become larger. In the case of
Fisher estimations, it reaches higher values with lower network damage configurations. In
addition, Fisher information from purely pairwise interactions reached higher values than
those from mixed STDP interactions. Overall higher complexity values were observed for
the “mixed-STDP interactions”. That is the complexity is much higher when triplets with
LTD in the STDP are included than in cases where just pairwise interactions are considered.

4. Discussion and Conclusions

The human brain is the complex system par excellence. However, there are two very
different, although closely related, senses in which the brain is complex: anatomical or
structural complexity, on the one hand, and dynamic functional complexity, on the other.
An important issue in complexity science is to find a way to relate structural complexity to
dynamic, behavioral, or functional complexity. However, it is hoped that by understanding
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the principles that guide the dynamic complexity of the brain we can shed light on its
special role in cognition, consciousness, and neurodegenerative diseases, without needing
to have a complete understanding of the underlying neuroanatomical details.

The human brain contains trillions of connections between neurons between which
synapses can occur, and whose pattern of activity controls our cognitive functions. It has
long been known that synaptic connections between neurons are not static but undergo
modifications because of their activity. Thus, external stimuli can cause some synapses to
strengthen while others weaken. This process of synaptic plasticity is essential for learning
and memory. [3,4,39]. In fact, alterations in synaptic plasticity mechanisms are thought to
be responsible for multiple neuronal disorders and/or neurodegenerative diseases [40].
Although synaptic plasticity has been strongly associated with the formation of memories,
this is not its only function, since any process that requires modifying the way of processing
a stimulus requires a plastic change. It is therefore essential for processes as varied as
neuronal development and the recovery of functions after brain damage produced by
different causes such as ischemia or brain damage, Parkinson’s disease or Alzheimer’s
disease, and epilepsy, since all these processes involve the rearrangement of neuronal
circuits [40].

Computational models are a powerful tool to advance the understanding of the
basic mechanisms of operation of physical systems. In neuroscience, a computational
approach can help test hypotheses that are difficult to handle experimentally. This is
an interdisciplinary field that employs mathematical modeling and theoretical analysis
to understand the principles that govern the physiology, structure and development of
the central nervous system, and related cognitive abilities. In this work, we developed
a model of cortical hypercolumns, which was adapted from the network presented by
Izhikevich [18]. In our model we added triplet-level interactions in the STDP by enhancing
the role of the LTD [20,41], while retaining the existing pairwise interactions in the LTP. The
impact of different degrees of injury on network dynamics is studied. This is particularly
important as it has been observed that after an epileptic episode, neuronal rearrangement
occurs, which may be accompanied by the disappearance of neurons, where LTD plays
a key synaptic role [40]. We characterize the different neuronal dynamics by means of
information quantifiers: Shannon’s Entropy, H, Fisher’s Information, F, and Statistical
Complexity, C. In particular, in this work we pay attention to the peculiar dynamic
complexity in STDP when considering different damage sizes and synaptic interactions.
For this purpose, we investigate the different oscillation bands and compare the evolution
of the temporal dynamics when considering different neuronal damages.

The activity in the different networks is characterized by the time series defined by the
membrane potentials belonging to each of the neurons of the network. The contrast in the
activity present in the different networks is reflected in the construction of a global variable,
generated from the sum of the Jensen Shannon (a Bandt and Pompe approach distribution
of the signal is associated with each neuron and we evaluate the Jensen–Shannon distance
between all the possible pairs of neurons, characterizing the different network configura-
tions as in Ref. [28]). Thereafter, using the information theoretical quantifiers [21–24,28] we
characterize the dynamics of the network configurations for different frequencies bands.
The outcomes presented in the paper show the impact of the different degrees of damage.

The Jensen-Shannon distance is evaluated between all possible pairs of neurons,
characterizing the different configurations of the network by constructing the properties
of the strength distributions of the pairs of neurons. Shannon’s entropy measures the
degree of randomness and determinism of these configurations. Fisher’s information can
be interpreted as a measure of the ability to estimate a parameter associated with the
interconnectivity between neurons, i.e., the difference that exists between interconnectivity
of pairs of neurons within the network. Statistical complexity captures the system as a whole
and reflects how different the dynamics between the complete certainty and randomness
are, and importantly, measures how close to pure chaos it is. We observe that in all cases the
statistical complexity is significantly higher for mixed interactions that privilege synaptic
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depression (LTD) at the triplet level. This contrasts with the behavior of Fisher information,
which is in all cases higher for STPD with pure pairwise interactions. In addition, Shannon
entropy decreases with increasing damage, reaching the highest values for mixed STDP
interactions. This methodology is then efficient to discriminate the dynamics of STDP with
LTD interactions at the triplet level from those with purely pairwise interactions, through
the quantification of the Statistical Complexity, Fisher Information and Shannon Entropy,
considering different oscillations bands and damages across the network.

We show that there is similarity between the H×C dynamics of our proposed network
with mixed-STDP interactions and the experimental data, improving the compatibility that
one would obtain just through a purely pairwise STDP model. While we have not presented
in this paper an exhaustive analysis contrasting the proposed model with experimental
data, and this analysis will be left for future work, the structure shown for the H × C
plane for the network with mixed-STDP interactions reminds us of a chaotic dynamic
that emulates the typical structure of colored noises that have medium complexity and
medium-high entropy [42].

Let us remark that the STDP can be understood as a biologically inspired unsupervised
learning mechanism that operates on synaptic weights based on the temporal interactions of
pre- and postsynaptic spike [43]. We believe, therefore, that this nonlinear model of mixed
STDP interactions could provide an unsupervised learning algorithm with an adequate
quantification of the underlying dynamics of epileptic tissue, which in combination with
information theory tools would be a very useful methodology to investigate the spiking
neural network of patients’ post-ictal signals.
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