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Abstract: Much research on adversarial attacks has proved that deep neural networks have certain
security vulnerabilities. Among potential attacks, black-box adversarial attacks are considered the
most realistic based on the the natural hidden nature of deep neural networks. Such attacks have
become a critical academic emphasis in the current security field. However, current black-box attack
methods still have shortcomings, resulting in incomplete utilization of query information. Our
research, based on the newly proposed Simulator Attack, proves the correctness and usability of
feature layer information in a simulator model obtained by meta-learning for the first time. Then,
we propose an optimized Simulator Attack+ based on this discovery. Our optimization methods
used in Simulator Attack+ include: (1) a feature attentional boosting module that uses the feature
layer information of the simulator to enhance the attack and accelerate the generation of adversarial
examples; (2) a linear self-adaptive simulator-predict interval mechanism that allows the simulator
model to be fully fine-tuned in the early stage of the attack and dynamically adjusts the interval for
querying the black-box model; and (3) an unsupervised clustering module to provide a warm-start
for targeted attacks. Results from experiments on the CIFAR-10 and CIFAR-100 datasets clearly
show that Simulator Attack+ can further reduce the number of consuming queries to improve query
efficiency while maintaining the attack.

Keywords: meta-learning; adversarial attack; knowledge distillation; gradient optimization;
black-box attack

1. Introduction

With the recent development of deep neural networks (DNNs), people have increas-
ingly realized that these network architectures are extremely vulnerable to attacks by
adversarial perturbations [1–3]. By adding adversarial perturbations that humans cannot
perceive to input images, DNNs [4] become unable to output correct feedback. Such a
unique characteristic gives DNN robustness increasing research value. Based on how much
internal network information DNNs provide, adversarial attacks are generally divided
into two categories: white-box and black-box. The victim model of white-box attacks pro-
vides complete information for attackers, including the outputs of DNNs and all internal
neural node gradient information [2,5]. This enables attackers to generate corresponding
adversarial examples in a targeted manner. Nevertheless, such an attack background and
condition do not satisfy the requirements of adversarial attacks in real environments. Thus,
due to the harsh conditions of black-box attacks, with less available information, they have
gradually become the recent mainstream research direction of adversarial attacks. In a
black-box attack, the attacker can only obtain output information of input images from the
target model, while the internal information remains hidden. Up to now, black-box adver-
sarial attack methods proposed in academic circles have been mainly divided into three
categories: query-based attacks, transfer-based attacks, and meta-learning-based attacks.
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For attacks based on query, due to their high attack success rate, people have already
made effort to study them under the circumstances that only the label or probability
information of each input image can be obtained. Although there is still a problem in that
the amount of information obtained by querying the model each time is relatively small,
by using massive queries combined with a more accurate gradient estimation algorithm,
attackers can still easily generate the required adversarial perturbations. In order to achieve
better query results, researchers have begun to pay more attention to query efficiency
problems. Various innovative methods for uncovering deeper hidden information [6–9]
have emerged for increasing the query utilization rate. However, the considerable number
of queries required still makes purposeful adversarial attacks detectable in real environment
and signals the victim to take defensive actions.

For attacks based on model transfer, the original intention of this design was to
decrease the ability of query attacks to be easily defended against. This type of black-box
attack transfers part of the queries from the black-box model to the local agent model
selected by the attacker in order to decrease the abnormal behavior of high-frequency
queries to the black-box model [10–14]. Then, it uses existing white-box adversarial attack
methods to generate black-box attack perturbations based on the transferred agent model.
However, since the success of the attack completely depends on the similarity between
the transferred local agent model and the black-box target model, the attack success rate
of this method is extremely unstable. To minimize this difference between models as
much as possible, a synthetic dataset training method [15–17] has been proposed, which
cross-uses the training images and the output results of the black-box model to train the
local agent model. This method also affects the black-box model’s initiation of defensive
mechanisms [18–20]. When the training feedback of the local transferred model reaches
the set threshold, the local agent model is considered a qualified imitator of the black-box
target model and becomes the main target of subsequent queries. However, this type of
black-box attack is still far from reaching the attack success rate of the aforementioned
query-based attack.

For attacks based on meta-learning, the idea behind this type of attack is very novel. It
optimizes and improves the shortages of query-based and transfer-based attacks. Meta-
learning-based attacks use the characteristics of meta-learning and knowledge distillation
to make the transferred simulator model more adaptable. This model can utilize a limited
number of queries in a short time to imitate the target black-box model effectively and can
quickly take on the task of acting as an accurate local agent model. As shown by Ma’s
work [21], this method has the advantages of both keeping a high attack success rate and
maintaining effective attack capabilities against black-box target models with defensive
mechanism. However, such an attack still does not fully utilize the information of each
query. For the simulator model object that is queried each time, Ma’s method [21] ignores
internal information obtained by prior meta-learning and treats the model as a black-
box during the entire attack process. Therefore, fully using the internal information in
the simulator model, which consumes a great amount of training cost, is worthwhile
for further research. As stated by Zhou et al. [22], the training and learning process of
any model can be divided into two stages: feature representation ability learning and
classification ability learning. Because the learning costs of the simulator model obtained
by meta-learning are for various selected mainstream models, the feature representation
ability and classification ability of these models to the training dataset have been mastered
by the simulator model. When simulator attack begins, the simulator model used as a local
agent model attempts to imitate the black-box target model, which has never been seen
before. Referring to the transferability of a model [21], the feature representation ability
of the initial simulator model is already especially similar to that of the black-box target
model for the same dataset images. However, the gap between the simulator model and
the black-box target model does exist in classification ability to a certain extent. Through
feature extraction and visualization of the simulator model in the initial state and the model
selected as the black-box target, we find that the feature attentional area of an image is
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almost the same between the two models. Furthermore, by output information extraction
and visualization of the two models, we also observe that the initial simulator model and
the black-box model have a large gap in classification ability through comparisons. Such
results strongly prove the correctness and usability of the feature layer information of the
simulator model.

Based on this discovery, we make full use of the feature layer information of the
simulator model and propose a feature attentional boosting module (FABM). This mod-
ule strengthens the adversarial attack of perturbations, which is conducive to our attack
framework to find suitable adversarial examples faster than the baseline. We add an unsu-
pervised clustering module (UCM) and a linear self-adaptive simulator-predict interval
mechanism (LSSIM) to the targeted attack to solve the cold start problem in attack sit-
uations requiring a large number of queries. Figure 1 below clearly presents the whole
process of Simulator Attack+.

UCM

Outputs 

U
p

d
a
te

Meet LSSIM 

Requiremments

FABM
Generate Input

Warm up period

Images

ix
Images

ix

Other situations

Black-box 

Target 

Model

ta
rg

et
e

d

untargeted
Finetune

Simulator 

Model

Perturbations

Figure 1. Our Simulator Attack+ iteratively updates the attack images. These images query the
black-box target model for finetuning the simulator model. LSSIM gives a dynamic interval for
images to visit the black-box target model for adjustment. When the simulator model becomes similar
enough to the black-box model, the simulator model receives the bulk of the queries. FABM takes
both local and global information into consideration to boost the attack.

In this paper, for the purpose of comparing the performance of our attack framework
with the baseline explicitly, we follow the settings of Ma et al. [21] to conduct adversarial
attacks [8,9,23–25] against the same black-box target models using the CIFAR-10 [26]
and CIFAR-100 [26] datasets. The experimental results show that, compared with the
baseline [21], our framework achieves a certain degree of improvement in query information
utilization while maintaining a high attack success rate.

The main contributions of this paper are summarized in the following points:
(1) We find and prove that the feature representation ability of the simulator model

in black-box attacks based on meta-learning is correct and usable. The simulator model
obtained through meta-learning can already represent the features and characteristics of an
object in the image relatively correctly in the initial state. So the internal feature information
of such a model can be used as a basis for generating and updating the perturbations that
we require in the adversarial attack.

(2) Combined with the finding of (1), we analyze and optimize Ma’s Simulator
Attack [21] and propose its improved version, Simulator Attack+. Our black-box attack
framework makes specific adjustments to the three shortcomings of the baseline method by
adding FABM, LSSIM, and UCM separately to solve the above mentioned problems:

• The correct feature layer information of the simulator model obtained by meta-learning
is ignored in the baseline, whereas it is actually valuable for acquiring proper adver-
sarial perturbations;

• Ma’s attack framework [21] has an imbalance in the imitation effect before and after
the simulator model is fully fine-tuned;
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• Adversarial perturbation changing only considers global adjustment without special-
ization enhancement.

(3) Conducting multi-group experiments on the CIFAR-10 and CIFAR-100 datasets,
our well-designed meta-learning-based black-box attack framework greatly improves
the utilization of query information compared with the original version, and also raises
query efficiency to a certain extent while reducing the number of queries.

2. Related Works

In this section, we introduce some related work about present black-box adversarial attacks.

2.1. Attacks Based on Query

At present, query-based black-box adversarial attack studies follow two different
directions to generate adversarial examples: score-based attacks and decision-based attacks.
The former uses the probability of classification generated by the target black-box model in
each query, while the latter depends on the label results of the target model outputs. Most
score-based attack methods utilize specific gradient estimation calculations to find out the
final adversarial perturbations. Zeroth-order optimization (ZOO) [6,27,28], inspired by
derivative-free optimization (DFO) [29] and its improved versions [30], has been introduced
to estimate the gradient of the target model directly for a relatively high attack success rate.
However, this kind of black-box adversarial attack has to conduct a massive number of
queries on the target model to collect enough information. Such information can be used to
change specific pixels of an image in the attacking stage. This leads to the problem that such
an attack can be easily defended against by the target model by rejecting or limiting queries
in actual application scenes. In order to enhance query efficiency, strategies for focusing
on the principal components of data [27], adaptive random estimation [30], involving
prior gradients [9,31], active learning [32], approximating high-order gradients [33], and
random search directions [34] and positions [35] have been applied. For decision-based
attacks, researchers have put more focus on the use of label information [28,36] because in
actual situations, classification labels are more common than score outputs. Although the
information that can be obtained is sparse, query-based attacks still holds their place in
black-box adversarial attack research. Several improved methods have been proposed,
such as hard labeling with population-based optimization [37], an evolutionary attack
algorithm [38], and a reverse boundary searching strategy [39].

2.2. Attacks Based on Transfer

Transfer-based attacks rely on the adversarial examples transferability theory [40].
While this type of attack can reduce the quantity of queries by consulting another designed
model, the success rate is still tightly bound to the difference between the source model
and the target model during the transformation period [10,12,13], which leads to the fact
that such attacks may not perform well in some situations. Researchers have developed
model-stealing attacks [30] and hyperparameter-stealing attacks [17] to reach higher attack
success rates. For achieving a more accurate transferred model, model reconstruction [41],
knockoff model [15], and local policy model [16] strategies have been published. Model
reconstruction gives effective heuristic methods for reconstructing models from gradient
information. A knockoff model applies queries fitting different distributions to enhance
model performance. A local policy model builds the model on the basis of commonsense
according to the usage of the target model and creates fake random training data for the
policy model to learn decision boundaries more precisely. Nathan Inkawhich et al. [40] has
pushed transfer-based attack further by using multi-layer perturbations on the basis of the
extracted feature hierarchy. In this paper, we tend to train a super simulator model [21] by
using the information generated from other popular recognition models to substitute for
the target model. Once the simulator model has been adequately finetuned, it can perfectly
imitate the black-box model, and then subsequent queries are sent to this imitator to avoid
a large number of target model queries.
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2.3. Attacks Based on Meta Learning

Model training from meta-learning has the ability to adapt to news conditions very
quickly. Ma et al. [42] present MetaAdvDet with a double-network framework based
on meta-learning that only requires a few queries to detect a new kind of adversarial
attack. One part of this framework can learn from previous attacks, and another can do
specific tasks to counter new attack methods. Du et al. [23] use meta-leaning, gradient
estimation, and an auto-encoder network structure to train a meta attacker, then search
for successful adversarial examples rapidly with this attacker model. Finetuning has
also been inserted into this gray-box attack to improve query efficiency. Moreover, based
on meta knowledge hidden in the meta-training set and meta-testing set, Ma et al. [21]
then introduce a simulator model containing the features of several classic models as a
substitute through meta-training and knowledge distillation. Such a simulator model
structure can be defined differently by users and can also perform well when the black-box
target model has some defense characteristics. Although Ma’s simulator has a rather good
attack success rate for both targeted attack and untargeted attack and meets low-query
demands well, the potential of simulator attacks can be pushed further by utilizing the
feature layer information in a pre-trained simulator model inspired by adversarial example
transferability factors study [40]. In order to strengthen adversarial attack, a random normal
distribution strategy and momentum boosting strategy can be applied while generating
adversarial examples against the target model. Further, for higher query efficiency, we also
add an unsupervised clustering module in the simulator attacking period. In the warm-up
stage, prior gradient clustering knowledge can be shared amongst all batch images, which
can rapidly help part of the images finish attacking successfully. Then, we design a unique
simulator-predict interval increasing mechanism to allow our simulator model to make
sufficient preparation for coming queries.

3. Methods

To improve the query efficiency and decrease the total number of queries consumed,
we propose FABM, LSSIM, and UCM and then attach these modules to our Simulator
Attack+ framework. These attachments follow our discovery that similarity feature layer
information between two models can help optimize the baseline method.

3.1. Feature Attentional Boosting Module

As a consensus, a meta simulator model trained from meta-learning can quickly
imitate another model by finetuning itself and shares generality with other mainstream
models. However, such a meta simulator model applied in Simulator Attack is treated the
same as the black-box model. Its internal information is ignored during an attack. In order
to find the usability of this information, we extract and visualize the feature layer of a
simulator model (Figure 2). After comparing the feature attentional regions between the
simulator model and the black-box target model, we find that the attentional areas of both
models nearly overlap. Thus, we conclude that some of the feature layer information in the
meta simulator model can be used in the black-box attack due to their similarity. However,
Figure 3 also indicates that the classification ability varies between the initial simulator
model and the black-box target model, and this classification ability is the key point that
the simulator model needs to learn during the finetuning process.
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Figure 2. The feature layer and attentional region visualization of the first 9 images from the first batch
input into the initial simulator model and the black-box model. The first line is the original images.
The second line is the feature layer visualization of the initial meta simulator model. The third line is
the feature attentional region of the initial meta simulator model. The fourth line is the feature layer
visualization of the black-box target model (PyramidNet272). The last line is the feature attentional
region of the black-box model.

Figure 3. Visualization of 4 selected image softmax results from the first batch input into the initial
simulator model and the black-box model. The x axis and y axis represent 10 different classes in
CIFAR-10 [26] and probability values, respectively. The figure obviously shows that the classification
results of the two models at the beginning are different. This indicates that the classification ability of
the simulator model at this stage is not well prepared.

In the baseline, Ma et al. [21] only use random normal distribution noise as their step-
size in the image changing process. This method has strong randomness in searching for
proper adversarial perturbations. Furthermore, for how to change the adversarial images
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properly, Ma [21] merely provides a global direction for all pixels in an image to transform
without optimizing specific areas or using any corrected feature information based on prior
knowledge. To improve the usage of information from queries more rationally, we add an
extra adversarial effect inspired by the attention mechanism to reduce the randomness as
much as possible. At the same time, such additional adversarial perturbations can create
extra radical attacks on attentional regions where both the meta simulator model and the
black-box model focus. We give two different options of adversarial perturbation type:
normal distribution boosting and momentum boosting. Normal distribution boosting
follows the method of the baseline to search for the proper adversarial perturbation ran-
domly by using a common distribution. Because the information supplied by black-box
model outputs is so sparse, we have to use additional perturbations when they are random,
as in Ma et al. [21], to enhance the adversarial effect on specific regions while reducing
randomness of inappropriate values in significant positions. However, different from the
baseline, we consider different concrete distributions that are smoother to highlight the
attentional area and keep the original distribution working as previously. As Wu et al. [40]
conclude, the local oscillation of a loss surface can be suppressed by the smoothing effect.
Our smoother distribution reduces harmful effects to the utmost and makes valid emphasis
of attentional regions. Equations (1) and (2) show how the feature attentional boosting
module works compared to a random normal distribution:

Iadv = Iadv_prev + Pf inal , (1)

Pf inal =

{
Porg_n, if not attentional region;

Porg_n + Padd_n, if attentional region.
(2)

where Iadv and Iadv_prev refer to the attack image in the current attack step and previous
attack step, respectively, Pf inal represents the final adversarial perturbation in the current
attack step, Porg_n is the original adversarial perturbation the baseline creates, and Padd_n is
the additional adversarial perturbation belonging to another distribution we designed to
strengthen the effect on the attentional region.

Momentum boosting replaces the original random normal distribution in attentional
regions by an adversarial perturbation updating strategy based on momentum. This
method takes both the descent direction achieved in the current attack step and all previous
directions into consideration. By consulting these factors comprehensively, the additional
adversarial perturbation emphasizes the adversarial effect in the attentional region and
hastens the image-changing process. Equations (3) and (4) define the momentum boosting
module in detail:

Pf inal =

{
Porg_n, if not attentional region;

Pm, if attentional region.
(3)

Pm = θ ∗ Pm_cur + (1− θ) ∗ Pm_mean, θ ∈ (0, 1) (4)

where Pm is the final momentum boosting adversarial perturbation added via the original
random normal process, and parameter θ controls the effect generated by the current
adversarial perturbation direction Pm_cur and the average direction Pm_mean calculated from
all previous adversarial perturbations; the value of θ should be set in the range from zero
to one.

The whole feature attentional boosting module (FABM) only works after visiting the
black-box target model. As the adversarial perturbation direction obtained by the black-box
target model is definitely correct, using this direction on attentional regions helps the
adversarial attack succeed faster. If this module works at every stage of the attack, the total
number of queries will increase instead. When the simulator model has not been fine-tuned
well, it may give wrong directions for attentional module guidance. This would cause the
adversarial model to require more queries to attack successfully.
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3.2. Linear Self-Adaptive Simulator-Predict Interval Mechanism

While the simulator model acquired from meta-learning can imitate any model by
finetuning itself in limited steps, the simulator model in its initial state is not well-prepared
for coming queries. It still has a weak ability to give similar outputs to those of the black-box
target at the early period. This leads to the fact that the first several queries to the simulator
model might misdirect the changing of adversarial perturbations due to the difference
between the two models, as shown in Figure 3. Thus, the whole attack process may
waste queries finding the right direction, which can make the query number reasonably
large. To solve this problem, we design a linear self-adaptive simulator-predict interval
mechanism (LISSIM) in our simulator attack. The mechanism is divided into two parts:
a linear self-adaptive function guided by a gradually increasing parameter, and a threshold
value to give a maximum to the simulator-predict interval. Equation (5) describes this
mechanism in detail.

Mint =



⌊
Sindex/Tadp

⌋
+ 1,

if
⌊

Sindex/Tadp

⌋
+ 1 ≤ threshold;

Mmax,

if
⌊

Sindex/Tadp

⌋
+ 1 > threshold;

(5)

where Mint is the final interval for every visit to the black-box target model, Mmax refers to
the upper bound value of the interval for whole attack process, Sindex is the index of steps,
and Tadp is the adaptive factor we designed to control the pace of interval increases.

By using this mechanism, our simulator will have plenty of time to adjust itself to be
more similar to the black-box target model. At the same time, adversarial perturbations
also have enough opportunities to move further along in the appropriate direction precisely
by visiting the black-box model with a high frequency during the beginning.

3.3. Unsupervised Clustering Module

Based on the usability of simulator model internal feature information, we add an
unsupervised clustering module (UCM) as warm boot at the beginning to accelerate the
whole simulator attack process. This module helps other images in the same clustering
group quickly find adversarial perturbations based on the prior knowledge of clustering
centers. We select a low-dimension feature clustering algorithm in this module. For the
clustering mechanism, we focus on the distance between features extracted from simulator
models and specific processes.

By applying an unsupervised clustering module to simulator attack, samples close
to clustering centers rapidly finish their attack during the beginning of the attack process.
Then we change the adversarial perturbation back to the initial state to achieve a cold boot
for other unfinished images. Because these images are far from clustering centers, using
prior knowledge will interference with their generating of correct adversarial perturbation.
The whole process of Simulator Attack+ is exhibited in Figure 4. Firstly, the generation of
adversarial perturbations relies on the estimation of image general gradient direction by
adding noise q1 and q2.

If the attacker chooses to conduct a targeted attack, all the attack images are input into
our unsupervised clustering module (UCM) to learn clustering center prior knowledge
based on feature layer information. Otherwise, if the attacker chooses to conduct an
untargeted attack, the attack images are immediately ready.

In the first i ∈ (0, t) steps, images xi visit the black-box target model to provide
accurate information to finetune the pre-trained initial simulator model. Through this
operation, our simulator model can gradually master the classification ability similar to
that of the black-box target model and give precise results for any image input. When
the step index meets the requirements of the interval value calculated by the linear self-
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adaptive simulator-predict interval mechanism (LSSIM), the attack images xn+1 in the
figure also visit the black-box target model in order to finetune the simulator model at a
certain frequency. In the finetuning stage, LMSE influences making the simulator similar to
the black-box target model. Further, other attack images such as xn query our finetuned
simulator model for how to adjust the pixels.
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Figure 4. Detailed process of Simulator Attack+.

The feature attentional boosting module (FABM) is utilized to enhance the adversarial
effect of perturbations that are generated by the outputs of the two models. Such new
perturbations are used to update the attack images from global and local perspectives in this
iteration. Through constantly updating iterations, the attack images xi, i ∈ (0, max_query)
finally make the black-box target model unable to recognize them correctly. Additionally,
the whole simulator attack is also shown in Algorithm 1.

4. Experiments
4.1. Experiment Settings

In this section, the parameter settings of the experiment and the setup of the model
are described in detail.

4.1.1. Dataset and Target Models

Experiments in this paper are conducted on the CIFAR-10 [26], CIFAR-100 [26] datasets.
CIFAR-10 consists of 60,000 32*32-pixel colored images from 10 classes. CIFAR-100 is com-
posed of 100 classes of images with 600 images per class. For comparison with the work of
Ma et al. [21], we also use 1000 randomly selected test images from validation sets of CIFAR-
10 and CIFAR-100 for evaluating our improved attack method. For the black-box targets, we
select the sames models as Ma et al. [21] and Yan et al. [43]: (1) PyramidNet+Shakedrop net-
work with 272 layers (PyramidNet-272) [44,45] trained by AutoAugment [46]; (2) GDAS [47]
generated by neural architecture search with DAG involved; (3) WRN-28 [48], which con-
tains 28 layers and possesses a wide dimension; and (4) WRN-40 [48] with 40 layers.
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Algorithm 1 Simulator Attack+ under the lp norm condition

Input: The input image x ∈ RD, where D means the image dimension, the label of the
image x with groundtruth, the pre-trained simulator model M, the forward function of the
black-box target model interface f , and the finetuning loss function LMSE.

Parameters: Warm-up iteration steps t, the adaptive predict-interval of LSSIM Madp,
Bandits Attack parameter τ, noise exploration parameter δ, Bandits prior learning rate
ηg, image updating rate η, the momentum factor θ of FABM, group numbers Ngroup of
unsupervised clustering results, the center beginning perturbations Pcenters, batch_size of
input images, attack type Tattack, project function fproj_p(·), and image update function
fimg_upd_p(·).
Output: Adversarial image xadv that meets the requirements of ε norm-set attack,

as ‖xadv − x‖p ≤ ε.

1: Initialize the adversarial example xadv ← x and the estimated gradient g← 0. Initialize
the simulator model M for each image. Initialize finetune dequeue D with maximum
length of t for coming finetuning query pairs. Initialize Ngroup clustering centers
randomly. Initialize empty perturbation Pall , the size of which is the same as the batch.
Initialize empty perturbation Pcenters, which has the same size as the clustering centers.

2: if Tattack == targeted then
3: The central prior knowledge of other images in the same group is found using UCM.
4: for i← 1 to N do
5: u← N (0, 1

D I)
6: q1 ← (g + τu)/‖g + τu‖2
7: q2 ← (g− τu)/‖g− τu‖2
8: if i ≤ t or(i− t)mod Madp = 0 then
9: ŷ1 ← f (xadv + δ · q1)

10: ŷ2 ← f (xadv + δ · q2)
11: Append above query pairs into dequeue D.
12: if i ≥ t then
13: Finetune the simulator model M with LMSE using the query pairs in dequeue D.
14: Extract feature attentional region Ratten.
15: else
16: ŷ1 ←M(xadv + δ · q1)
17: ŷ2 ←M(xadv + δ · q2)

18: ∆dir ←
L(ŷ1,y)−L(ŷ2,y)

τ·δ · u
19: Use Pf inal to enhance the ∆dir of Ratten.
20: g← fproj_p(g, ηg, ∆dir)
21: xadv ← fimg_upd_p(xadv, η, g)
22: xadv ← Clip(xadv, 0, 1)
23: return xadv

4.1.2. Method Setting

We follow the black-box attack process of Ma et al. [21]; we divide the whole attack into
two parts: training the meta simulator and using the meta simulator to attack. In the training
part, we first generate the meta-train set Dmtr and meta-test set Dmte on query sequence data
Q1, · · · , Q100, also known as meta tasks obtained after querying other classic models. Then,
ResNet-34 is selected as the backbone of the simulator model. We train the simulator to adjust
its weights by the meta-train set Dmtr and meta-test set Dmte; each of them consists of 50
query pairs. During the attacking period, we give a 10-time fine-tuning operation as a warm
up for the simulator attack. After that, the fine-tuning number reduces to a random number
ranging from 3 to 5 in subsequent iterations. For an untargeted attack, the victim image may
be changed randomly to a class it originally did not belong to. For a targeted attack, we give
two options for attackers: random or incremental targeting. Random targeting is designed to
give a random target set as yadv = rand(Nclass), where Nclass is the total class number, and
yadv is the target class. Incremental targeting sets the target class as yadv = (y + 1) mod Nclass.
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For evaluating the simulator attack together with the condition of conducted query number,
we introduce attack success rate and average and median values of queries. Here, the whole
black-box attack process has been conducted on an NVIDIA RTX 3090 GPU. On our platform,
the average time required for an untargeted attack on four selected target victim models is
around 10 h, and that of a targeted attack is around 72 h.

4.1.3. Pre-Trained Networks

The models we select for the meta-learning of the simulator do not contain the black-box
models, so we can completely show the performance of our attack method under the hardest
condition. For CIFAR-10 and CIFAR-100 datasets, we choose 14 different networks as the
meta-learning materials, including AlexNet, DenseNet, PreResNet, ResNeXt, etc., and their
other versions. Identical to the attack evaluation logic of Ma et al. [21], we conduct attacks
against defensive black-box models. However, the simulator for defensive targets is retrained
without considering ResNet networks because such targets apply ResNet-50 as their backbone.
If we use the same simulator model as the normal version during the experiment, it may
cause inaccuracy in the end and may be incomparable to the work of Ma et al. [21].

4.1.4. Compared Methods

We follow Ma’s selection in his simulator attack and choose NES [8], Bandits [9],
Meta Attack [23], RGF [24], P-RGF [25], and Simulator Attack [21] as our compared attack
methods, with Simulator Attack as our baseline. We extend Ma’s criteria of these attack
methods and his compared experiment results to the CIFAR-10 and CIFAR-100 datasets. We
give a limit of queries of 10,000 in both untargeted and targeted attacks, and set the same ε
values in the same experiment group: 4.6 in the l2 norm attack, and 8/255 in the l∞ norm
attack. In the meta-learning stage, we set the default learning rate of the inner loop update
as 0.01 and of the outer ones as 0.001. In the simulator-attacking stage, the default values
of the image learning rate are 0.1 and 1/255 for l2 norm and l∞ norm attacks, respectively.
Furthermore, the prior learning rates of Bandit attacks, also known as OCO learning rates,
are 0.1 for l2 norm attack and 1.0 for l∞ norm attack. For simulator predict interval, we give
5 as the standard. In the fine-tuning section, the length of the fine-tuning queue is 10, and
we present 10 black-box queries as the warm-up for the whole framework. The detailed
information of the default parameters for Simulator Attack+ are shown in Table 1.

Table 1. Default parameter settings of Simulator Attack+.

Parameters Default Detail

λ1 for inner updating 0.1 learning rate in the inner update
λ2 for outer updating 0.001 learning rate in the outer update

maximum queries 10,000 limit of queries of each sample

ε of l2 norm attack 4.6 maximum distortion in l2 norm attack
ε of l∞ norm attack 8/255 maximum distortion in l∞ norm attack
η of l2 norm attack 0.1 image learning rate for updating image
η of l∞ norm attack 1/255 image learning rate for updating image
ηg of l2 norm attack 0.1 OCO learning rate for updating g(prior)
ηg of l∞ norm attack 1.0 OCO learning rate for updating g(prior)

inner-update iterations 12 update iterations of learning meta-train set
simulator-predict interval 5 prediction iterations interval of simulator
warm-up iterations t 10 first t iterations of simulator attack
length of fine-tuning queue 10 maximum length of fine-tuning queue



Entropy 2022, 24, 1377 12 of 18

4.2. Ablation Study
4.2.1. Ablation Study for Feature Attentional Boosting Module

We first compare our two methods in FABM and decide to use the momentum boosting
module in the final version of our Simulator Attack+. Then, we conduct a group of
experiments for our opinion by only adding FABM and adjusting the weight values of the
current direction and the average direction. The range of current direction weight value is
set from 0.9 to 1. Tables 2 and 3 show results.

Table 2. Experiments using only momentum boosting module (FABM) on CIFAR-100, untargeted
attack, and l∞ norm.

M-Parms Average Query Median Query

Cur Avg PN-272 GDAS WRN-28 WRN-40 PN-272 GDAS WRN-28 WRN-40

0.91 0.09 108 91 148 163 30 26 60 50
0.92 0.08 106 101 147 157 30 26 54 52
0.93 0.07 104 92 133 139 30 24 56 48
0.94 0.06 109 94 158 149 30 26 56 54
0.95 0.05 110 94 148 155 30 26 56 54
0.96 0.04 103 103 158 155 32 28 56 56
0.97 0.03 110 101 145 160 30 28 60 52
0.98 0.02 106 99 153 168 30 26 56 58
0.99 0.01 109 108 159 162 32 28 60 58

Baseline 129 124 196 209 34 28 58 54

Table 3. Experiments only using momentum boosting module (FABM) on CIFAR-10 against different
defensive models.

M-Parms Average Query Median Query

Cur Avg CD PCL FD Adv Train CD PCL FD Adv Train

0.91 0.09 354 520 319 716 56 108 42 382
0.92 0.08 352 518 322 724 56 110 44 380
0.93 0.07 356 516 324 716 56 108 42 380
0.94 0.06 350 510 320 720 54 108 42 380
0.95 0.05 352 512 324 722 56 108 42 384
0.96 0.04 350 516 322 718 54 108 44 380
0.97 0.03 344 510 314 710 52 108 40 378
0.98 0.02 350 516 312 710 54 108 40 382
0.99 0.01 354 520 319 716 54 106 42 380

Baseline 388 577 350 812 60 112 44 392

4.2.2. Ablation Study for Linear Self-Adaptive Simulator-Predict Interval Mechanism

Table 4 clearly shows the results of experiments with Simulator Attack with different
parameters of only the LSSIM module added. This module can provide considerable
positive influence under proper parameter pairs when conducting targeted attacks, as such
attacks use large numbers of queries.
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Table 4. Experiments using only linear self-adaptive simulator-predict interval mechanism module
(LSSIM) on CIFAR-100, targeted attack, and l2 norm.

LSSIM-Parms Average Query Median Query

Interval Factor Threshold PN-272 PN-272

80 6 866 654
85 7 820 658
90 7 837 648
95 8 814 672

100 8 816 666
110 8 846 670
120 8 837 678
120 9 808 644
150 8 860 708

Baseline 829 644

4.2.3. Ablation Study for Unsupervised Clustering Module

We conduct a targeted attack within the l2 norm on CIFAR-10 to test the enhancement
effect of our unsupervised clustering module (UCM). Table 5 shows the results compared
with the baseline [21]. As the time that this attack takes is very long, we only choose one
round to show the improvement.

Table 5. Experiments using only unsupervised clustering module (UCM) on CIFAR-10, targeted
attack, and l2 norm.

UCM Average Query Median Query

Victims PN-272 GDAS WRN-28 WRN-40 PN-272 GDAS WRN-28 WRN-40

SA-UCM 607 636 540 579 264 312 122 170

Baseline 815 715 836 793 368 400 206 245

4.3. Comparisons with Existing Methods

In this section, we conduct comparison experiments with our baseline Simulator
Attack and other existing black-box adversarial methods. Then, we give an analysis of the
results we achieve. At last, we present our tables and figures of these experiment results.

4.3.1. Comparisons with Attacks on Normal Victim Models

In this part, we compare our method with our baseline Simulator Attack [21] and
other classic black-box adversarial attack methods on normal victim classification models
mentioned before. The models are designed without considering defensive mechanisms.
Experiments are conducted on the target models we mention in Section 4.1. We show the
results of these experiments on CIFAR-10 and CIFAR-100 datasets in Tables 6 and 7. We
found a decline in the success rate of attacks, mainly concentrated on targeted attacks on
the CIFAR-10 and CIFAR-100 datasets. To demonstrate the effectiveness of our proposed
method, Simulator Attack+, we set the maximum queries from 10,000 to 20,000, named
Simulator Attack ++, and calculate the average queries when the attack success rates are
close to the comparison method. To further inspect the attack success rates with different
maximum numbers of queries, as shown in Figures 5 and 6, we perform targeted attacks
on CIFAR-10 and CIFAR-100 datasets by limiting the different maximum queries of each
adversarial example.
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Table 6. Experimental results of untargeted attacks on CIFAR-10 and CIFAR-100 datasets with a
maximum of 10,000 queries.

Dataset Norm Attack
Attack Success Rate Average Query Median Query

PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40

CIFAR-10

l2

NES [8] 99.5% 74.8% 99.9% 99.5% 200 123 159 154 150 100 100 100
RGF [24] 100% 100% 100% 100% 216 168 153 150 204 152 102 152

P-RGF [25] 100% 100% 100% 100% 64 40 76 73 62 20 64 64
Meta Attack [23] 99.2% 99.4% 98.6% 99.6% 2359 1611 1853 1707 2211 1303 1432 1430

Bandits [9] 100% 100% 100% 100% 151 66 107 98 110 54 80 78
Simulator Attack [21] 100% 100% 100% 100% 92 34 48 51 52 26 34 34

Simulator Attack+ 100% 100% 100% 100% 93 32 48 50 50 26 34 32

l∞

NES [8] 86.8% 71.4% 74.2% 77.5% 1559 628 1235 1209 600 300 400 400
RGF [24] 99% 93.8% 98.6% 98.8% 955 646 1178 928 668 460 663 612

P-RGF [25] 97.3% 97.9% 97.7% 98% 742 337 703 564 408 128 236 217
Meta Attack [23] 90.6% 98.8% 92.7% 94.2% 3456 2034 2198 1987 2991 1694 1564 1433

Bandits [9] 99.6% 100% 99.4% 99.9% 1015 391 611 542 560 166 224 228
Simulator Attack [21] 96.5% 99.9% 98.1% 98.8% 779 248 466 419 469 83 186 186

Simulator Attack+ 95.2% 98.1% 93.0% 95.3% 781 210 432 388 434 95 176 190

CIFAR-100

l2

NES [8] 92.4% 90.2% 98.4% 99.6% 118 94 102 105 100 50 100 100
RGF [24] 100% 100% 100% 100% 114 110 106 106 102 101 102 102

P-RGF [25] 100% 100% 100% 100% 54 46 54 73 62 62 62 62
Meta Attack [23] 99.7% 99.8% 99.4% 98.4% 1022 930 1193 1252 783 781 912 913

Bandits [9] 100% 100% 100% 100% 58 54 64 65 42 42 52 53
Simulator Attack [21] 100% 100% 100% 100% 29 29 33 34 24 24 26 26

Simulator Attack+ 100% 100% 100% 100% 29 29 33 33 24 24 26 26

l∞

NES [8] 91.3% 89.7% 92.4% 89.3% 439 271 673 596 204 153 255 255
RGF [24] 99.7% 98.8% 98.9% 98.9% 385 420 544 619 256 255 357 357

P-RGF [25] 99.3% 98.2% 98% 97.3% 308 220 371 480 147 116 136 181
Meta Attack [23] 99.7% 99.8% 97.4% 97.3% 1102 1098 1294 1369 912 911 1042 1040

Bandits [9] 100% 100% 99.8% 99.8% 266 209 262 260 68 57 107 92
Simulator Attack [21] 100% 100% 99.9% 99.9% 129 124 196 209 34 28 58 54

Simulator Attack+ 100% 100% 99.8% 99.9% 133 126 188 200 32 32 62 60

Table 7. Experimental results of targeted attacks on CIFAR-10 and CIFAR-100 datasets with a
maximum of up to 20,000 queries.

Dataset Norm Attack
Attack Success Rate Average Query Median Query

PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40 PyramidNet-272 GDAS WRN-28 WRN-40

CIFAR-10

l2

NES [8] 93.7% 95.4% 98.5% 97.7% 1474 1515 1043 1088 1251 999 881 881
Meta Attack [23] 92.2% 97.2% 74.1% 74.7% 4215 3137 3996 3797 3842 2817 3586 3329

Bandits [9] 99.7% 100% 97.3% 98.4% 852 718 1082 997 458 538 338 399
Simulator Attack(m = 3) [21] 99.1% 100% 98.5% 95.6% 896 718 990 980 373 388 217 249
Simulator Attack(m = 5) [21] 97.6% 99.9% 96.4% 94% 815 715 836 793 368 400 206 245

Simulator Attack+ 91.9% 97.7% 89.3% 89.6% 570 653 519 592 328 404 166 194
Simulator Attack++ 98.0% 100.0% 97.0% 94.0% 765 674 782 750 350 414 180 200

l∞

NES [8] 63.8% 80.8% 89.7% 88.8% 4355 3942 3046 3051 3717 3441 2535 2592
Meta Attack [23] 75.6% 95.5% 59% 59.8% 4960 3461 3873 3899 4736 3073 3328 3586

Bandits [9] 84.5% 98.3% 76.9% 79.8% 2830 1755 2037 2128 2081 1162 1178 1188
Simulator Attack (m = 3) [21] 80.9% 97.8% 83.1% 82.2% 2655 1561 1855 1806 1943 918 1010 1018
Simulator Attack (m = 5) [21] 78.7% 96.5% 80.8% 80.3% 2474 1470 1676 1660 1910 917 957 956

Simulator Attack+ 73.8% 86.0% 71.4% 70.8% 1231 1014 1138 1201 897 589 729 684
Simulator Attack++ 79.0% 97.0% 81.0% 81.0% 2302 1307 1633 1567 1810 900 911 920

CIFAR-100

l2

NES [8] 87.6% 77% 89.3% 87.6% 1300 1405 1383 1424 1102 1172 1061 1049
Meta Attack [23] 86.1% 88.7% 63.4% 43.3% 4000 3672 4879 4989 3457 3201 4482 4865

Bandits [9] 99.6% 100% 98.9% 91.5% 1442 847 1645 2436 1058 679 1150 1584
Simulator Attack (m = 3) [21] 99.3% 100% 98.6% 92.6% 921 724 1150 1552 666 519 779 1126
Simulator Attack (m = 5) [21] 97.8% 99.6% 95.7% 83.9% 829 679 1000 1211 644 508 706 906

Simulator Attack+ 96.2% 99.3% 92.1% 80.0% 803 698 908 1072 618 546 630 780
Simulator Attack++ 98.0% 100.0% 96.0% 84.0% 823 700 928 1130 630 550 645 852

l∞

NES [8] 72.1% 66.8% 68.4% 69.9% 4673 5174 4763 4770 4376 4832 4357 4508
Meta Attack [23] 80.4% 81.2% 57.6% 40.1% 4136 3951 4893 4967 3714 3585 4609 4737

Bandits [9] 81.2% 92.5% 72.4% 56% 3222 2798 3353 3465 2633 2132 2766 2774
Simulator Attack (m = 3) [21] 89.4% 94.2% 79% 64.3% 2732 2281 3078 3238 1854 1589 2185 2548
Simulator Attack (m = 5) [21] 83.7% 91.4% 74.2% 60% 2410 2134 2619 2823 1754 1572 2080 2270

Simulator Attack+ 70.8% 78.3% 61.0% 54.6% 1606 1443 1788 2011 1088 1194 1172 1322
Simulator Attack++ 84.0% 92.0% 75.0% 60.0% 2150 1913 2305 2603 1562 1435 1765 1954

Figure 5. Attack success rates at different maximum query limits.
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(a) targeted attack in CIFAR-10 (b) targeted attack in CIFAR-10 (d) targeted attack in CIFAR-100(c) targeted attack in CIFAR-100

Figure 6. Average queries per successful image at different desired success rates.

4.3.2. Comparisons with Attacks on Normal Defensive Victim Models

The results of attacks on defensive models are presented in Table 4. The defensive
victim models are the same as those selected by Ma et al. [21] and include ComDefend
(CD) [49], Prototype conformity loss (PCL) [50], Feature Distillation (FD) [51], and Adv
Train [4]. ComDefend and Feature Distillation share a similar strategy of denoising the
input images at the beginning. This operation makes sure that the images fed into the
target model are their clean version. Prototype conformity loss represents a kind of loss
function that is usually applied to divide the classes according to the information generated
from their feature layers. For fair comparison, our PCL defensive model here is similar to
Ma’s research, in that it is not trained adversarially in these experiments. Adv Train uses a
min–max optimization framework to conduct adversarial training, which makes models
gain strong and robust features and defensive performance. Table 8 exhibits the results of
our attack against defensive models.

Table 8. Experimental results of untargeted attacks on CIFAR-10, CIFAR-100, and TinyImageNet
datasets against different defensive models with a maximum of 10,000 queries. In this table, ComDe-
fend, Feature Distillation, and Prototype Conformity Loss are referred to as CD, FD, and PCL,
respectively.

Dataset Attack
Attack Success Rate Average Query Median Query

CD [49] PCL [50] FD [51] Adv Train [4] CD [49] PCL [50] FD [51] Adv Train [4] CD [49] PCL [50] FD [51] Adv Train [4]

CIFAR-10

NES [8] 60.4% 65% 54.5% 16.8% 1130 728 1474 858 400 150 450 200
RGF [24] 48.7% 82.6% 44.4% 22.4% 2035 1107 1717 973 1071 306 768 510

P-RGF [25] 62.8% 80.4% 65.8% 22.4% 1977 1006 1979 1158 1038 230 703 602
Meta Attack [23] 26.8% 77.7% 38.4% 18.4% 2468 1756 2662 1894 1302 1042 1824 1561

Bandits [9] 44.7% 84% 55.2% 34.8% 786 776 832 1941 100 126 114 759
Simulator Attack [21] 54.9% 78.2% 60.8% 32.3% 433 641 391 1529 46 116 50 589

Simulator Attack+ 55.7% 76.7% 60.0% 26.6% 388 577 350 812 60 112 44 392

CIFAR-100

NES [8] 78.1% 87.9% 77.6% 23.1% 892 429 1071 865 300 150 250 250
RGF [24] 50.2% 95.5% 62% 29.2% 1753 645 1208 1009 765 204 408 510

P-RGF [25] 54.2% 96.1% 73.4% 28.8% 1009 679 1169 1034 815 182 262 540
Meta Attack [23] 20.8% 93% 59% 27% 2084 1122 2165 1863 781 651 1043 1562

Bandits [9] 54.1% 97% 72.5% 44.9% 786 321 584 1609 56 34 32 484
Simulator Attack [21] 72.9% 93.1% 80.7% 35.6% 330 233 250 1318 30 22 24 442

Simulator Attack+ 73.0% 74.3% 80.0% 29.7% 346 230 202 1015 34 22 23 362

TinyImageNet

NES [8] 69.5% 73.1% 33.3% 23.7% 1775 863 2908 945 850 200 1600 200
RGF [24] 31.3% 91.8% 9.1% 34.7% 2446 1022 1619 1325 1377 408 765 612

P-RGF [25] 37.3% 91.8% 25.9% 34.4% 1946 1065 2231 1287 891 436 985 602
Meta Attack [23] 4.5% 75.8% 3.7% 20.1% 1877 2585 4187 3413 912 1792 2602 2945

Bandits [9] 39.6% 95.8% 12.5% 49% 893 909 1272 1855 85 206 193 810
Simulator Attack [21] 43% 84.2% 21.3% 42.5% 377 586 746 1631 32 148 157 632

Simulator Attack+ 41.0% 80.3% 19.0% 39.7% 348 530 704 1214 34 146 154 582

4.3.3. Experimental Figure and Analysis

The three principal indicators of Tables 6–8, respectively, are attack success rate,
average query number, and median query number. In order to compare the performance of
our Simulator Attack+ with the baseline [21] and normal models under different conditions,
we set l2 and l∞ norm attack limits separately and maximum queries as 10,000. The results
in the tables evidently show that: (1) our Simulator Attack+ method can easily obtain
a reduction ranging from 5% to 10% in the average and median values of query times
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compared to the baseline Simulator Attack and other attacks; (2) our attack framework
keeps the values of attack success rate in both types of attack closed enough to that of the
original version; (3) our Simulator Attack+ also performs well when attacking black-box
models with defensive mechanism.

5. Conclusions

In this study, we first discover the feature layer similarity of simulator models based
on meta-learning. Then we propose an improved black-box attack framework, Simulator
Attack+. UCM, FABM, and LSSIM are attached to our attack, which takes more infor-
mation into consideration when searching for proper adversarial perturbations than the
baseline by Ma et al. [21]. UCM in targeted attack can utilize prior gradient knowledge
to accelerate the attack process. FABM can boost the perturbations in attentional regions.
LSSIM helps the simulator model have a warm-start. At last, the experiment results clearly
show that our Simulator Attack+ framework can use fewer queries to attack black-box
target models efficiently while maintaining a relatively high attack success rate.
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