
Citation: Suter, F.; Cernat, I.; Drăgan,

M. Some Information Measures

Properties of the GOS-Concomitants

from the FGM Family. Entropy 2022,

24, 1361. https://doi.org/

10.3390/e24101361

Academic Editors: Karagrigoriou

Alexandros, Makrides Andreas, Yong

Deng and Takuya Yamano

Received: 19 July 2022

Accepted: 21 September 2022

Published: 26 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Some Information Measures Properties of the
GOS-Concomitants from the FGM Family
Florentina Suter 1,2,*, Ioana Cernat 1 and Mihai Drăgan 1
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Abstract: In this paper we recall, extend and compute some information measures for the concomi-
tants of the generalized order statistics (GOS) from the Farlie–Gumbel–Morgenstern (FGM) family.
We focus on two types of information measures: some related to Shannon entropy, and some related
to Tsallis entropy. Among the information measures considered are residual and past entropies which
are important in a reliability context.
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1. Introduction

The notion of concomitants or induced order statistics arose in the early 1970s in the
works of David [1] and Bhattacharya [2]. Briefly, when there is a sample from a bivariate
distribution ordered by the first variate, the second variate paired with the r-th first variate
is called the concomitant of the r-th-order statistic. Concomitants are important in situations
in which are implied two characteristics and measuring one of them can influence the other.
Therefore, they have applications in many fields such as selection procedures, inference
problems, double sampling plans and systems reliability. For example, in [3,4] are studied
from a reliability point of view complex systems with components which have two sub-
components that performs different tasks, and in [5], the distribution theory of lifetimes
of two component systems is discussed. In studies regarding the concomitants there are
two elements that have to be mentioned: the kind of dependence between first and second
variate, and the kind of order for the first variate. The majority of studies are based on the
hypothesis of simple order statistics, but there are also studies that assume different kinds
of orders such as as record values order or generalized order statistics.

Generalized order statistics (GOS) was introduced by Kamps [6] and it is a unifying
concept for various types of order statistics such as simple order statistics, record values,
sequential order statistics.

In this paper, we focus on the concomitants of GOS and with the dependence structure
between the first variate and the second variate given by the Fairlie–Gumbel–Morgenstern
(FGM) family. This family is a flexible family of bivariate distributions used as a modeling
tool for bivariate data in many fields [7], one such field being Reliability, see [3–5]. The
FGM family has a simple analytical form, but it can describe only relatively weak depen-
dence because the correlation coefficient between the two components cannot exceed 1/3.
To prevent this limitation, extensions of FGM family have been proposed, for example,
iterative FGM distributions or Huang–Kotz FGM distributions [8–12]. The results obtained
in our paper will be generalized for these extensions of FGM family in a future work.

For the concomitants mentioned above, we recall and determine properties that some
information measures have. The information measures that we deal with are in two
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categories, information measures related to Shannon entropy and information measures
related to Tsallis entropy.

Since it was introduced in physics and adapted to information theory by Shannon
in 1948, the concept of entropy has become more and more important in fields such as
information theory, code theory, probability and statistics, reliability.

In probability and statistics, entropy measures the uncertainty associated to a random
variable. Taking as a starting point Shannon entropy, a series of entropies have been
defined as a generalization of it. For the concomitants of GOS from the FGM family, we will
look at Shannon-derived and Tsallis-derived entropies, and our main aim is to determine
Awad-type extensions for all the considered entropies, because Awad entropies do not
have several drawbacks that Shannon entropy, for example, has: different systems with
the same entropy, possible negative values for continuous distributions, different results in
discrete and continuous case of linear random variable transformation, etc.

Furthermore, for the concomitants of GOS from FGM, we will determine not only
entropies, but also other information measures such as Tsallis divergence and shift-invariant
Fisher–Tsallis information number.

In the following sections, we recall some definitions and properties of GOS and their
concomitants, in particular, when the bivariate distribution is in the FGM family. Then,
we will discuss Shannon-type entropies, Tsallis-type entropies, Fisher information and
divergences for concomitants of GOS from the FGM family. For these concomitants, in the
last section, we will introduce new extensions and results on information measures.

2. Generalized Order Statistics and Their Concomitants for the FGM Family
2.1. Generalized Order Statistics

The concept of GOS was introduced by Kamps [6], in 1995, who proposed an unifying
pattern of various order statistics:

Definition 1. The random variables X(1, n, m̃, k),. . . , X(n, n, m̃, k) are called GOS based on
distribution function F with density function f , if their joint density function is given by:

f (x1, . . . , xn) = k

(
n−1

∏
j=1

γj

)(
n−1

∏
i=1

(1− F(xi))
mi f (xi)

)
(1− F(xi))

k−1 f (xn) (1)

on the cone F−1(0) < x1 ≤ x2 · · · ≤ xn < F−1(1) of Rn with parameters n ∈ N, n ≥ 2, k > 0,
m̃ = (m1, . . . , mn−1), γr = k + n− r + ∑n−1

j=r mj > 0, for all r ∈ {1, 2, . . . , n− 1}.

Some particular cases of GOS are:

• Simple order statistics with m1 = m2 = · · · = mn−1 = 0 and k = 1;
• Common record values with m1 = m2 = · · · = mn−1 = −1 and k = 1;
• Sequential order statistics with γi = (n− i + 1)αi, α1, α2, . . . , αn > 0;
• Progressive type II censored order statistics based on censoring scheme (R1, R2, . . . , Rn)

with γn = k = Rn + 1, γr = n− r+ 1−∑n
i=r, 1 ≤ r ≤ n and mr = Rr, 1 ≤ r ≤ n, [13,14].

As a result of the complex formula of the joint density, finding the marginal distribu-
tions of (1) is a difficult task, but in some particular cases, marginal densities can be found.
In [6], the marginal densities are determined for m1 = m2 = . . . mn−1 = m, and in [15] for
γ1 6= γj, 1 ≤ i 6= j ≤ n. In the following, we will suppose that m1 = m2 = . . . mn−1 = m,
i.e., we are in the m-GOS case where simple order statistics, record values and progressive
type II censored order statistics with equi-balanced censoring scheme are included. Now,
the density (1) becomes:

f (x1, . . . , xn) = k

(
n−1

∏
j=1

γj

)(
n−1

∏
i=1

(1− F(xi))
m f (xi)

)
(1− F(xi))

k−1 f (xn) (2)
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on the cone F−1(0) < x1 ≤ x2 · · · ≤ xn < F−1(1) of Rn with parameters n ∈ N, n ≥ 2,
k > 0, m, γr = k + (n− r)(m + 1) > 0, for all r ∈ {1, 2, . . . , n− 1}.

The marginal density function of the r-th GOS, r = 1, 2, . . . , n, in this case, is given
by [6]:

fr(x) =
cr−1

(r− 1)!
(1− F(x))γr−1 f (x)gr−1

m (F(x)) (3)

where cr−1 = ∏r
j=1 γj and for x ∈ [0, 1):

gm(x) =

{
1

m+1 (1− (1− x)m+1), m 6= −1

log
(

1
1−x

)
m = −1.

Remark 1. For m = 0 and k = 1, i.e., the case of simple order statistics, we have γr = n− r + 1,
cr−1 = γ1γ2 . . . γr = n(n − 1) . . . (n − r + 1), g0(F(x)) = F(x), and (3) becomes the well-
known marginal density of the r-th-order statistic.

For m = −1 and k = 1, i.e., the case of record values, (3) becomes

fr(x) =
1

(r− 1)!
f (x)[− ln(1− F(x))]n−1, (4)

the marginal density of the r-th record value.
For progressive type II censored order statistics with equi-balanced censoring scheme, the form

of the marginal density is the same as the form of (3), with m = R, R being the removal number.

2.2. Concomitants

The term concomitant was introduced by David (1973) [1] and has the following
definition:

Definition 2. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be iid bivariate random variables with cumula-
tive distribution function F(x, y). Then, the Y variate associated to the r-th-order statistic of X-s,
X(r:n), denoted by Y[r:n], is the concomitant of X(r:n).

A natural use of concomitants is in selection procedures when k individuals are chosen
on the basis of their X-values. Then, the corresponding Y-values represent performance
on an associated characteristics. In Reliability Theory, the role of the concomitants is
emphasized in [3–5].

2.3. Concomitants of FGM Family

The FGM bivariate distribution family has a flexible form and it was studied by
Farlie [16], Gumbel [17], Morgenstern [18], and Johnson and Kotz [19].

Definition 3. Let X and Y be two random variables with distribution functions FX and FY,
respectively. Additionally, let α be a real number. Then, the FGM family has the distribution
function:

FX,Y(x, y) = FX(x)FY(y)[1 + α(1− FX(x))(1− FY(y))]. (5)

The corresponding probability density function (pdf) of (5) is:

fX,Y(x, y) = fX(x) fY(y)[1 + α(1− FX(x))(1− FY(y))], (6)

where fX(x) fY(y) are the marginals of fX,Y(x, y).
The parameter α ∈ [−1, 1] is known as the association parameter and the two random

variables X and Y are independent when α = 0. For α 6= 0, there is a dependence between
the two variables, characterized by the FGM-copula whose properties were studied in [20].
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Concomitants of FGM family, related to GOS, started to come into notice with the
work of Beg and Ahsanullah in 2008 [21] where the density g[r,n,m,k] of the concomitant of
the r-th GOS is derived:

g[r,n,m,k](y) = fY(y) + α(2FY(y)− 1) fY(y)C∗(r, n, m, k), (7)

where
C∗(r, n, m, k) = 1− 2

cr−1

(γ1 + 1)(γ2 + 1) . . . (γr + 1)

is a constant.

Remark 2. If m = 0, k = 1, then C∗(r, n, 0, 1) = −(n− 2r + 1)/(n + 1) and

g[r,n,0,1](y) = fY(y)− α
n− 2r + 1

n + 1
(2FY(y)− 1) fY(y) (8)

is the density of the concomitant of r-th-order statistic from the FGM family.
If m = −1, k = 1, then C∗(r, n,−1, 1) = 1− 21−r and

g[r,n,−1,1](y) = fY(y)− α(21−r − 1)(2FY(y)− 1) fY(y). (9)

If we are in the case of progressive type II censoring order statistics with equi-balanced censoring
scheme, the density of the concomitant of r-th-order statistic from the FGM family is (7) with m = R,
the removal number.

The cumulative distribution function and the survival function of the concomitant of
r-th-order statistic can also be computed:

G[r,n,m,k](y) = fY(y) + α(1− FY(y)) fY(y)C∗(r, n, m, k), (10)

G[r,n,m,k](y) = 1− fY(y)− α(1− FY(y)) fY(y)C∗(r, n, m, k). (11)

In the following, in order to make it easier to read computations, we make the notations:
Y∗[r] = Y[r,n,m,k], g[r] = g[r,n,m,k], G[r] = G[r,n,m,k], Ḡ[r] = Ḡ[r,n,m,k], C∗r = C∗(r, n, m, k).

3. Information Measures for the Concomitants from the FGM Family, Existing Results

In this section, we will recall some definitions and results for the information measures
of the concomitants of GOS from the FGM family.

3.1. Shannon and Shannon-Related Entropies

Shannon entropy was introduced by Shannon in 1948 [22], it has multiple applications
and it can be defined as:

HS(X) = −E[log f (X)] (12)

Information measures for concomitants derived from the FGM family have been stud-
ied by Tahmasebi and Behboodian: in [23] for concomitants of order statistics, and in [24]
for concomitants of GOS. Using (7), they proved that for the Shannon entropy of Y[r],
the concomitant of the r-th generalized order statistics is:

HS(Y∗[r]) = W(r, α, n, m, k) + HS(Y)(1− αC∗r )− 2αC∗r φ f (u), (13)

where

W(r, α, n, m, k) =
1

4αC∗r
{(1− C∗r α)2 log(1− C∗r α)− (1 + C∗r α)2 log(1 + C∗r α)}+ 1

2
, (14)

and

φ f (u) =
∫ 1

0
log fY(F−1

Y (u))du. (15)
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Remark 3. In [23] are analyzed the properties of (13) in the particular case when m = 0 and
k = 1, i.e., when the GOS reduces to the simple order statistics, and therefore, the entropy from (13)
in this case is the Shannon entropy of the concomitant of r-th-order statistic:

HS(Y[r]) = W(r, α, n, 0, 1) + HS(Y)
(

1 + α
n− 2r + 1

n + 1

)
+ 2α

n− 2r + 1
n + 1

φ f (u) (16)

In [24], Shannon entropy for record values is also mentioned:

HS(R[r]) = W(r, α, n,−1, 1) + HS(Y)(1 + α(21−r − 1)) + 2α(21−r − 1)φ f (u). (17)

If we are in the case of progressive type II censoring order statistics with an equi-balanced
censoring scheme, the Shannon entropy of the concomitant of r-th-order statistic from the FGM
family is (13) with m = R, the removal number.

Awad, in 1987, ref. [25] noticed that Shannon entropy, in the continuous case, does
not fulfill the condition that the entropy is preserved under the linear transformation and
proposed the following entropy known also in the literature as Sup-entropy:

HSA(X) = −E
[

log
f (X)

δ

]
(18)

where δ = sup{ f (x)|x ∈ R}. We will call this entropy Shannon–Awad entropy.
Residual and past Shannon entropies were defined in the context of reliability, being

important in measuring the amount of information that a residual life or a past life of a unit
has. In the following, the random variable X with pdf f , cdf F, and survival function F̄, is
considered positive and it has the meaning of a lifetime of a unit.

Residual entropy is introduced and its properties are analyzed in the works of
Ebrahimi [26] and Ebrahimi and Pellerey [27]. Residual entropy is based on the idea
of measuring the expected uncertainty contained in the conditional density of X− t given
X > t [27]:

HS(X; t) = −E
[

log
f (X)

F̄(t)

∣∣∣∣X > t
]

. (19)

In terms of failure rate, the residual entropy can be written as:

HS(X; t) = 1− E[log λF(X)|X > t],

where λF(·) = f (·)/F(·) is the failure rate function.
Similar to the definition of the residual entropy, DiCrescenzo and Longobardi [28]

introduced past entropy as a dual to the residual entropy. Past entropy measures the
uncertainty about past life of a failed unit:

HS
(X; t) = −E

[
log

f (X)

F(t)

∣∣∣∣X < t
]

. (20)

In terms of reversed failure rate, past entropy can be written as:

HS
(X; t) = 1− E[log τF(X)|X < t],

where τF(·) = f (·)/F(·) is the reversed failure rate function.
Residual and past entropies for concomitants of GOS from the FGM family were

determined by Mohie EL-Din et al. in [29]. They considered also concomitants of other
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types of GOS, but the form of the entropies is similar. The residual entropy of the r-th
concomitant of GOS from the FGM family is [29]:

HS(Y∗[r]; t) = log G[r](t)−
1

G[r](t)

{
(1− αC∗r )[FY(t)(log FY(t)− HS(Y; t))]+ (21)

+ 2αC∗r φ f (t) + K1(r, t, α, n, m, k)
}

,

where

K1(r, t,α, n, m, k) =
1

2αC∗r

{
−1
4

[(1 + αC∗r )
2 − (1 + αC∗r (2FY(t)− 1))2]+ (22)

+
1
2
[(1 + αC∗r )

2 log(1 + αC∗r )− (1 + αC∗r (2FY(t)− 1))2 log(1 + αC∗r (2FY(t)− 1))]
}

,

and
φ f (t) =

∫ ∞

t
FY(y) fY(y) log fY(y)dy. (23)

We notice that for t = 0, the residual entropy (21) becomes the entropy (13).

Remark 4. For m = 0 and k = 1, we obtain residual Shannon entropy for the concomitant of
r-th-order statistic:

HS(Y[r]; t) = log G[r](t)−
1

G[r](t)

{(
1− α

n− 2r + 1
n + 1

)
[FY(t)(log FY(t)− HS(Y; t))]− (24)

− 2α
n− 2r + 1

n + 1
φ f (t) + K1(r, t, α, n, 0, 1)

}
.

For m = −1 and k = 1, we obtain residual Shannon entropy for the concomitant of r-th record
value:

HS(R[r]; t) = log G[r](t)−
1

G[r](t)

{
(1− α(21−r − 1))[FY(t)(log FY(t)− HS(Y; t))]− (25)

− 2α(21−r − 1)φ f (t) + K1(r, t, α, n,−1, 1)
}

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Shannon entropy of the concomitant of r-th-order statistic from the FGM family is (21)
with m = R, the removal number.

In a similar way, the past entropy for the concomitant of the r-th GOS from the FGM
family is defined as [29]:

HS
(Y∗[r]; t) = log G[r](t)−

1
G[r](t)

{
(1− αC∗r )[FY(t)(log FY(t)− HS

(Y; t))]+ (26)

+ 2αC∗r φ f (t) + K2(r, t, α, n, m, k)
}

,

where

K2(r, t,α, n, m, k) =
1

2αC∗r

{
−1
4

[(1 + αC∗r (2FY(t)− 1))2 − (1− αC∗r )
2]+ (27)

+
1
2
[(1 + αC∗r (2FY(t)− 1))2 log(1 + αC∗r (2FY(t)− 1))− (1− αC∗r )

2 log(1− αC∗r )]
}

,

and

φ f (t) =
∫ t

0
FY(y) fY(y) log fY(y)dy. (28)

We notice that for t→ ∞, the past entropy (26) becomes the entropy (13).



Entropy 2022, 24, 1361 7 of 19

3.2. Tsallis and Tsallis-Related Entropies

For the first time, Tsallis entropy was introduced and used in the context of Cybernetics
Theory by Harvda and Charvat [30], but it has become well known since its definition as a
generalization of Boltzmann–Gibbs statistics, in the context of thermodynamics, by Tsallis
in 1988 [31]. Being the starting point of the field of non-extensive statistics, Tsallis entropy
is a non-additive generalization of the Shannon entropy and for a continuous random
variable X with density function f , it can be defined as:

HT(X) =
1

q− 1

{
1−

∫ +∞

−∞
[ f (x)]qdx

}
q > 0, q 6= 1. (29)

When q→ 1, Tsallis entropy approaches to Shannon entropy. Tsallis entropy has, in turn,
various generalizations, see, for example, [32].

Another important element in non-extensive statistics is logq function:

logq x =
x1−q − 1

1− q
, x > 0, q 6= 1, (30)

and Tsallis entropy can be obtained using this function in two ways:

HT(X) = E
[

logq
1

f (X)

]
=

1
q− 1

E
[
1− [ f (X)]q−1

]
.

Tsallis entropy has applications in many fields, from statistical mechanics and thermody-
namics, to image processing and reliability, sometimes being more suited to measuring
uncertainty than classical Shannon entropy [33,34].

In [35], Tsallis entropy was computed and its properties obtained for record values
and their concomitants when the bivariate distribution is in the FGM family.

Similar to the Shannon case, we can think about residual and past variants of the
Tsallis entropy in the context of reliability. In [36], Nanda and Paul introduced residual
Tsallis entropy as the ’first kind residual entropy of order β’. In our notation, β is q:

HT(X; t) =
1

q− 1

{
1−

∫ ∞

t

[
f (x)
F(t)

]q
dx
}

=
1

q− 1

{
1− 1

[F(t)]q

∫ ∞

t
[ f (x)]qdx

}
. (31)

In addition to entropy type information measures, there are another two types infor-
mation measures that can be associated to probability distributions—Fisher measures and
divergence measures [37].

3.3. Fisher Information Number

Fisher information measures the amount of information that we can obtain from a
sample about an unknown parameter and therefore, it measures the uncertainty included
in a unknown characteristic of a population. If the parameter is a location one, then Fisher
information is shift-invariant and has the form:

I f =
∫ +∞

−∞

(
∂

∂x
log f (x)

)2
f (x)dx = E

[(
∂

∂x
log f (x)

)2
]

. (32)

Shift-invariant Fisher information, also called Fisher Information Number (FIN), was
studied in [38]. It has applications in statistical physics where it is also known by the
name extreme physical information [39], and it is used in analyzing the evolution of
dynamical systems.

For the concomitants of GOS from the FGM family, the Fisher information number
was determined in [40].
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3.4. Divergence Measures

Divergences are useful tools when a measure of the difference between two probability
distributions is needed and therefore, they have applications in various fields, from in-
ference for Markov chains, [41–43] to machine learning [44,45]. One of the best-known
divergence is Kullback–Leibler divergence [46,47], which for two continuous random
variables Z1, with probability density f1, and Z2 with probability density f2 is :

KLD(Z1, Z2) =
∫ +∞

−∞
f1(z)log

(
f1(z)
f2(z)

)
dz. (33)

Kullback–Leibler divergence for the concomitants of GOS from the FGM family was
computed in [24] and the result is distribution-free.

One of the generalizations of Kullback–Leibler divergence measure is Tsallis diver-
gence, which expands Kullback–Leibler divergence in a similar way to that in which Tsallis
entropy extends Shannon entropy. There is a very rich literature on Tsallis divergence or
Tsallis relative entropy in the case of the discrete distributions, see, for example, [48–50].
Tsallis divergence for continuous distributions does not appear so frequently in the litera-
ture, being studied mainly in Machine Learning context, [44,45]. Tsallis divergence for the
concomitants will be determined in this paper in the next section.

4. Information Measures for the Concomitants from FGM Family, New Results

In this section, we will provide some generalizations of the existing results on the
information measures for the concomitants of GOS from the FGM family, results that
are mentioned in previous section. We are interested in Awad-type extensions of the
entropies, in residual and past Tsallis entropies, in Tsallis type extension of the FIN, and in
Tsallis divergence.

4.1. Shannon and Shannon-Related Entropies

One can easily notice that the relationship between Shannon–Awad entropy (18) and
Shannon entropy (12) is:

HSA(X) = HS(X) + log δ. (34)

In the following, we provide natural extensions of the results obtained in [24], consid-
ering Shannon–Awad entropy instead of Shannon entropy. Thus, Shannon–Awad entropy
of the concomitant of the r-th GOS from the FGM family is:

HSA(Y∗[r]) =W(r, α, n, m, k) + (HSA(Y)− log δ)(1− αC∗r )− 2αC∗r φ f (u) + log δ[r], (35)

where W(r, α, n, m, k) and φ f are given by (14) and (15) and

δ = sup{ fY(x)|x > 0}, δ[r] = sup{g[r](x)|x > 0}.

Remark 5. For the simple OS, the r-th OS concomitant from the FGM family, Shannon–Awad
entropy is:

HSA(Y[r]) = W(r, α, n, 0, 1) + (HSA(Y)− log δ)

(
1 + α

n− 2r + 1
n + 1

)
+ (36)

+ 2α
n− 2r + 1

n + 1
φ f (u) + log δ[r],

with δ[r] = sup{g[r](x)|x > 0} and g[r] being here the pdf of the concomitant r-th-order statistics.
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For the record values, the r-th record value concomitant from the FGM family, Shannon–Awad
entropy is:

HSA(R[r]) = W(r, α, n,−1, 1) + (HSA(Y)− log δ)
[
1 + α(21−r − 1)

]
+ (37)

+ 2α(21−r − 1)φ f (u) + log δ[r]

with δ[r] = sup{g[r](x)|x > 0} and g[r] being here the pdf of the concomitant r-th record value.
In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,

the Shannon–Awad entropy of the concomitant of r-th-order statistic from the FGM family is (35)
with m = R, the removal number.

An extension of the above entropies are residual and past Shannon–Awad entropies.
We define residual Shannon–Awad entropy as:

HSA(X; t) = −E

log
f (X)

F(t)δF̄
(t,∞)

∣∣∣∣X > t

, (38)

where
δF̄
(t,∞) =

1
F(t)

sup{ f (x)|x ∈ (t, ∞)}. (39)

In terms of failure rate, residual Shannon–Awad entropy can be obtained:

HSA(X; t) = 1− E[log λ(X)|X > t] + log δF̄
(t,∞). (40)

We notice that the relationship between residual Shannon entropy and residual
Shannon–Awad entropy is similar to (34) and it is:

HSA(X; t) = HS(X; t) + log δF̄
(t,∞). (41)

In a similar way, we can extend past Shannon entropy to past Shannon–Awad entropy:

HSA
(X; t) = −E

[
log

f (X)

F(t)δF
(0,t)
|X < t

]
, (42)

where
δF
(0,t) =

1
F(t)

sup{ f (x)|x ∈ (0, t)}. (43)

As a function of reversed failure rate, past Shannon–Awad entropy can be written:

HSA
(X; t) = 1− E[log τ(X)|X < t] + log δF

(0,t). (44)

We can write also the relationship between past Shannon–Awad entropy and past Shannon
entropy:

HSA
(X; t) = HS

(X; t) + log δF
(0,t). (45)

Taking into account the above relationships, (21), and (26), we can obtain the Awad-
type extension of the Shannon entropy for the concomitant of r-th GOS from the FGM
family, when the concomitant represents the residual life or the past life of a unit.
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Theorem 1. Residual Shannon–Awad entropy for the concomitant of r-th GOS from the FGM
family is:

HSA(Y∗[r]; t) = log G[r](t)−
1

G[r](t)

{
(1− αC∗r )[FY(t)(log FY(t)− HSA(Y; t) + δ

F̄Y
t,∞)]+ (46)

+ 2αC∗r φ f (t) + K1(r, t, α, n, m, k)
}
+ log δ

Ḡ[r]
(t,∞)

where K1(r, t, α, n, m, k) and φ f (t) are given by (22), (23) respectively, and

δ
F̄Y
(t,∞)

=
1

FY(t)
sup{ fY(x)|x ∈ (t, ∞)}, δ

Ḡ[r]
(t,∞)

=
1

G[r](t)
sup{g[r](x)|x ∈ (t, ∞)}.

Past Shannon–Awad entropy for the concomitant of r-th GOS from the FGM family is:

HSA
(Y∗[r]; t) = log G[r](t)−

1
G[r](t)

{
(1− αC∗r )[FY(t)(log FY(t)− HSA

(Y; t) + δ
FY
(0,t))]+ (47)

+ 2αC∗r φ f (t) + K2(r, t, α, n, m, k)
}
+ log δ

G[r]
(0,t)

where K2(r, t, α, n, m, k) and φ f (y), and δ(0,t) are given by (22) and (23) respectively, and

δ
FY
(0,t) =

1
FY(t)

sup{ fY(x)|x ∈ (0, t)}, δ
G[r]
(0,t) =

1
G[r](t)

sup{g[r](x)|x ∈ (0, t)}.

Corollary 1. The residual Shannon–Awad entropy for the concomitant of r-th-order statistic is:

HSA(Y[r]; t) = log G[r](t)−
1

G[r](t)

{(
1 + α

n− 2r + 1
n + 1

)
[FY(t)(log FY(t)− HSA(Y; t) + δ

F̄Y
t,∞)]+ (48)

− 2α
n− 2r + 1

n + 1
φ f (t) + K1(r, t, α, n, 0, 1)

}
+ log δ

Ḡ[r]
(t,∞)

.

The residual Shannon–Awad entropy for the concomitant of r-th record value is:

HSA(R[r]; t) = log G[r](t)−
1

G[r](t)

{
(1 + α(21−r − 1))[FY(t)(log FY(t)− HSA(Y; t) + δ

F̄Y
t,∞)]+ (49)

− 2α(21−r − 1)φ f (t) + K1(r, t, α, n,−1, 1)
}
+ log δ

Ḡ[r]
(t,∞)

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Shannon–Awad entropy of the concomitant of r-th-order statistic from the FGM family
is (46) with m = R, the removal number.

Similar results can be obtained also for past Shannon–Awad entropy.

4.2. Tsallis and Tsallis-Related Entropies

Information measures related to Tsallis entropy for the concomitants are very few in
the literature. In [35], Tsallis entropy and residual Tsallis entropy for the concomitants of
the record values from the FGM family are obtained. In this subsection, we will obtain
more general results, computing Tsallis entropies for the concomitants of generalized order
statistics and, furthermore, considering Awad-type extensions of the Tsallis entropies.

Theorem 2. Tsallis entropy for the concomitant of the r-th GOS from the FGM family is:

HT(Y∗[r]) =
1

q− 1

{
1−

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr EU

[
fY(F−1

Y (U))q−1Uk−s
]}

, (50)

where U is an U(0, 1) random variable and EU is the expectation of fY(F−1
Y (U))q−1Uk−s.
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Proof. Taking into account the definitions of Tsallis entropy (29) and the density of the
concomitants (6), we obtain:

HT(Y∗[r]) =
1

q− 1

{
1−

∫ ∞

0
[g[r](y)]

qdy
}

=

=
1

q− 1

(
1−

∫ ∞

0
[ fY(y)]q(1 + αC∗r (2FY(y)− 1))qdy

)
.

We have that:

(1 + αC∗r (2FY(y)− 1))q =
q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr [FY(y)]k−s.

Additionally, if we consider the transformation

FY(y) = u; y = F−1
Y (u), fY(y)dy = du,

the result (50) follows.

Corollary 2. The Tsallis entropy for the concomitant of r-th-order statistic is:

HT(Y[r]) =
1

q− 1

{
1−

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n− 2r + 1

n + 1

)k

× (51)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

.

The Tsallis entropy for the concomitant of r-th record value is:

HT(R[r]) =
1

q− 1

{
1−

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (52)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the Tsallis entropy of the concomitant of r-th-order statistic from the FGM family is (50) with
m = R, the removal number.

We now discuss some Tsallis-related entropies. First, we give an Awad-type extension
of Tsallis entropy and then we focus on Residual Tsallis, Past Tsallis entropies and their
Awad-type extensions.

Several Awad-type extensions have been proposed in the literature ([51,52]). Now, we
introduce this type of extension for Tsallis entropy and we define Tsallis–Awad entropy
for a continuous random variable X which take values in R:

HTA(X) =
1

q− 1

{
1−

∫ +∞

−∞

[
f (x)

δ

]q−1
f (x)dx

}
=

1
q− 1

{
1− 1

δq−1

∫ +∞

−∞
[ f (x)]qdx

}
, (53)

where δ = sup{ f (x)|x ∈ R}.
We notice that the relationship between Tsallis–Awad entropy and Tsallis entropy is:

HTA(X) = δ1−qHT(X) + logq δ. (54)

Using (50) and (54), we can obtain the expression of Tsallis–Awad entropy for the
concomitant of the r-th GOS from the FGM family:
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Theorem 3. Tsallis–Awad entropy for the concomitant of the r-th GOS from the FGM family is:

HTA(Y∗[r]) =
δ1−q

q− 1

{
1−

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr EU

[
fY(F−1

Y (U))q−1Uk−s
]}

+ logq δ, (55)

where U is an U(0, 1) random variable, and, in this case, δ = sup{g[r](x)|x > 0}.

Corollary 3. The Tsallis–Awad entropy for the concomitant of r-th-order statistic is:

HT(Y[r]) =
δ1−q

q− 1

{
1−

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n− 2r + 1

n + 1

)k

× (56)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

+ logq δ.

The Tsallis–Awad entropy for the concomitant of r-th record value is:

HT(R[r]) =
δ1−q

q− 1

{
1−

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (57)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

+ logq δ.

In the case of progressve type II censoring order statistics with equi-balanced censoring scheme,
the Tsallis–Awad entropy of the concomitant of r-th-order statistic from the FGM family is (55) with
m = R, the removal number.

In a similar way to the definition of residual Tsallis (31), we can consider the past
Tsallis entropy:

HT
(X; t) =

1
q− 1

{
1−

∫ t

0

[
f (x)
F(t)

]q
dx
}

=
1

q− 1

{
1− 1

F(t)q

∫ t

0
[ f (x)]qdx

}
. (58)

Taking into account Theorem 2, the following theorem is naturally deduced:

Theorem 4. Residual Tsallis entropy for the concomitant of the r-th GOS from the FGM family is:

HT(Y∗[r]; t) =
1

q− 1

{
1− 1(

Ḡ[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr × (59)

× EU

[
fY(F−1(U))q−1Uk−s|U > FY(t)

]}
,

where U is an U(0, 1) random variable and EU is the conditional expectation of
fY(F−1(U))q−1Uk−s, given U > FY(t).

Past Tsallis entropy for the concomitant of the r-th GOS from the FGM family is:

HT
(Y∗[r]; t) =

1
q− 1

{
1− 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr × (60)

× EU

[
fY(F−1

Y (U))q−1Uk−s|U < FY(t)
]}

,

where U is a U(0, 1) random variable and EU is the conditional expectation of
fY(F−1(U))q−1Uk−s, given U < FY(t).
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Corollary 4. The residual Tsallis entropy for the concomitant of r-th-order statistic is:

HT(Y[r]; t) =
1

q− 1

{
1− 1(

Ḡ[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n− 2r + 1

n + 1

)k

× (61)

× EU

[
fY(F−1(U))q−1Uk−s|U > FY(t)

]}
,

The residual Tsallis entropy for the concomitant of r-th record value is:

HT(R[r]; t) =
1

q− 1

{
1− 1(

Ḡ[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (62)

× EU

[
fY(F−1(U))q−1Uk−s|U > FY(t)

]}
.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Tsallis entropy of the concomitant of r-th-order statistic from the FGM family is (59)
with m = R, the removal number.

Similar results can be obtained for past Tsallis entropy.

We now introduce Residual Tsallis–Awad entropy:

HTA(X; t) =
1

q− 1

1− 1(
δF
(t,+∞)

)q−1

∫ +∞

t

[
f (x)
F(t)

]q
dx

 (63)

=
1

q− 1

1− 1
F(t)

E


 f (X)

F(t)δF
(t,∞)

q−1∣∣∣∣X > t


, (64)

where δF
(t,∞) =

1
F(t)

sup{ f (x)|x ∈ (t,+∞)}.
Past Tsallis–Awad entropy can also be defined:

HTA
(X; t) =

1
q− 1

1− 1(
δF
(0,t)

)q−1

∫ t

0

[
f (x)
F(t)

]q
dx

 (65)

=
1

q− 1

1− 1
F(t)

E

[ f (X)

F(t)δF
(0,t)

]q−1∣∣∣∣0 < X < t

. (66)

where δF
(0,t) =

1
F(t) sup{ f (x)|x ∈ (0, t)}.

We notice that a similar relationship to (54) can be written for residual Tsallis entropies
and for past Tsallis entropies:

HTA(X; t) =
(

δF
(t,∞)

)1−q
HT(X; t) + logq δF

(t,∞), (67)

HTA
(X; t) =

(
δF
(0,t)

)1−q
HT

(X; t) + logq δF
(0,t), (68)

and the following theorem can be proven:
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Theorem 5. Residual Tsallis–Awad entropy for the concomitant of the r-th GOS from the FGM
family is:

HTA(Y∗[r]; t) =
(δ

G[r]
(t,∞)

)1−q

q− 1

{
1− 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr × (69)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U > FY(t)
]}

+ logq δ
G[r]
(t,∞)

,

where U is an U(0, 1) random variable, and δ
G[r]
(t,∞)

= 1
G[r](t)

sup{g[r](x)|x ∈ (t,+∞)}.
Past Tsallis–Awad entropy for the concomitant of the r-th GOS from the FGM family is:

HTA
(Y∗[r]; t) =

(δ
G[r](t)
(0,t) )1−q

q− 1

{
1− 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗kr × (70)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U < FY(t)
]}

+ logq δ
G[r]
(0,t),

where U is an U(0, 1) random variable, and δ
G[r]
(0,t) =

1
G[r]

sup{g[r](x)|x ∈ (0, t)}.

Corollary 5. The residual Tsallis–Awad entropy for the concomitant of r-th-order statistic is:

HTA(Y[r]; t) =
(δ

G[r]
(t,∞)

)1−q

q− 1

{
1− 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n− 2r + 1

n + 1

)k

× (71)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U > FY(t)
]}

+ logq δ
G[r]
(t,∞)

.

The residual Tsallis–Awad entropy for the concomitant of r-th record value is:

HTA(Y[r]; t) =
(δ

G[r]
(t,∞)

)1−q

q− 1

{
1− 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (72)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U > FY(t)
]}

+ logq δ
G[r]
(t,∞)

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Tsallis entropy of the concomitant of r-th-order statistic from the FGM family is (59)
with m = R, the removal number.

Similar results can be obtained for past Tsallis entropy.

4.3. Fisher–Tsallis Information Number

Various generalizations of FIN have been proposed, see, for example, [53–55]. In [53],
the FIN is generalized, replacing the expectation and the logarithm functions with their q
variants, and in [54], a (β, q)-Fisher information is defined. We here consider the following
extension FIN, which we call Fisher–Tsallis information number:

I f = E f

[(
∂

∂x
logq f (x)

)2
]

, (73)

where logq is given by (30). This extension is a type of extension from [54], with β = 2 and
q = 1.

For the concomitants of the GOS from FGM family, we have the following theorem
which can be seen as an extension of the results obtained in [40]:
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Theorem 6. For the r-th concomitant Y∗[r] of GOS from a FGM family, the Tsallis–Fisher informa-
tion number for a location parameter is:

Ig[r] = I1 + I2 + I3, (74)

where

I1 = EU

[
( fY(F−1(U)))−2q( f ′Y(F−1

Y (U)))2(1 + C∗r α(1− 2U))2−2q
]
,

I2 = 4C∗2r α2 · EU

[
( fY(F−1(U)))4−2q(1 + C∗r α(1− 2U))−2q

]
,

I3 = −4C∗2r α · EU

[
fY(F−1(U)))2−2q f ′Y(F−1

Y (U))(1 + C∗r α(1− 2U))1−2q
]
.

Proof. From (73), we have

Ig[r] = Eg[r]

[
(g[r](Y))

−2q(g′[r](Y))
2
]
.

Using the expression (7) for the density g[r], it results in

Ig[r] = Eg[r]

[
fY(Y)−2q[1 + C∗r α(1− 2FY(Y))

]−2q
[

f ′Y(Y)(1 + C∗r α(1− 2FY(Y)))− 2( fY(Y))2C∗r α
]2
]

.

Thus,

Ig[r] =Eg[r]

[
( fY(Y))−2q[1 + C∗r α(1− 2FY(Y))

]−2q

·
[
( f ′Y(Y))

2(1 + C∗r α(1− 2FY(Y)))2 + 4( fY(Y))4C∗2r α2−

− 4 f ′Y(Y)( fY(Y))2C∗r α(1 + C∗r α(1− 2FY(Y)))
]]

.

After some computations,

Ig[r] =Eg[r]

[
( fY(Y))−2q( f ′Y(Y))

2(1 + C∗r α(1− 2FY(Y)))2−2q
]
+

+ 4C∗2r α2Eg[r]

[
fY(Y)4−2q(1 + C∗r α(1− 2FY(Y)))−2q

]
−

− 4C∗r αEg[r]

[
( fY(Y))2−2q f ′Y(Y)(1 + C∗r α(1− 2FY(Y)))1−2q

]
.

After the transformation U = FY(Y), with U ∼ U(0, 1) we obtain (74).

4.4. Tsallis Divergence

We consider Tsallis divergence for two densities, f1 and f2, as it is defined in [44]:

TD(Z1, Z2) =
∫ +∞

−∞
f1(z)logq

(
f2(z)
f1(z)

)
dz (75)

that can also be expressed as:

TD(Z1, Z2) =
1

1− q
E f1

[(
f1(z)
f2(z)

)q−1

− 1

]
. (76)

We notice that this divergence is the divergence considered in [36], with φ(x) =
logq(1/x), it is the divergence analyzed in [56], with k = 1− q, and it is Tsallis Relative
Entropy from [57].
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When q→ 1, Tsallis entropy becomes Shannon entropy and also Tsallis divergence be-
comes Kullback–Leibler divergence (33). The next theorem generalizes the results from [23],
computing Tsallis divergence for two concomitants of GOS from the FGM family.

Theorem 7. Let Y[r] and Y[s] the r-th and the s-th concomitants of the GOS from the FGM family
with the densities g[r] and g[s]. Then, the Tsallis divergence of g[s] from g[r] has the following form:

TD(Y[r], Y[s]) =
1

1− q
[D1 − D2 − 1], (77)

where

D1 =
1

q(q + 1)

(
C∗r

C∗r − C∗s

)q−1
(1 + C∗r α)q+1F1

(
q + 1, q− 1, q + 1,−C∗s (1 + C∗r α)

C∗r − C∗s

)
,

D2 =
1

q(q + 1)

(
C∗r

C∗r − C∗s

)q−1
(1− C∗r α)q+1F1

(
q + 1, q− 1, q + 1,−C∗s (1− C∗r α)

C∗r − C∗s

)
,

with F1 being the hypergeometric function.

Proof. In (76), we replace f1 and f2 with the concomitants densities:

g[r](y) = fY(y)[1 + C∗r α(2Fy(y)− 1)],

g[s](y) = fY(y)[1 + C∗s α(2Fy(y)− 1)],

and we compute the expectation:

Eg[r]

( g[r](Y)
g[s](Y)

)q−1
 =

∫ ∞

0
g[r](y)

(
g[r](Y)
g[s](Y)

)q−1

dy (78)

=
∫ ∞

0
fY(y)[1 + C∗r α(2FY(y)− 1)]

(
fY(y)[1 + C∗r α(2FY(y)− 1)]
fY(y)[1 + C∗s α(2FY(y)− 1)]

)q−1

dy.

First, we make the transformation:

FY(y) = u, y = F−1
Y (u), fY(y)dy = du,

and we obtain

Eg[r]

( g[r](Y)
g[s](Y)

)q−1
 =

∫ 1

0

[1 + C∗r α(2u− 1)]q

[1 + C∗s α(2u− 1)]q−1 du. (79)

Then, we make the transformation:

2u− 1 = v, u = (v + 1)/2, 2du = dv,

and we obtain:

Eg[r]

( g[r](Y)
g[s](Y)

)q−1
 =

1
2

∫ 1

−1

[1 + C∗r αv]q

[1 + C∗s αv]q−1 dv. (80)
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We use the general formula:

1
2

∫ 1

−1

(1 + ax)A

(1 + bx)B dx = (81)

=
1

A(A + 1)

{
(1 + a)A+1(1 + b)−B

[
a(1 + b)

a− b

]B

F1

(
A + 1, B, A + 1,− b(1 + a)

a− b

)
−

−(1− a)A+1(1− b)−B
[

a(1− b)
a− b

]B

F1

(
A + 1, B, A + 1,− b(1− a)

a− b

)}
,

where F1 is the hypergeometric function. It results in:

Eg[r]

( g[r](Y)
g[s](Y)

)q−1
 = D1 − D2.

5. Conclusions

This paper is focused on information measures related to Shannon entropy, Tsallis
entropy, Fisher information, and divergences for the concomitants of GOS from the FGM
family. We review the literature on the mentioned information measures and we generalize
existing results. The study of the concomitants, pairs of the order statistics in a sample
from a bivariate distribution, ordered by one variate, could have applications in reliability,
for example, in the analysis of the lifetime uncertainty of complex systems. For this reason,
we also discuss residual and past versions of the entropies. Considering generalized order
statistics (GOS) results in an increasing complexity of computations, but it gives a general
form of the computed measures that can be applied for the concomitants of various order
statistics.
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