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Abstract: Image fusion technology can process multiple single image data into more reliable and
comprehensive data, which play a key role in accurate target recognition and subsequent image
processing. In view of the incomplete image decomposition, redundant extraction of infrared image
energy information and incomplete feature extraction of visible images by existing algorithms, a fu-
sion algorithm for infrared and visible image based on three-scale decomposition and ResNet feature
transfer is proposed. Compared with the existing image decomposition methods, the three-scale
decomposition method is used to finely layer the source image through two decompositions. Then,
an optimized WLS method is designed to fuse the energy layer, which fully considers the infrared
energy information and visible detail information. In addition, a ResNet-feature transfer method
is designed for detail layer fusion, which can extract detailed information such as deeper contour
structures. Finally, the structural layers are fused by weighted average strategy. Experimental results
show that the proposed algorithm performs well in both visual effects and quantitative evaluation
results compared with the five methods.

Keywords: infrared and visible image fusion; three-scale decomposition; optimized WLS; ResNet-feature
transfer; weighted average strategy

1. Introduction

Image fusion plays an important role in many fields, including the medical field,
agricultural field, military field, etc. The main purpose of image fusion is to combine the
feature information of images captured by multiple sensors into a single image to obtain
a rich and comprehensive image, which plays a key role in subsequent image processing
tasks [1]. Since infrared and visible image fusion has a wide range of applications, it is the
most common type of fusion method. Generally, visible sensors can obtain images with
rich detailed information, but they cannot obtain images with rich feature information
when there are obstructions, such as smoke or insufficient illumination; infrared sensors
can obtain images with rich texture details and other thermal information, and it can still
work well in the case of poor brightness, so it can make up for the missing information in
the visible image. Infrared image processing is widely used. For example, Zhao et al. [2]
addressed the problem of pedestrian detection by placing more emphasis on the underlying
temperature information in infrared images. Arora et al. [3] proposed a novel infrared
image-correlated data processing method to obtain isothermal patterns from reconstructed
pulse-compressed data via a matched filter scheme to identify subsurface anomalies. It can
be seen that infrared images can also express a lot of information. Therefore, it is necessary
to fuse the infrared image and the visible image.

In recent years, with the continuous development of image fusion technology, various
image fusion algorithms emerged one after another. These fusion algorithms roughly in-
clude multi-scale transformation-based algorithms, sparse representation-based algorithms,
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deep learning-based methods, and hybrid methods. The method based on multi-scale
transformation is to decompose the image into multi-layer representations, and then use
different fusion rules to fuse each layer. This method can extract more detailed features of
the source image. From the initial use of Laplace pyramids to describe images [4], later Toet
proposed an image fusion method based on contrast pyramids [5] and an image fusion
method based on morphological pyramids [6], gradually developing pyramid transfor-
mation methods in the field of image fusion. Subsequently, various methods based on
multi-scale decomposition continued to appear, and image fusion algorithms based on
multi-scale transformation were gradually developed. Long et al. [7] proposed an image
fusion algorithm using infrared feature decomposition and obtained a good performance.
Kumar et al. [8] proposed a framework that fused the advantages of wavelet transform and
sparse representation. Through experiments, it was found that this method overcame the
defects of the two methods used alone, and made the fusion result closer to the expected
effect. In order to further solve the problem of noise in the fused image, Ma [9] et al. pro-
posed a multi-scale decomposition image fusion method by combining the rolling guided
filter and Gaussian filter, and achieved good results. To further achieve scale separation,
Li et al. [10] proposed a novel image fusion algorithm utilizing latent low-rank matrix
factorization, which is able to extract more salient features from source images. Most of the
methods based on multi-scale transformation decompose the image into two parts, which
can have certain advantages in extracting detailed features, but there is still a lot of room
for improvement.

The method based on sparse representation obtains the fusion image by constructing
a sparse decomposition model and reconstructing the dictionary. Yang et al. [11] combined
attention visual guidance and sparse representation to obtain sparse coefficients to recon-
struct fused images. Liu et al. [12] proposed an image fusion framework that combined
multi-scale transformation and sparse representation. By combining the advantages of
the two methods, an image fusion algorithm that can adapt to many types of images was
obtained. In order to fully retain the image detail information and edge information of the
source image, Guo et al. [13] proposed a weighted sparse representation fusion algorithm.
The experimental results showed that its fusion effect was better than other algorithms.
Although the algorithm based on sparse representation works well in some application
scenarios, it is attributed to relying on dictionary learning, so the follow-up research is also
replaced by other methods.

With the development of deep learning, it also shows unique advantages in the field
of image fusion. Li et al. [14] decomposed the source images into the basic part and the
detailed part, respectively, and then directly used the weighted average method to fuse the
basic part, and used the deep learning framework to extract features for the detailed part,
and finally reconstruct the fused image. In addition to extracting the feature information,
Wen-Bo An et al. [15] constructed a supervised convolutional network to fully extract
the complementary information of infrared and visible images, and the obtained fusion
image better retained the details in the original image. In addition, end-to-end image
fusion methods are also developing continuously. Ma et al. proposed the first image fusion
method based on a generative adversarial network (GAN) [16], which transformed the
fusion task into an adversarial learning process of infrared and visible image information
retention, which opened up a new idea for the research of deep learning fusion methods.
Zhang et al. [17] proposed a GAN image fusion algorithm based on the preservation
of structural similarity. The experiments show that this method has improved various
indicators compared with the previous methods. Algorithms based on deep learning
provide a new direction for the development of image fusion. However, many training
parameters and large amounts of data are two difficult problems for deep learning-based
methods to solve.

To overcome the shortcomings of the above algorithms, a new adaptive robust algo-
rithm that combines image decomposition and deep learning networks is designed in this
paper. Different from the traditional two-scale decomposition algorithm, the proposed
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algorithm divides the image more carefully through three-scale decomposition, which
lays a good foundation for subsequent fusion. Unlike sparse representation-based frame-
works, the proposed algorithm does not require dictionary learning. Compared with deep
learning-based models, the proposed algorithm only introduces a trained deep learning
network for feature extraction, and therefore, it is not affected by the dataset size. At
the same time, the algorithm can also give full play to the advantages of deep learning
algorithms in extracting feature details. The main contributions of this paper are as follows:

(1) A three-scale decomposition method is proposed, through which the source images
can be decomposed more finely, which lays a good foundation for subsequent fusion;

(2) The weighted least square (WLS) fusion model is improved, and the energy layer
is fused by minimizing the WLS cost function. Through this method, the fusion image can
fully extract the detailed information of the visible image without causing excess energy
information in the infrared image;

(3) The fusion model of residual neural network (ResNet)-feature transfer is designed.
By this method, the fusion detail layer can fully extract the contour structure information
of the deep source image.

The remainder of this paper is organized as follows. Section 2 introduces the principles
of rolling guided filtering and ResNet. Section 3 presents the algorithm model. Section 4
conducts the experiment and verifies the effectiveness of the proposed algorithm through
qualitative and quantitative evaluation. The conclusions are in Section 5.

2. Theoretical Foundation
2.1. Rolling Guidance Filter (RGF)

RGF has scale-aware and edge-preserving properties. Therefore, it not only has a
good ability to remove noise, but also can maintain the structure and edge characteristics
of the source image. RGF consists of two main steps: small structure removal and edge
restoration [18].

First a Gaussian filter is used to remove small structures, the image G filtered from the
input image I can be expressed as:

G = Gaussian(I, σs) (1)

where Gaussian(I, σs) represents the Gaussian filter and σs represents the standard devi-
ation as the scale parameter, through which the structural information, whose scale is
smaller than the scale space, can be removed.

Guided filters [19] are then used for iterative edge recovery because it has better
edge-preserving characteristics and higher computational efficiency than other filters. The
second process is a step of iteratively updating the restored image Jt, and the initial image
J1 is a Gaussian smooth image G. The t-th iteration can be expressed as:

Jt+1 = GuidedFilter
(

Jt, I, σs, σ2
r

)
(2)

where GuidedFilter
(

Jt, I, σs, σ2
r
)

is the guided filter; I, σs are the parameters in Equation (1);
Jt is the guided image; and σr controls the distance weight. In this paper, we set σr = 0.05.
RGF is accomplished by combining Equations (1) and (2), which can be expressed as

u = RGF(I, σs, σr, T) (3)

where T is the number of iterations and u is the filter output.

2.2. Deep Residual Networks

With the development of deep learning, neural networks have been applied to various
research fields. In general, the greater the number of network layers, the more information
can be obtained. However, with the increase in the network layers, the problem of gradient
descent will also occur, which will lead to the decline in the optimization effect. Without
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addressing this problem, He et al. [20] constructed a new neural network named ResNet in
2016, which improved the optimization ability and accuracy of the network by constructing
multi-layer connections and residual representations. Subsequently, the ResNet network
was widely used in the field of image processing and obtained great results on many
occasions. Kang et al. [21] introduced a stagnation analysis method using a hierarchical
ResNet, allowing the detection and recognition of four spatial steganography methods.
Li et al. [22] designed an algorithm for image fusion using ResNet, which extracted deep
features through the constructed network model, and finally achieved fusion. However,
the currently used ResNet structure is still not deep enough, and the deep ResNet network
is not widely used, especially in the field of infrared and visible image fusion.

The structure of ResNet is shown in Figure 1. X represents the input, ϕ(X) represents
the identity mapping to the input X, and relu represents the activation correction of the
network. ϕ(X) + X is the final output result. The ResNet residual structure used in this
paper is shown in Figure 2. The main branch uses three convolutional layers, the first
1 × 1 convolutional layer is used to compress the channel dimension. The second is a 3 × 3
convolutional layer, and the third is a 1 × 1 convolutional layer to restore the channel
dimension. Among them, the first two convolutional layers on the main branch have the
same number of convolution kernels, and the third layer has four times as many.
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The deep residual neural network is implemented through a shortcut connection, and
the network is formed by an element-wise superposition. This structure not only does
not add redundant variables and computation to the network, but also greatly improves
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the training effect and speed of the network. In addition, when the number of layers
of the network structure increases, the degradation problem can also be well solved by
such a structure. Therefore, ResNet152 is selected for feature extraction and fusion of
infrared and visible images, and it is used to fuse the detail layer, which not only does
not lose the structure details, but also can extract deeper information. It can preserve the
structural features and details of infrared and visible images to the greatest extent. The
trained ResNet152 deep feature mapping model is used for subsequent feature extraction
processing, which effectively avoids the complex problem of network training and improves
the efficiency of the algorithm.

3. Algorithmic Framework

A new image fusion model is constructed in this paper, as shown in Figure 3. Different
from the traditional image fusion algorithm, first a three-scale decomposition scheme is
adopted to decompose the image into three parts. Then, the characteristics of different
components are analyzed, and different fusion rules for pre-fusion are designed. Finally,
the final fused image is obtained by reconstructing the three pre-fused images. The specific
implementation scheme is described in detail below.
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3.1. Three-Scale Decomposition Scheme

To reduce the dependence on MST and improve the operation speed, an averaging
filter is used to decompose the source image into a base layer that preserves the thermal-
variant features of the target region and an energy layer that contains the gradient changes
of texture details. Let Fa denote an averaging filter of size 31 × 31, and Iir and Ivi denote
infrared and visible images, respectively. The base layers Bir and Bvi can be summarized as:

Bir = Iir ∗ Fa (4)

Bvi = Ivi∗ Fa (5)
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where ∗ represents the convolution operator. Then, the energy layers Eir and Evi of the
infrared image and the visible image can be expressed as:

Eir = Iir − Bir (6)

Evi = Ivi − Bvi (7)

After the base layer and the energy layer are obtained, since the amount of information
in the base layer is still large, considering that the detail features and structural features
can be fully extracted, the base layer is decomposed into the detail layer and the structure
layer again by using RGF. The structural layers Sir and Svi can be expressed as:

Sir = RGF (Bir, σs, σr, T) (8)

Svi = RGF(Bvi, σs, σr, T) (9)

where σs = 3 and T = 4. After obtaining the structure layer, the corresponding detail layer
can be expressed as:

Dir = Bir − Sir (10)

Dvi = Bvi − Svi (11)

It can be seen from the results shown in Figure 4 that the constructed three-scale
decomposition algorithm can effectively decompose the input image into the expected
results. Among them, the energy layer contains most of the contour structure information,
the structure layer contains brightness and contrast information, and the detail layer
contains the remaining small amount of edge contour and detail information. It lays the
foundation for the next design fusion strategy.
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3.2. Fusion Scheme

According to the specific characteristics of different layers, the following different
fusion schemes are designed.

3.2.1. Energy Layer Fusion

Because the energy layer has more edge structure features and infrared energy features,
the human visual system has a keen sense of energy. The traditional saliency detection
algorithm can detect the information with prominent edge structure and obvious contrast
difference, but it does not consider the infrared image and the visible image separately, and
the detected information will be too rich in infrared information and insufficient extraction
of visible light information. To overcome this defect, an optimized WLS energy layer fusion
rule is proposed.
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First, saliency map and weight map need to be generated by a saliency detection
method based on median filter and average filter. The saliency maps of infrared image Iir
and visible image Ivi are represented by M1 and M2, respectively, Fa represents an average
filter of size 31 × 31, and Fm represents a median filter of size 3 × 3. Then, the saliency map
can be expressed as Equations (13) and (14). Figure 5 shows a saliency map of a pair of
infrared and visible images:

M1 = ‖Iir ∗ Fa − Iir ∗ Fm‖ (12)

M2 = ‖Ivi ∗ Fa − Ivi ∗ Fm‖ (13)
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The edge structure information can be represented by the Euclidean distance of the
difference between the average filtering and median filtering. In this process, without
affecting the contour information, Fa is used to weaken the sharp intensity change between
adjacent pixels, and Fm is used to achieve noise reduction. After the saliency map is ob-
tained, appropriate weights should be assigned to the energy layers Eir and Evi, respectively.
a1 and a2 represent weights. In order to obtain more weights for places with rich detailed
features, the weights are designed as follows:

a1 =
M1

M1 + M2
(14)

a2 =
M2

M1 + M2
(15)

where a1, a2 ∈ [0, 1]. The initial fusion energy layer obtained by the saliency-based method
is represented as F∗E :

F∗E = a1 × Eir + a2 × Evi (16)

However, F∗E obtained by this saliency detection method contains insufficient visible
detail information and too much infrared energy information. To this end, inspired by the
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SWLS [9], the final energy layer fusion image FE is obtained by minimizing the following
WLS cost function:

∑
(x,y)

((FE(x, y)− F∗E(x, y) ) 2 +
(FE(x, y)− Evi(x, y))2

∑(x,y)∈a(x,y)
|Eir(x, y)|+ β

) (17)

where (x, y) represents the location of the pixel. The role of (FE(x, y)− F∗E(x, y))2 is to
make the final fusion energy layer FE structurally similar to the original fusion energy layer
F∗E . ∑(x,y)∈a(x,y)

|Eir(x, y)|+ β represents the coefficient of irrelevant infrared information,
and the function is to reduce the redundant infrared energy information. β represents
a minimal constant infinitely close to zero, which is set to 10−5 in this paper to prevent
division by zero. a(x,y) is a convolutional window centered at position (x, y) to control
the reduction in redundant information in infrared images of size 7 × 7. The function of
(FE(x, y)− Evi(x, y))2 is to increase the important edge detail information of visible images.
Finally, the fused energy layer FE is obtained by solving the above cost function. This pro-
cess can effectively avoid information loss or information redundancy caused by the unified
processing of infrared and visible images in traditional saliency detection algorithms.

3.2.2. Detail Layer Fusion

Since the detail layer comes from the basic components of the source images, the
detail contained in this layer is relatively weak, and it is difficult to fully extract its salient
information by general image fusion methods. Therefore, the ResNet-feature transfer
method is used to fuse the detail layers to obtain more detailed features. The specific fusion
process is shown in Figure 6.
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First, feature maps of image detail layers are extracted using ResNet152 [23]. Then, the
weight map is obtained through the feature mapping operation in Equations (18) and (19).
Finally, the detail layer fusion image FD is obtained by weight mapping and detail compo-
nent reconstruction.

ResNet152 is a pre-trained network composed of 5 convolution blocks with a total of
152 weight layers. Therefore, the depth features Fj,c

ir and Fj,c
vi of the infrared and visible detail

layer images output by the j-th (j ∈ {1, 2, 3, 4, 5}) convolutional block can be expressed as:

Fj,c
ir = ϕ(Dir) (18)

Fj,c
vi = ϕ(Dvi) (19)
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where c represents the number of channels in each deep feature layer. L1 regularization is
performed on the depth features to obtain the initial weight map:

M
.

j,∗
ir =

∑x+θ
m=x−θ ∑

y+θ
n=y−θ ‖F

j,c
ir (m, n)‖1

θ × (2θ + 1)
(20)

M
.

j,∗
vi =

∑x+θ
m=x−θ ∑

y+θ
n=y−θ ‖F

j,c
vi (m, n)‖1

θ × (2θ + 1)
(21)

where θ = 2 indicates that a matrix sparse operation with a stride of 5 × 5 is performed on
the depth feature [22].

After obtaining two initial weight maps M
.

j,∗
ir and M

.
j,∗
vi through the two detail compo-

nents Dir and Dvi, and bicubic interpolation is used to up-sample them. The initial weights
are adjusted according to the size of source images. The weights of the final infrared and
visible detail layer images are:

ω
j
ir =

M
.

j,∗
ir (x, y)

M
.

j,∗
ir (x, y) + M

.
j,∗
vi (x, y)

(22)

ω
j
vi =

M
.

j,∗
vi (x, y)

M
.

j,∗
ir (x, y) + M

.
j,∗
vi (x, y)

(23)

where ω
j
ir is the weight of the infrared detail layer image; ω

j
vi is the weight of the visible

detail layer image; and (x, y) is the position of the pixel in the image.
The final fusion result of the detail layer is:

FD = ω
j
ir × Dir(x, y) + ω

j
vi × Dvi(x, y) (24)

3.2.3. Structural Layer Fusion

The structural layer of the source image contains more overall structural information.
Therefore, the weighted average strategy [24] is introduced to obtain the structure fusion
image FS:

FS = l1Sir(x, y) + l2Svi(x, y) (25)

where l1 and l2 represent the weight values; and (x, y) are the pixel positions of the infrared
structure layer image Sir and the visible structure layer image Svi. In order to maintain the
overall structure and light intensity information of the source images, and reduce useless
information, the parameters are set as l1 = l2 = 0.5.

The final fusion image F is:

F = FE + FD + FS (26)

4. Experimental Results and Analysis
4.1. Experimental Setup

We used the infrared and visible image pairs in the public dataset to conduct ex-
periments, and selected seven pairs of images for experimental display, as shown in
Figure 7. Seven advanced algorithms including ResNet [22], CNN [25], GTF [26], IFE-
VIP [27], TIF [28], U2Fusion [29], and GANMcC [30] were selected to compare and verify
them in the same experimental environment. All the experiments were accomplished
using MATLAB R2018a 9.4.0 on a notebook PC with AMD Ryzen7 4800H with Radeon
Graphics 2.90 GHz. In addition, six indicators were selected to quantitatively evaluate
the fusion results, including entropy (EN) [31], edge information retention (QAB/F) [32],
indicator proposed by Chen-Blum (QCB) [33], mutual information (MI) [34], structural
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similarity (SSIM) [35], and Visual Information Fidelity for Fusion (VIF). EN was used to
measure the amount of information contained in the source image in the fusion image.
QAB/F utilizes local metrics to estimate how well salient information from source images is
represented in fused images. QCB is used as a human visual evaluation index to measure
the quality of fused images. MI is used to measure the amount of information transferred
from the source image into the fused image. SSIM is used to measure the structural simi-
larity between the fused image and the source image. VIF can better reflect the degree to
which the fusion result is consistent with the human visual perception. In summary, these
metrics were chosen to evaluate the fused images obtained by the proposed algorithm from
different perspectives.
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4.2. Subjective Evaluation

The proposed algorithm was compared with seven state-of-the-art fusion algorithms,
and the obtained results are shown in Figures 8 and 9. Among them, the details we want to
show in the picture are marked with red boxes and enlarged.

From Figure 8(a1–a10), it can be seen that our algorithm can effectively display the
structural details’ information in the visible image and the energy and brightness informa-
tion in the infrared image, especially for the ground and sky, and it is also more suitable
for the brightness display of tires. However, the details shown by the GTF method are
blurred. ResNet, CNN, and TIF methods can express most of the details in the source
images, but there are still some places, such as window outlines, that are blurred. The
IFEVIP method has a good demonstration of contrast expression, but the details of the
sky in the picture are lost. The fusion results of the GANMcC method are blurry and less
detailed information is displayed. Although the U2Fusion method can display a small
amount of detailed information, it cannot clearly display the detailed information of the
ground, sky, and other areas.

It can be seen from Figure 8(b1–b10) that the proposed algorithm has a good represen-
tation of the brightness of pedestrians, and has a good representation of the details of the
ground, trees, and surrounding environment, and has a good outline representation. The
ground details of the ResNet, GANMcC, and CNN methods are lost, and the tree details
of the GTF method are lost. Although the IFEVIP and U2Fusion method expresses the
detailed information well, its outline structure expression is not prominent.

As can be seen from Figure 8(c1–c10), the proposed algorithm not only maintains
good details and contrast, but also can very clearly express the overall contours of vehicles,
pedestrians, and roads. The ResNet and U2Fusion method shows poor brightness for bill-
boards. The overall presentation of CNN, FTF, GANMcC, and IFEVIP is vague. Although
the details of the TIF method are displayed, the contrast information is not well expressed.

In order to further verify the effectiveness of the proposed algorithm for the feature
preservation of visible images, a pair of pictures taken during the day are shown in the
Figure 8(d1–d10). In this case, the visible images have a better representation, while the
infrared images have a poor description of the details. It can be seen from the figure that
the proposed algorithm can better display the detailed information of the car, and can
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effectively extract the detailed information of the visible image and the contrast information
in the infrared image, and the overall color is bright. However, the contrast methods are
not good enough for the overall color representation of the image, and the fusion results of
these methods have some artificial noise.
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It can be seen from Figure 9(a1–a10) that the proposed algorithm can handle the
structure outline and detail information of pedestrians, trees, and roads in the “Camp”
scene well, and the contrast is high. The CNN and TIF methods do not adequately express
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the contrast of pedestrians. The ResNet and U2Fusion method outline structure is not clear.
Fence details are not well expressed for GTF, GANMcC, and IFEVIP methods.

It can be seen from Figure 9(b1–b10) that the proposed algorithm expresses the details
of the enlarged part very well, and the overall energy structure information is relatively
complete. Although the ResNet, U2Fusion, and CNN methods express better details, the
overall contrast is not high. The GTF, IFEVIP, GANMcC, and TIF algorithms are not good
enough in the detail representation of the enlarged part.

From Figure 9(c1–c10), it can be seen that the proposed algorithm can display the
detailed information of the phone booth, house, and trees well, and the house structure is
prominent and the contrast is well expressed. The details of the ResNet method are well
expressed, but its contour structure is not prominent. The CNN and TIF methods show a
poor contrast between pedestrians and houses. The GTF, GANMcC, and IFEVIP methods
are generally vague and have poor visual effects. Although the U2Fusion method can
maintain the structural information of branches and houses, its overall feeling is discordant
and the visual effect is poor.

To sum up, compared with the other five algorithms, the proposed algorithm can well
express the energy information in infrared images and the details and contour structure
information in visible images, and has good visual effects. In particular, the fusion results
can show more detailed information than infrared images, such as houses, trees, etc., and
can show more contrast information than visible images, such as clouds, ground textures,
etc. This further demonstrates that the proposed fusion algorithm is effective. In addition,
Table 1 shows the performance of each algorithm in five aspects: energy information,
texture details, contour structure information, chromaticity information, and overall visual
effect. It can be seen more intuitively that the proposed algorithm has better performance
than other algorithms in all aspects. In Table 1, “+” represents better performance in this
area, and “−“ represents poor performance. In addition, “+” and “−” do not explain the
problem of the algorithm itself, but the relative advantages and disadvantages.

Table 1. Comparative results of all methods.

Feature ResNet CNN GTF IFEVIP TIF GANMcC U2Fusion Proposed

Energy − + + + − − + +
Texture detail − + − + + − − +

Contour Structure − − − + + − + +
Chromaticity − + − − − − − +
Visual effects − − − − − − − +

4.3. Objective Evaluation

The objective evaluation results of the fusion results of the proposed algorithm and
the other five algorithms are shown in Figure 10. It can be seen that most of the indicators
of the proposed algorithm are ranked in the front, which fully shows that the proposed
algorithm has more outstanding performance in all aspects, and for QCB, SSIM, and VIF
metrics, the proposed algorithm always performs optimally. Although TIF performs best
in EN index in Building and QAB/F in Boat, its overall performance is still worse than the
algorithm proposed in this paper because its contour structure is not significant.

In addition, in order to enhance the reliability of the experimental results, we selected
21 pairs of image fusion results for quantitative experiments, and calculated the average
value of each index of different algorithms. The results are shown in Table 2. The data in the
table also show that the proposed algorithm has significantly higher objective evaluation
index values than the other algorithms, which further proves the effectiveness of the
proposed algorithm.

4.4. Computational Efficiency

The proposed algorithm and five contrasting algorithms are tested in the same ex-
perimental environment for the average time taken to fuse 21 pairs of images, and the
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results are shown in Table 3. Since the algorithm in this paper refers to the trained ResNet
model, the algorithm runs much faster than the ResNet algorithm. In addition, since the
proposed algorithm needs to perform three-scale decomposition and the fusion needs to be
performed in steps, the speed of the proposed algorithm is slightly slower than the tradi-
tional algorithms GTF, IFEVIP, and TIF. However, it still has great advantages compared to
the CNN, GANMcC, and U2Fusion algorithm. In future research, it is still an important
research direction to continue to improve the performance of the algorithm to improve the
computational efficiency.
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Table 2. Average quantitative evaluation results of fused images.

index ResNet CNN GTF IFEVIP TIF GANMcC U2Fusion Proposed

EN 6.46 6.746 6.675 6.319 6.668 6.426 6.451 6.94
QABF 0.446 0.441 0.338 0.38 0.468 0.417 0.423 0.487
QCB 0.498 0.487 0.394 0.436 0.451 0.413 0.422 0.527
MI 1.084 1.249 1.241 1.28 1.514 1.035 1.113 1.624

SSIM 0.358 0.656 0.513 0.508 0.493 0.341 0.398 0.901
VIF 0.432 0.443 0.416 0.397 0.438 0.401 0.419 0.452

Table 3. Compute efficiency of different methods.

Method ResNet CNN GTF IFEVIP TIF GANMcC U2Fusion Proposed

Time/s 20.73 23.16 2.91 1.34 1.03 13.41 15.02 3.16

5. Conclusions

In this paper, an infrared and visible image fusion algorithm based on three-scale
decomposition and ResNet feature transfer is proposed. Different from other image decom-
position methods, we propose a three-scale decomposition method, which decomposes the
source image twice to obtain the energy layer, detail layer, and structure layer. Through this
method, the source images can be decomposed more finely, which lays a good foundation
for the subsequent fusion. In addition, the WLS fusion model is improved, and the energy
layer is fused by minimizing the WLS cost function. Through this method, the fusion image
can fully extract the detailed information of the visible image without causing excess energy
information in the infrared image. Using the ResNet-feature transfer method to fuse the
detail layers can fully extract the contour structure information of the deep source images.
The structural layers are fused using a weighted average strategy. The experimental results
show that the algorithm outperforms the other five comparison algorithms and has good
visual effects.
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