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Abstract: The Bayesian Network (BN) structure learning algorithm based on dynamic programming
can obtain global optimal solutions. However, when the sample cannot fully contain the information
of the real structure, especially when the sample size is small, the obtained structure is inaccurate.
Therefore, this paper studies the planning mode and connotation of dynamic programming, restricts
its process with edge and path constraints, and proposes a dynamic programming BN structure
learning algorithm with double constraints under small sample conditions. The algorithm uses double
constraints to limit the planning process of dynamic programming and reduces the planning space.
Then, it uses double constraints to limit the selection of the optimal parent node to ensure that the
optimal structure conforms to prior knowledge. Finally, the integrating prior-knowledge method and
the non-integrating prior-knowledge method are simulated and compared. The simulation results
verify the effectiveness of the method proposed and prove that the integrating prior knowledge can
significantly improve the efficiency and accuracy of BN structure learning.

Keywords: Bayesian network; prior knowledge; dynamic programming; edge constraint; path constraint

1. Introduction

Many problems in the real world face uncertainty factors, and artificial intelligence
today deals with problems of uncertainty, such as image recognition, speech recognition,
intelligent decision-making, and so on. A Bayesian Network (BN) [1], as a type of Graphical
Model, has become a powerful tool to treat uncertainty problems because of its strict
mathematical foundation, visual and understandable graphic topological structure, as well
as a natural expression of reality problems. In recent years, Bayesian Networks have been
successfully applied in various fields such as medical diagnosis [2,3], fault diagnosis [4],
decision analysis [5], gene analysis [6,7], target identification [8], threat assessment [9,10],
and system reliability analysis [11,12].

However, before a BN is used to solve problems in engineering practice, the BN struc-
ture needs to be constructed first. Compared with the approximate BN structure search
algorithm based on constraint and a heuristic algorithm, the accurate solution of the BN
structure learning has recently become a popular topic in academic research. The accurate
solution includes the branch and bound method [13], integer programming [14,15], and Dy-
namic Programming (DP) [16,17]. Although the traditional BN structure learning algorithm
based on DP can obtain the global optimal solution, the acquired structure is inaccurate
when the sample does not completely contain the information of the real structure, espe-
cially when the sample size is small. The complexity problem is also the bottleneck faced by
the current DP method. However, in reality, there is a lot of deterministic prior knowledge
available in BN modeling. The prior-knowledge distribution of the BN structure is learned
to put forward a method of Bayesian network model averaging [18]. The BN structure
learning is transformed into a constrained objective function extremum problem with the
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node order in [19]. Campos [20] considers various deterministic constraints, analyzes
the interaction between constraints, and realizes it by the hill climbing method and PC
algorithm. The Nicholson [21] Incorporating expert elicited structural information in the
CaMML causal discovery program. The results show that with prior knowledge, CaMML
has excellent properties. Castelo [22] conducted BN structure learning by specifying the
prior knowledge. Borboudakis [23] took the probability of edge and path existence as prior
knowledge through rigorous mathematical derivation and conducted structured learning
through the BD score and hill-climbing method. The node order prior knowledge is inte-
grated into the process of dynamic programming in [24]. The path constraints are used
to learn the BN structure with integer programming [25]. Li proposed a constraint-based
hill-climbing approach to incorporate all these constraints [26]. Cussens [27] considered
integer linear programming (ILP) as constrained optimization and treated all constraints as
cutting planes.

As can be seen, the use of prior knowledge can not only improve the learning accuracy
but also the learning efficiency. However, no one has ever studied the use of edge and path
prior knowledge in the process of DP structure learning. Therefore, this paper proposes
a BN structure learning algorithm based on DP, which combines expert prior knowledge
and sample information effectively. The proposed algorithm incorporates edge constraints
and path constraints to limit the search process of DP and delete parts of the planning
space, so that all search processes meet the prior-knowledge requirements, thus reducing
the complexity of the algorithm.

The rest of the paper is organized as follows. Section 2 introduces the theoretical
basis of a Bayesian Network. Section 3 introduces in detail the dynamic programming
BN structure learning algorithm integrating prior knowledge. In Section 4, the algorithm
proposed in this paper is simulated and analyzed in terms of effectiveness and complexity.
Section 5 is the conclusion.

2. Theoretical Basis of Bayesian Network

Prior to the general definition of Bayesian networks, several basic concepts in graph
theory need to be introduced.

X and Y are two nodes in the directed graph G. X → Y means there is an edge from
X to Y where X is called the parent node of Y while Y is called the child node of X. For any
node X, Ch(X) represents the set of all child nodes while Pa(X) represents the set of all
parent nodes of X. If X has no parent node, then X is a root node. The set of all root nodes
of G is Root(G). If X has no child node, then X is a leaf node. The set of all leaf nodes of
G is Lea f (G). If there are k nodes, i.e., X1, . . . , Xk in G, and for each i = 1, . . . , k− 1, there
is Xi → Xi+1 , then there is a directed path from Xi to Xk, marked as X1 ⇒ Xk . For any
X ⇒ Y , X is called the ancestor node of Y while Y is the descendant node of X. Likewise,
An(X) represents the set of all ancestor nodes of X and De(X) represents the set of all
descendant nodes. If there is a node in G, and the node is its own ancestor node, then the
graph has a directed cycle. If the directed graph does not have any directed cycle, then it is
a Directed Acyclic Graph (DAG).

A Bayesian Network consists of a DAG and a Conditional Probability Table (CPT),
and its complete definition is as follows:

Definition 1 [28]. A Bayesian Network is a binary group 1〈G, Θ〉, in which G = (V, E) represents
the structure of the Bayesian network, a DAG where V = {X1, X2, . . . , Xn} represents a set of
random variables, and E is a directed edge set indicating the nature of causal association between
variables. Θ = {P(Xi|Pa(Xi)) : Xi ∈ V} is a Conditional Probability Table (CPT).

Definition 2 [28]. (node order) A node order o refers to the linear arrangement of some variables in
which Xi ≺ Xj means Xi is in front of Xj. The node order o is the node order of G. If and only if
for arbitrary

{
Xi, Xj

}
⊂ vari(o) there is Xi ≺ Xj in o, then Xj cannot be an ancestor node of Xi.
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Theorem 1 [28]. With BIC score as the criterion, in an optimal Bayesian network, any node has
at most blog(2N/ log N)c parent nodes, where N is the number of samples. This article refers to
blog(2N/ log N)c as nmp (max number parents).

3. BN Structure Learning Algorithm for Dynamic Programming Integrating
Prior-Knowledge
3.1. Dynamic Programming Algorithm

A Bayesian network structure learning algorithm based on dynamic programming is a
process of accurately solving mathematical programming problems, and with exponential
computational complexity, it is limited by the number of nodes. The state transition
equations of dynamic programming are:

maxScore(V) = max
X∈V
{maxScore(V\X) + maxScore(X, V\X)}, (1)

bestscore(X, V\X) = maxScore(X, V\X) = max
Pa(X)∈V\{X}

Score(X, Pa(X)), (2)

where V is a set of variables, X is a leaf node in the optimal structure, and Score(•) is a
decomposable scoring function [29]. Equations (1) and (2) connect the relationship between
the whole structure and its substructures, and the optimal network on the remaining nodes
V\X is recursively constructed through the above process until the remaining nodes are
a variable. All the child node sets form a Hasse Diagram, showing the whole process of
dynamic programming. When the DP algorithm calculates from top to bottom, the root
node is determined first, and then the leaf nodes that are gradually added to the remaining
nodes are universal set variables. When the DP algorithm calculates from bottom to top,
leaf nodes are determined first, and then the root nodes that are gradually added to the
remaining nodes are empty set variables. Because a Hasse Diagram contains the node
order information of the network, it is also called the Order Graph. There is another similar
graph called the parents graph [17]. Figure 1 shows a node order graph with the number of
nodes as n = 4 and the parent node graph of node X1.
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Figure 1. Node order graph and parent node graph of X1: (a) Node order graph of four nodes;
(b) Parent node graph of X1.

3.2. Expression of Constraints

In this paper, deterministic prior knowledge is directly transformed into some con-
straints. Prior knowledge and prior constraints are equivalent concepts. For convenience
of expression, constraints are used to refer to prior knowledge later. C is used in this article
to refer to a set of constraints representing edges or paths, which are expressed as follows:

• X → Y means X is the parent node of Y. X → Y means X cannot be the parent node
of Y. edge(X, Y) is used to express any edge constraint between X and Y;
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• X ⇒ Y means X is the ancestor node of Y. X ⇒ Y means X cannot be an ancestor
node of Y. In these two cases, Y is called a tail node and is a head node. path(X, Y) is
used to express any X path constraint between X and Y;

• Suppose there is an arbitrary node order o and constraint set C in which o and C are
consistent. If and only if for arbitrary {X1, X2} ⊂ (vari(o) ∩ vari(C)), there is X1 ≺ X2
in o, then X2 cannot be an ancestor node of X1 in C.

This paper uses constraints in the following two steps: (1) to limit the construction
process of the node order graph. Specifically, some illegal nodes are deleted from the
node order graph, which can reduce the complexity, especially the space complexity. (2) A
sparse parent node graph and query algorithm are constructed, so that the results of the
optimal parent node query can satisfy the constraints. Theorem 2 is given as the basis for
realizing constraints.

Theorem 2. In a given set of constraints on edges or paths edge(X1, Y1) ∈ C, path(X2, Y2) ∈ C,
for any optimal substructure G in the dynamic programming process, if {X1, Y1} ⊂ vari(G),
then there must be edge(X1, Y1) ∈ G. Similarly, if {X2, Y2} ⊂ vari(G), then there must be
path(X2, Y2) ∈ G.

Proof of Theorem 2. If edge(X1, Y1) ∈ C and {X1, Y1} ⊂ vari(G), and if there is no
edge(X1, Y1) in G, then due to the non-aftereffect property of the dynamic programming
method, all the extended structures G will not satisfy constraints C, so there must be
edge(X1, Y1) in G. path(X2, Y2) ∈ C can also be proven in the same way. The proof
is completed. �

3.3. Integrating Constraints of Edge
3.3.1. Pruning Node Order Graph

With the given constraints of edges X1 → X2 , node {X2} in the node order graph
needs to be deleted because it violates the constraint: the structures produced by the
optimal substructure of this node all satisfy the node order X2 ≺ X1 which is obviously
inconsistent with constraints X1 ≺ X2, so it is unnecessary to calculate node X2 when
constructing the node order graph. As can be seen from the above example, if a node in
the node order graph violates a constraint, it needs to be deleted. The theorem is given as
follows:

Theorem 3. In a given constraint set C, there is a node U and its set of node order oU in the node
order graph, then U needs to be deleted from the node order graph if and only if there is such a
{X1, Y1} ⊂ vari(C), satisfying the condition that X1 ⇒ X2 can be inferred from C and there are
X2 ∈ U, X1 /∈ U.

Proof of Theorem 3. In subsequent nodes of any, U, X1 is added as a leaf node, so obviously
for any o ∈ oU , there is X2 ≺ X1, which is inconsistent with X1 ⇒ X2 . Suppose for any
X1 ⇒ X2 relationship in C, there is no X2 ∈ U, X1 /∈ U, then o1 in vari(o1) = U is consistent
with C, and o2 in vari(o2) = V\U is consistent with C. Moreover, for any X1 ⇒ X2 , there
is no X2 ∈ vari(o1) or X1 ∈ vari(o2). So o made up of o1 and o2 is consistent with C. The
proof is completed. �

Theorem 4. In a given edge constraint set C and the variable set V of the problem domain, when
traversing to any node U during the construction of node order graph, make Gs = sub(GC, vari(C)\U).
If the resulting new node U∪ X of U must satisfy X ∈ (V\vari(C) ∪ root(Gs)), then all the con-
structed nodes in the last node order graph satisfy the constraint C and all deleted nodes violate the
constraint C.
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Proof of Theorem 4. The node order graph is constructed from an empty set, which satisfies
the constraint C. At this time, no node in the node order graph is deleted. When traversing
to any node U, suppose all the existing nodes in the node order graph satisfy C and all the
deleted nodes violate C. Then, it is necessary to prove that the new nodes constructed in
the node order graph satisfy the constraints and the deleted nodes violate the constraints.

The newly constructed nodes satisfy the constraints: any constructed new node
is U ∪ X, in which X ∈ (V\vari(C) ∪ root(Gs)) and Gs = sub(GC, vari(C)\U). If X ∈
(V\vari(C))X1, . . . , Xn, because U satisfies the constraint, and the new variable X has
nothing to do with constraint C, then obviously U ∪ X also satisfies the constraint. If
X ∈ (root(sub(GC, vari(C)\U))), the newly added variable X is the remaining variable
in vari(C) and it is the root node in the subgraph of the remaining variables of the edge
constraint graph. So there is no such ancestor node Y ∈ vari(C)\(U∪ X) of X in the
remaining nodes, causing there to be Y ⇒ X in C. Therefore, according to Theorem 3, any
newly added node satisfies the constraints.

No deleted node satisfies the constraints. Suppose H is deleted: H can be remade by
combining H\X with X, with X as any variable in H. If there is H\X and H\X is the node
that satisfies the constraint, then X is a non-root node in the corresponding subgraph, but
in this subgraph, there must be a corresponding root node Y. There is Y ⇒ X and Y /∈ H,
so according to Theorem 3, H does not satisfy the constraint. When there is no arbitrary X
to make H\X satisfy the constraint and if H satisfies the constraint, according to Theorem
3, there is a Y in H and X ⇒ Y . Then, a node order of constraint C, i.e., X ≺ Y ≺ . . . ≺ Z,
can be constructed by using H∩ vari(C). Take the last variable Z: if Z does not exist, then
Z = Y and H\Z satisfy the constraint, which contradicts the condition. Therefore, the
hypothesis is invalid, which proves that the arbitrarily deleted node does not satisfy the
constraints. The proof is completed. �

Theorem 3 provides the basis for pruning the node order graph. The most direct
way for the pruning is to make judgments on each node U so that they satisfy Theorem 3.
However, even the simplified judgment algorithms cannot perform with the best efficiency.
Therefore, Theorem 4 proposes a method to construct a node order graph, so that all nodes
in the graph satisfy the constraint. According to the method in Theorem 4, we can make
full use of the constraint to prune the node order graph, reduce the space complexity, and
obtain the optimal structure after the node order graph is constructed.

As the score of sets in the node order graph needs to be queried repeatedly, in order
to increase the efficiency of sets querying, this paper designs the hash function of sets in
which different sets correspond to different hash values. The hash function is designed as
follows: Suppose the set of all variable in the problem domain is {X1, . . . , Xn}. Set binary
number b with the number of digits as n. For a set U in the node order graph, if Xi ∈ U,
then set the ith place of b to 1, otherwise set it to 0. Finally, convert b to decimal which will
be the corresponding hash value.

The specific algorithm flow of the node order graph construction is shown in Algorithm 1.

3.3.2. Construction and Query of Sparse Parent Node Graph

The construction algorithm of the sparse parent node graph is as follows: As the sparse
parent node graph stores the information of the first nmp layers of nodes in the complete
parent node graph, we first construct a complete parent node graph based on the constraint
according to Theorem 4, and then store it in the sparse parent node graph every time a node
is constructed. When the first nmp layers are completely constructed, the sparse parent
node graph will be obtained. Here is an example to illustrate how to construct a complete
parent node graph based on this constraint.
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Algorithm 1. Construction algorithm of node order graph.

Constructing Node Order Graph Based on Edge Constraint

Input: SPG -Sparse parent node graph, GC -edge constraint graph
Output: G-Global optimal structure

1. PreviousLayer.HashTable← ∅ , PrevioUsLayer[∅].score← 0 , VC = vari(C)
2. for Layer ← 1 to n do
3. for each node U In the PreviousLyaer do
4. Vr ← Vc\U
5. Gr ← Removing variables of Vr And their relative arcs in Gc
6. R← Root variables of Gr
7. for each variable X ∈ (V\(U∪ Vr)) ∪R do
8. [bestparents bestscore]← GetBestScore(X, U, C, SPG)
9. curscore←U.score + bestscore
10. if NewLayer[U∪ X] Is null
11. NewLayer[U∪ X]← [curscore, parents, HashTable]
12. else if curscore > NewLayer[U∪ X].score then
13. NewLayer[U∪ X]← [curscore, parents, HashTable]
14. end if
15. end for
16. end for
17. PreviousLayer ← NewLayer
18. end for
19. G ← querying PreviousLayer.HashTable

Figure 2 gives some constraints of variables. To calculate a node of X3 in the graph,
such as the node {X1, X2}, we only need to compare the scores of {X1} and {X2}, i.e.,score{X1}
score{X2} and score(X3, {X1, X2}) when there is no constraint. Moreover, because X1 is
the parent node in the constraint, only score{X1},score(X3, {X1, X2}) are compared now. In
addition, the crossed nodes in Figure 2b do not need to be solved because these nodes
contain variables X4 and X4 is by no means the parent node of X3.
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Based on the above ideas, the specific algorithm flow of the sparse parent node graph
construction, defined as PBDP-EDGE, is shown in Algorithm 2.

The query algorithm idea of the sparse parent node graph is as follows: Suppose δ
is a query constraint of X, that is, all the possible pa(X) in U must satisfy the constraint
δ. In other words, the front set of parentsX that satisfy δ is the best parent node set in U.
Furthermore, query constraint δ must satisfy the following two conditions: (1) Y ⊂ U, (2)
CPa(X) ∩U ∈ Y, Y∩ CNPa(X) = ∅, in which CPa(X) means it is the set of parent nodes
of X and CNPa(X) means it is not.
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Algorithm 2. Construction algorithm of sparse parent node graph.

Constructing Sparse Parent Node Graph Based on Edge Constraint

Input: V-set of all variables,C-set of constraints,score(., .)-decomposable score function value
Output: SPG-Sparse parent node graph

1. for X ∈ V do
2. [scoreX , parentsX ]← ∅
3. for layer ← 0 to n do
4. for each node U Such that U ∈ V\{X}&|U| == layer do
5. BestScore(X, U) = max

Y∈P,Y/∈Pa(X)
BestScore(X, U\{Y})

6. if U∩ noPa(X) == ∅&&score(X, U) > BestScore(X, U)
7. BestScore(X, U)← score(X, U)
8. Append [scoreX, parentsX] with [BestScore(X, U), bitnarize(U)|
9. end if
10. end for
11. end for
12. Sort [scoreX , parentsX ] with scoreX In descending
13. end for
14. return SPG← [score., patrnts.]

The specific implementation is as follows: First, set a bit array validX of all 1s and with
the same length as parentsX . Then, according to the first condition in δ, first do validX& ∼
parentsXi

X for each Xi that satisfies Xi ∈ V\U. Then, according to the second condition
in δ, do validX& ∼ parentsXi

X for each Xi that satisfies Xi ∈ CPa(X) ∩U. The purpose of
this step is to ensure that all the remaining sets include all the variables in CPa(X) ∩U.
Finally, conduct validX& ∼ parentsXi

X for each Xi that satisfies Xi ∈ CNPa(X) ∩U. This
step eliminates the sets which include variables in any CNPa(X) ∩U, and the front set in
the remaining sets is the best parent node set. Algorithm 3 shows the specific algorithm of
the best parent node set query.

Algorithm 3. Query algorithm of best parent node set.

The Optimal Parent Node Set Based on Query Constraints

Input: V-set of all variables, C-set of constraints, SPG-sparse parent node graph
Output: bestsparents(., .)-The best parent node set, bestscore(., .)-The corresponding score

1. valid← allScoresX
2. for each Y1 ∈ Pa(X) ∩U do
3. valid← valid&parentsY1

X
4. end for
5. for each Y2 ∈ (V\U∪ noPa(X))\Pa(X) do
6. valid← valid& ∼ parentsY2

X
7. end for
8. index ← f irstSetBit(valid)
9. return scroreX [index], parentsX [index]

Here is an example to illustrate the implementation process. As shown in Table 1,
from {X1, X2, X4, X5}, find the best parent node sets of X3, CPa(X3) = {X1, X2} and
CNPa(X3) = {X4}. At this point, the remaining candidate sets in the table all satisfy the
first condition of δ, that is, they all are subsets of {X1, X2, X4, X5}. If there is no constraint,
{X1, X5} will be the best parent node set. Next, we need to realize the second condition.
Because {X1, X2} = CPa(X) ∩ U, do parentsX1

X &parentsX2
X . The result is shown in the

seventh row of the table, in which a value of 1 means that all sets contain {X1, X2}. Because
CNPa(X3) = {X4}, find ∼ parentsX4

X . The result is shown in the eighth row of the table in
which the value of 1 means none of them contains X4. Finally, sum the seventh and the
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eighth row to obtain the final validX . The first set {X1, X2, X5} is the best parent node set
satisfying the constraint.

Table 1. Example of query process based on constraints.

1 parentsX3 {X1, X5} {X1, X2, X4} {X1, X2, X5} { } {X1}
2 scoresX3 5 4 3 2 1

3 parentsX1
X3

1 1 1 0 1

4 parentsX2
X3

0 1 1 0 0

5 parentsX4
X3

0 1 0 0 0

6 parentsX5
X3

1 0 1 0 0

7 Operation of CPa(X3) 0 1 1 0 0

8 Operation of CNPa(X3) 1 0 1 1 1

9 valid 0 0 1 0 0

3.4. Integrating Path Constraints
3.4.1. Pruning Node Order Graph

The algorithm of the pruning node order graph by path constraint is the same as that
by edge constraint. First, construct a constraint graph GC, then use the algorithm in Table 1
to prune the node order graph, wherein path constraint graph GC of the constraint set C is
a directed acyclic graph containing variable vari(C), and for arbitrary {X1, X2} ⊂ vari(C),
there is an edge X1 → X2 between X1, X2 in GC, if and only if (X1 ⇒ X2) ∈ C.

3.4.2. Construction and Query of Sparse Parent Node Graph

As the parent node of Y must contain at least one X or one descendant node of X,
when constructing the sparse parent node graph, for Y, it is necessary to store all the
parent node sets with the number of variables below nmp. For other variables, the sparse
parent node graph is constructed according to the unconstrained condition. The specific
construction algorithm of the sparse parent node graph, defined as PBDP-PATH, is shown
in Algorithm 4.

The query algorithm idea of path constraint is as follows: For a given path constraint
X ⇒ Y , to find the best parent node set S of Y in U, if X ∈ U, there is at least one
Z ∈ {X ∪ des(X)} to make Z ∈ S. des(X) is the descendant node of X in the structure of U.
If X ⇒ Y, then there is Z /∈ S for all Z ∈ {X ∪ des(X)}.

The specific query method is as follows: Initialize a bit array validX of all 1s and
with the same length as parentsX. Conduct validX& ∼ parentsXk

X for each Xk that sat-
isfies Xk ∈ V\U. For each Xi, set an auxiliary bit array Cvalid of all ones and find
the descendant node des(Xi) of Xi. For each Z ∈ {Xi ∪ des(Xi)}, perform the OR op-
eration Cvalid

∣∣parentsZ
X . Finally, perform the AND operation valid← valid&Cvalid .

For each Xj, find des
(
Xj

)
. For each Z ∈ {Xi ∪ des(Xi)}, perform the AND operation

valid← valid & parentsZ
X . Algorithm 5 shows the specific algorithm flow of the best par-

ent node set query.
An example is given below to illustrate the implementation process.
Figure 3 is an example of path constraints, in which C is X1 ⇒ Y and X2 ⇒ Y . At

this point, we need to find the best parent node set S of Y from U = {X1, X2, X3, X4}.
Table 2 shows the specific solution process. In the table, parent node sets are selected
with part of them as the subset of U, so the first condition of δ has been satisfied. At this
point, if there is no constraint, {X2, X4} will be the best parent node set. When a constraint
is given, perform the OR operation for the line where the elements of {desX1 ∪ X1} are
and obtain Cvalid1, as in line 7. Perform OR operation for the line where the elements
of {desX2 ∪ X2} are and obtain Cvalid2, as in line 8. Then, perform the AND operation
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valid← valid&Cvalid1&Cvalid2 . At this time, valid equals 1, which shows that there are
elements both from {desX1 ∪ X1} and {desX2 ∪ X2}; therefore {X3, X4} is the best solution
at this time.

Algorithm 4. Construction algorithm of sparse parent node graph.

Constructing Sparse Parent Node Graph Based on Path Constraints

Input: V-set of all variables,C-set of constraints,score(., .)-decomposable score function value
Output:SPG-sparse parent node graph

1.for X ∈ V do
2. if X ∈ end(C) do
3. Construct Full Sparse Parent Graph (V, X, score(., .))
4. else do
5. Construct Sparse Parent Graph without Constraints (V, X, score(., .))
6. end if
7. end for
8. return SPG ← [score·, parents·]
9. Function Construct Sparse Parent Graph without Constraints (V, X, score(., .))
10. [scoreX , parentsX ← ∅]
11. for layer ← 0 to n do
12. for each node P such that P ∈ V\{X}&|P| == layer do
13. BestScore(X, P) = max

Y∈P
BestScore(X, P\{Y})

14. if score(X, P) > BestScore(X, P)
15. BestScore(X, P)← score(X, P)
16. append [scoreX , parentsX ] with [Score(X, P), bitnarize(P)]
17. end if
18. end for
19. end for
20. sort with scoreX in descending
21. return [scoreX , parentsX ]
22. end function
23. Function Construct Full Sparse Parent Graph (V, X, score(., .))
24. [scoreX , parentsX ]← ∅
25. for each P ∈ V\{X} do
26. Append [scoreX , parentsX ] with [Score(X, P), bitnarize(P)]
27. end for
28. sort with scoreX in descending
29. return [scoreX , parentsX ]
30. end function

Table 2. Example of query process based on path constraint.

1 parentsY {X2, X4} {X4} {X3, X4} { } {X3}
2 scoresY 5 4 3 2 1

3 parentsX1
Y 0 0 0 0 0

4 parentsX2
Y 1 0 0 0 0

5 parentsX3
Y 0 0 1 0 1

6 parentsX4
Y 1 1 1 0 0

7 Cvalid of {desX1 ∪ X1} 0 0 1 0 1

8 Cvalid of {desX2 ∪ X2} 1 1 1 0 1

9 valid 0 0 1 0 1
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Algorithm 5. Query algorithm of best parent node set.

The Best Parent Node Set Based on the Path Constraint Query

Input: V-set of all variables, C set of path constraints, SPG-sparse parent node graph
Output: bestsparents(., .)-the best parent node set, bestsCore(., .)-the corresponding score

1. valid← allScoresX
2. for each do
3. valid← valid& ∼ parentsYi

X
4. end for
5. for each Yj such that

(
Yj ⇒ X

)
∈ C do

6. Cvalid← allScoresX
7. for each S Holding that Yj ⇒ S in G do
8. Cvalid← Cvalid

∣∣parentsS
X

9. Cvalid← Cvalid
∣∣∣parentsYi

X
10. end for
11. valid← valid&Cvalid
12. end for
13. for each Yk such that (Yk ⇒ X) ∈ C do
14. for each S Holding that Yk ⇒ S in G do
15. valid← valid& ∼ parentsS

X
16. end for
17. end for
18. index ← f irstSetBit(valid)
19. return scroresX [index]
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4. Algorithm Simulation and Analysis
4.1. Validity Verification

In this section, in order to verify the effectiveness, first, an 18-node network is gener-
ated by using Matlab constructor. Then, the constructed network, Asia network, and Sachs
network are simulated and verified with 20 samples. In order to verify that this method
can really integrate constraints, some extreme simulation conditions are set.

1. The simulation is carried out with the Asia network. All the edge prior knowledge is
given, which is verified by the PBDP-EDGE structure. Part of the path prior knowl-
edge is given, specifically 1⇒ 6 , 2⇒ 6 , 2⇒ 8 , 3⇒ 7 , 3⇒ 8 , 4⇒ 7 , and 4⇒ 8 ,
which is verified by the PBDP-PATH structure. The results are shown in Figure 4.
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The real network structure of the Asia network is shown in Figure 4a. It can be seen
from Figure 4b that training samples contain very little information and can only learn a few
edges, and a complete structure cannot be constructed. It can be seen from Figure 4c that
the correct structure can be learned even if the sample size is small, which demonstrates the
correctness and effectiveness of the integrating edge prior-knowledge algorithm proposed
in this paper. It can be seen from Figure 4d that it is obvious that all the learned structures
contain these paths (1⇒ 6 , 2⇒ 6 , 2⇒ 8 , 3⇒ 7 , 3⇒ 8 , 4⇒ 7 , and 4⇒ 8).

2. The simulation is carried out with the Sachs network. Part of the edge prior knowledge
is given, which is verified by the PBDP-EDGE structure. Part of the path prior
knowledge is given, specifically 1⇒ 2 , 1⇒ 4 , 1⇒ 5 , 1⇒ 7 , 1⇒ 8 , 2⇒ 5 , 2⇒ 8 ,
3⇒ 4 , 4⇒ 6 , 5⇒ 6 , and 9⇒ 11 , which is verified by the PBDP-PATH structure.
The results are shown in Figure 5.

The real network structure of the Sachs network is shown in Figure 5a. As can be seen
from Figure 5b, the training sample contains little information, only a few edges can be
learned, and a complete structure cannot be constructed. It can be seen from Figure 5c
that partial correct structures can be learned even if the sample size is small, indicating the
correctness and effectiveness of integrating the edge prior-knowledge algorithm proposed
in this paper. It can be seen from Figure 5d that it is obvious that all the learned structures
contain these paths (1⇒ 2 , 1⇒ 4 , 1⇒ 5 , 1⇒ 7 , 1⇒ 8 , 2⇒ 5 , 2⇒ 8 , 3⇒ 4 , 4⇒ 6 ,
5⇒ 6 , and 9⇒ 11).

3. The simulation is carried out with the Constructed network. Part of the edge prior
knowledge is given, which is verified by the PBDP-EDGE structure. Part of the
path prior knowledge is given, specifically 1⇒ 4 , 1⇒ 17 , 2⇒ 18 , 2⇒ 13 , 2⇒ 5 ,
3⇒ 5 , 3⇒ 9 , 6⇒ 8 , 5⇒ 10 , 5⇒ 12 , 7⇒ 5 , 10⇒ 13 , 13⇒ 9 , and 15⇒ 10 ,
which is verified by the PBDP-PATH structure. The results are shown in Figure 6.
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The real structure of the Constructed network is shown in Figure 6a. As can be seen
from Figure 6b, the training samples contain little information, only a few edges can be
learned, and a complete structure cannot be constructed. It can be seen from Figure 6c
that partial correct structures can be learned even if the sample size is small, indicating
the correctness and effectiveness of the integrating constraints of the edge algorithm
proposed in this paper. It can be seen from Figure 6d that it is obvious that all the learned
structures contain these paths (1⇒ 4 , 1⇒ 17 , 2⇒ 18 , 2⇒ 13 , 2⇒ 5 , 3⇒ 5 , 3⇒ 9 ,
6⇒ 8 , 5⇒ 10 , 5⇒ 12 , 7⇒ 5 , 10⇒ 13 , 13⇒ 9 , and 15⇒ 10).

Therefore, the above simulation results can prove that the method proposed in this
paper is correct and reliable and can be realized no matter what kind of prior knowledge
is given.

4.2. Complexity Verification

• The integrating edge constraint is simulated by the Halifinder network, a large-scaled
network, and half of the real edges are randomly selected as prior knowledge. The
training sample size is 200, 500, and 1000, respectively. Table 3 shows the simulation
results. PBDP (Priors Based DP) indicates the integrating prior-knowledge method,
which is measured in seconds. The space cost refers to the size of the array to be set,
and the proportion represents the time and space ratio between the PBDP method and
DP method.

The path constraint is simulated in the same way, with the results shown in Table 4.

Table 3. Simulation comparison of integrating constraints of edge.

Sample Size Approach PBDP-EDGE DP Proportion

200
PIC Score −670,352.217 −696,271.251
Runtime 3723.053 31,114.242 0.12

Space 52,223 262143 0.199

500
PIC Score −629,520.727 −635,543.295
Runtime 3141.870 31,925.566 0.098

Space 52,223 262143 0.199

1000
PIC Score −629,520.727 −630,672.929
Runtime 3218.295 30,909.447 0.104

Space 52,223 262,143 0.199

Table 4. Simulation comparison of integrating path constraints.

Sample Size Approach PBDP-PATH DP Proportion

200
PIC Score −654,151.15 −684,005.61
Runtime 5486.113 29,359.588 0.187

Space 44,159 262,143 0.168

500
PIC Score −633,710.86 −637,161.52
Runtime 5035.867 29,785.541 0.169

Space 44,159 262,143 0.168

1000
PIC Score −629,561.51 −630,698.96
Runtime 5323.846 27,892.218 0.191

Space 44,159 262,143 0.168

It can be seen from Tables 3 and 4 that the integrating edge constraint and path
constraint can not only improve the scores, but also effectively reduce the complexity of
time and space. To sum up, this method can use edge constraints and path constraints to
effectively reduce the time and space complexity of the Dynamic Programming algorithm
and improve its timeliness significantly.
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5. Conclusions

In this paper, the specific process of dynamic planning is analyzed, and its restrictive
relationship with edge constraints and path constraints is determined. The prior constraints
are used to restrict and guide each link in dynamic planning, and deterministic prior
knowledge is integrated into the dynamic planning of BN structure learning. The BN
structure learning algorithm of dynamic planning integrating prior knowledge is proposed,
and the specific implementation is described in detail. Simulation results show that this
algorithm can use edge prior knowledge and path prior knowledge to effectively reduce
the time and space complexity of the dynamic programming algorithm. It also reveals
the complementary relationship between prior knowledge and learning in BN modeling,
that is, only by making full use of prior knowledge and training sample information can
an ideal model be obtained. This paper also provides some implications for the breaking
through of the node number in the dynamic programming method.
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