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Abstract

:

Masi entropy is a popular criterion employed for identifying appropriate threshold values in image thresholding. However, with an increasing number of thresholds, the efficiency of Masi entropy-based multi-level thresholding algorithms becomes problematic. To overcome this, we propose a novel differential evolution (DE) algorithm as an effective population-based metaheuristic for Masi entropy-based multi-level image thresholding. Our ME-GDEAR algorithm benefits from a grouping strategy to enhance the efficacy of the algorithm for which a clustering algorithm is used to partition the current population. Then, an updating strategy is introduced to include the obtained clusters in the current population. We further improve the algorithm using attraction (towards the best individual) and repulsion (from random individuals) strategies. Extensive experiments on a set of benchmark images convincingly show ME-GDEAR to give excellent image thresholding performance, outperforming other metaheuristics in 37 out of 48 cases based on cost function evaluation, 26 of 48 cases based on feature similarity index, and 20 of 32 cases based on Dice similarity. The obtained results demonstrate that population-based metaheuristics can be successfully applied to entropy-based image thresholding and that strengthening both exploitation and exploration strategies, as performed in ME-GDEAR, is crucial for designing such an algorithm.
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1. Introduction


Image segmentation is a challenging task in machine vision. It is the process of dividing an image into several non-overlapping areas based on features such as colour or texture. Image segmentation is used in a broad spectrum of applications including medicine [1,2], the modelling of microstructures [3] and food quality [4]. While a variety of image segmentation approaches have been proposed [5] and although deep learning methods have shown impressive performance for image segmentation tasks [6], techniques based on image thresholding remain popular due to their simplicity and robustness [7,8] despite not requiring a training process. Image thresholding aims to find the threshold value(s) for an image using information from the histogram of an image. While bi-level image thresholding (BLIT) methods try to find a single threshold to discriminate between the background and foreground, multi-level image thresholding (MLIT) approaches have determined multiple threshold values to partition an image into several regions. MLIT is a challenging task and has thus attracted the attention of significant research [9,10,11,12].



In recent years, entropy-based MLIT algorithms have been extensively employed for image segmentation [13,14,15]. Entropy is a measure of randomness or disorder so that homogeneous regions are characterised by low unpredictability [16]. A higher value of entropy thus shows higher separability between background and foreground, while different types of entropy, such as Kapur entropy [17], Reni entropy [18], Shannon entropy [19] and Tsallis entropy [20] can be employed. The information considered is either additive or non-additive, and is exploited in entropy-based image thresholding [21]. Renyi entropy can address additivity [18], while Tsallis entropy can take into consideration non-additivity; however, neither can simultaneously employ both additive and non-additive information.



Masi entropy [22] combines the additivity feature of Renyi entropy and the non-extensitivity feature of Tsallis entropy. Masi entropy has shown remarkable performance for BLIT, but its efficiency drastically decreases when increasing the number of thresholds due to the resulting time complexity. To address this issue, population-based metaheuristic algorithms (PBMHs) such as differential evolution (DE) and particle swarm optimisation (PSO), where a population of candidate solutions is iteratively and co-operatively improved, offer a powerful alternative. While PBMHs have been extensively used for image segmentation [23], there are only few works on PBMHs for Masi-based MLIT problems. Khairuzzaman et al. [24] employ PSO with Masi entropy for image segmentation and shows that PSO can outperform the dragonfly algorithm (DA) on six benchmark images. Fractional order Darwinian PSO was used in [25] for image segmentation based on Masi entropy. A post-processing step was introduced to remove small segmented regions and merge them into bigger regions. In [26], the water cycle algorithm (WCA) was employed for image thresholding using Masi entropy as the objective function. The obtained results indicate that WCA can achieve better performance in comparison to 5 other algorithms on 10 benchmark images. Ref. [27] employs the moth swarm algorithm (MSA) for image thresholding based on context-sensitive energy and Masi entropy and shows that it can outperform several PBMHs. Other PBMHs including multi-verse optimiser (MVO) [28,29], Harris hawks optimisation (HHO) [21,30], cuttlefish algorithm (CA) [31], and barnacles mating optimiser (BMO) [32] have also been employed for Masi entropy-based MLIT problems.



Differential evolution [33] is a well-established PBMH with three main operators: mutation, crossover, and selection. Similar to other PBMHs, during initialisation, a starting population of individuals is (randomly) generated. The mutation operator generates a mutant vector based on the differences among individuals, while crossover combines the mutant vector and its parent. Finally, the selection operator chooses the individual to include in the next iteration. In recent years, much research has focussed on improving DE [34,35,36], while DE has been shown to yield notable performance in solving complex problems [37,38,39].



In this paper, we propose a novel multi-level image thresholding algorithm named Masi entropy-based grouping differential evolution boosted by attraction and repulsion strategies (ME-GDEAR). Our proposed algorithm employs a grouping strategy using a clustering algorithm to partition the current population into groups. ME-GDEAR then uses the cluster information to update the current population. In addition, we apply attraction and repulsion strategies to further improve the efficacy of the algorithm. Extensive experiments on a set of benchmark images convincingly show the excellent image thresholding performance of ME-GDEAR in comparison to other approaches.



The remainder of the paper is organised as follows. Section 2 reviews some background about differential evolution, clustering, and image thresholding. Section 3 explains our proposed algorithm in detail, while Section 4 evaluates and discusses the obtained experimental results. Section 5 concludes the paper.




2. Background


2.1. Differential Evolution


Differential evolution (DE) [33] is a well-established population-based metaheuristic algorithm that has shown good performance in solving complex optimisation problems from a broad spectrum of domains [37,40,41]. The canonical DE algorithm includes four main steps: initialisation, crossover, mutation, and selection. The pseudo-code of DE is given in Algorithm 1, whereas the main operators are described below.





	Algorithm 1: Pseudo-code of DE algorithm.



	  [image: Entropy 24 00008 i001]






2.1.1. Initialisation


Similarly to other PBMHs, DE begins with a population of   N P   randomly generated individuals, where for a D-dimensional problem, an individual is defined as    x i  =  (  x  i , 1   ,  x  i , 2   , . . . ,  x  i , D   )  ∈  R D   .




2.1.2. Mutation


Mutation creates a mutant vector based on differences among individuals. While there is a wide range of mutation operators, DE/rand/1 is popular and defined as


   v i  =  x  r 1   + F  (  x  r 2   −  x  r 3   )  ,  



(1)




where   x  r 1    (called the base vector),   x  r 2   , and   x  r 3    are three randomly selected individuals distinct from the current population, and F is a scaling factor.




2.1.3. Crossover


Crossover combines the mutant and parent vectors, with the aim of enhancing the exploration of the population. Among the different crossover operators, binomial crossover is often chosen and is formulated as


   u  i , j   =      v  i , j      r a n d  ( 0 , 1 )  ≤  C R        x  i , j     otherwise     ,  



(2)




where   i = 1 , . . . ,  N  p o p    ,   j = 1 , . . . , D  , u is called a trial vector,   C R   is the crossover rate, and   j  r a n d    is a random number in   [ 1 ;  N  p o p   ]  .




2.1.4. Selection


The selection operator aims to select the better individual from the trial vector and the parent vector for inclusion in the next population.





2.2. Clustering


Clustering is an unsupervised pattern recognition technique to divide a set of samples into a number of groups so that samples located in the same cluster are more similar compared to those in different clusters. The main characteristics of a clustering algorithm are:




	
Each cluster should have at least one sample:    C i  ≠ ϕ , i = 1 , . . . , K  ;



	
The total number of samples in all clusters must be equal to the total number of samples:    ∪  i = 1  K  = O  ; and



	
Distinct clusters should not have a mutual sample:    c i  ∩  c j  = ϕ , j = 1 , . . . , K , i ≠ j  .








Among the different clustering algorithms, k-means [42] is a simple yet effective approach that is widely employed. k-means proceeds in the following steps:




	
Randomly select k samples as cluster centres;



	
Allocate each sample to its closest cluster centre based on a distance metric (often Euclidean distance);



	
Recalculate the new cluster centres as the mean value of the samples located in each cluster;



	
If the stopping condition is satisfied, the algorithm has terminated—otherwise go to Step 2.









2.3. Multi-Level Image Thresholding


Multi-level image thresholding is a popular approach for image segmentation. MLIT aims to find D threshold values as


     M 0    =    { f  ( x , y )  ∈ I | 0 ≤ f  ( x , y )  ≤ t  h 1  − 1 }       M 1    =    { f  ( x , y )  ∈ I | t  h 1  ≤ f  ( x , y )  ≤ t  h 2  − 1 }       M i    =    { f  ( x , y )  ∈ I | t  h i  ≤ f  ( x , y )  ≤ t  h  i + 1   − 1 }       M D    =    { f  ( x , y )  ∈ I | t  h m  ≤ f  ( x , y )  ≤ L − 1 }     



(3)




where   f ( x , y )   indicates an image pixel at location   ( x , y )   and L is the number of intensity levels in the image.   M i   thus gives an image segment based on the threshold values and it is the selection of these   t  h D    that is at the core of this paper.





3. Proposed ME-GDEAR Algorithm


In this paper, we propose Masi entropy-based grouping differential evolution boosted by attraction and repulsion strategies (ME-GDEAR), as an improved DE algorithm for multi-level image thresholding. The general structure of our proposed algorithm is shown in Figure 1. In the following, we first explain the main components of ME-GDEAR, and then detail how the algorithm proceeds.



3.1. Grouping Strategy


We propose a grouping strategy, inspired by [43], for dividing the current population into groups. Our grouping strategy has two main operators: region creation and population update.



3.1.1. Region Creation


Our grouping strategy first creates some regions based on the k-means algorithm. Here, each cluster indicates a region and the number of clusters is set as a random number between 2 and    N P   . Cluster centres are the means of individuals in the same cluster, meaning that each cluster centre holds information about the individuals in the cluster. The cluster centres thus support a sort of multi-parent crossover. Figure 2 indicates the process of region creation for a toy example.




3.1.2. Population Update


The cluster centres created above should be included in the current population. To this end, we employed a generic population-based algorithm (GPBA) proposed in [43,44] to boost the performance of the algorithm. GPBA uses four operators to tackle optimisation problems, namely:




	
Selection: randomly choose some individuals from the current population. This relates to choosing initial samples in the k-means algorithm;



	
Generation: create m individuals as set A. For this, ME-GDEAR selects the cluster centres as the new individuals, that is, the new individuals are generated using k-means clustering;



	
Substitution: choose m individuals (set B) from the population for substitution. There are various ways to select some individuals from the population; ME-GDEAR uses random selection as a simple selection strategy;



	
Update: from the union set   A ∪ B  , the m best individuals are selected as   B ¯  . The new population is then obtained as    ( P − B )  ∪  B ¯   .









3.1.3. Clustering Period


In ME-GDEAR, clustering is not performed in every iteration. Instead, clustering is periodically performed [43,45], where parameter   C P   defines the clustering period. Selecting an effective clustering period is essential so that DE can create stable clusters.





3.2. Attraction and Repulsion Strategies


We introduce attraction and repulsion strategies into ME-GDEAR inspired by the WOA algorithm [46] in order to explore the search space more effectively. These strategies are applied with a probability   P r  . Three operators are employed, which we explain below, while switching between them is performed based on some probabilities.



3.2.1. Repulsion from Random Individuals


This operator causes all individuals to move away from some randomly selected individuals as


   x i  =  x r  − A M ,  



(4)




with


   M = | C   x r  −  x i   | ,   



(5)




where   x r   is a random individual selected from the current population, A is a number greater than 1, and C is a random number between 0 and 2.




3.2.2. Attraction towards the Best Individual


Here, each individual tries to converge towards the best individual as


   x i  =  x  b e s t   − A M ,  



(6)




with:


   M = | C   x  b e s t   −  x i   | ,   



(7)




where   x  b e s t    is the best individual in the current population, A is a number less than 1, and C is a random number between 0 and 2.




3.2.3. Attraction towards the Best Individual (Spirally)


This operator updates an individual in a spiral way as


   x i  =  x  b e s t   +  e  b l   cos  ( 2 π l )  M ,  



(8)




with:


   M = |   x  b e s t   −  x i   | ,   



(9)




where   x  b e s t    is the position of the best individual, b is a constant, and l is a random number in   [ − 1 , 1 ]  .





3.3. Encoding Strategy


The encoding strategy determines the structure of each individual in the population. In ME-GDEAR, we employed, as illustrated in Figure 3, a one-dimensional vector to encode the threshold values as


  x = [  t  h 1  , t  h 2  , . . . , t  h D   ] ,  



(10)




where D is the number of threshold values, and   t  h i    is the i-th threshold value.




3.4. Objective Function


The probability of occurrence of pixel intensity i is:


   h i  =   n i   M N   ,   h i  ≥ 0 ,   ∑  i = 0   L − 1    h i  = 1 ,  



(11)




where M and N are the dimensions of the image, L is the number of image intensities, and   n i   is the number of pixels of intensity i.



For our MLIT algorithm, the class likelihoods are computed as


   w 1  =  ∑  i = 0   t  h 1     h i  ,  w 2  =  ∑  i = t  h 1  + 1   t  h 2     h i  , ⋯ ,  w D  =  ∑  i = t  h D  − 1   L − 1    h i  ,  



(12)




and the multi-level Masi entropy (MME) of each class is calculated as


     H 1    =     1  1 − r   log  [ 1 −  ( 1 − r )   ∑  i = 0   t  h 1     (   h i   w 1   )  log  (   h i   w 1   )  ]        H 2    =     1  1 − r   log  [ 1 −  ( 1 − r )   ∑  t  h 1  + 1   t  h 2     (   h i   w 2   )  log  (   h i   w 2   )  ]       ⋯      H D    =     1  1 − r   log  [ 1 −  ( 1 − r )   ∑  t  h D  + 1  L   (   h i   w D   )  log  (   h i   w D   )  ]  ,     



(13)




where r is the value of the entropic parameter.



Finally, we define the objective function as


  f  (  t 1  ,  t 2  , . . . ,  t D  )  =  H 1  +  H 2  + . . . +  H D  .  



(14)








3.5. Proposed Algorithm


Our ME-GDEAR algorithm, which performs clustering-based DE boosted by attraction and repulsion strategies for Masi-entropy multi-level image segmentation, proceeds in the following steps:




	
Initialise the parameters including population size   N P  , maximum number of function evaluations   N F  E max   , clustering period   C P  , probability of attraction and repulsion strategies   P r  , and entropic parameter r. Set the current number of function evaluations   N F E = 0  , and the current iteration   i t e r = 1  .



	
Generate the initial population of size   N P   using uniformly distributed random numbers.



	
Calculate the objective function value of each individual in the population using Equation (14).



	
Set   N F E = N F E +  N P   .



	
For each individual, perform Steps 5a–5d:



	(a)

	
Apply mutation operator;




	(b)

	
Apply crossover operator;




	(c)

	
Calculate the objective function using Equation (14);




	(d)

	
Apply selection operator.







	
Set   N F E = N F E +  N P   .



	
If   ( i t e r %  C P  = = 0 )  , go to Step 7a—otherwise, go to Step 8:



	(a)

	
Randomly generate k as random integer number between 2 and    N P   ;




	(b)

	
Perform k-means clustering and select k cluster centres as set A;




	(c)

	
Select k individuals randomly from current population as set B;




	(d)

	
From   A ∪ B  , select best k individuals as   B ¯  ;




	(e)

	
Select new population as    ( P − B )  ∪  B ¯   .







	
If   r a n d <  P r   , go to Step 8a—otherwise, go to Step 9.



	(a)

	
Generate two random numbers,   r 1   and   r 2  , between 0 and 1, and one random number, C, between 0 and 2;




	(b)

	
Set a as   2 − N F E ( 2 / N F  E  m a x   )   and A as   2 a r 1 − a  ;




	(c)

	
If   r a n d < 0.5  , go to Step 8d—otherwise, go to Step 8g;




	(d)

	
If   | A | ≥ 1  , go to Step 8e—otherwise, go to Step 8f;




	(e)

	
Apply repulsion operator using Equation (4) and go to Step 9;




	(f)

	
Apply attraction operator using Equation (6) and go to Step 9;




	(g)

	
Apply spiral attraction operator using Equation (8).







	
Set   i t e r = i t e r + 1  .



	
If   N F E > N F  E max   , go to Step 11—otherwise, go to Step 5.



	
Select the best individual as the set of optimal threshold values.









3.6. Monte-Carlo Simulations


In our approach, clustering acts similarly to a multi-parent crossover. To analyse the effect of clustering on the algorithm’s performance, we designed some Monte-Carlo simulations. For this, we selected three representative images from the Berkeley image segmentation database [47], namely 147091, 101087, and 253027.



The golden region was defined as a hyper-sphere whose diameter is the middle 60% interval of the shrunken search space and whose centre is the centre of the shrunken search space [48]. The lower and higher bounds of the shrunken search space are the minimum and maximum of the current population, respectively. An individual is located in the golden region if the distance to the centre point is less than the radius of the hyper-sphere. Points in the golden region are more likely to be close to an unknown optimum solution [48].



In the first simulation, the percentages of cluster centres and random individuals which are located in the golden region were computed. In each iteration, several randomly generated individuals were generated (based on the population size) and their locations were found (inside the golden region or not). Then, the location of cluster centres was obtained. Figure 4 gives the results (all simulations were repeated 10,000,000 times) and shows that the probability of a cluster centre falling in the golden region is much higher than that of a random individual, indicating that cluster centres are biased toward the centre of the golden region.



In the next experiment, we calculated the distance between the centre of the golden region and cluster centres and between the centre of the golden region and random individuals. From Figure 5, which shows the results, we can observe that the distance between the cluster centres and the centre of golden region is smaller than the distance between random individuals and the centre of golden region, indicating that the cluster centres are closer to the centre of golden region compared to random individuals.



Finally, we evaluate the mean objective function value with and without our proposed grouping strategy to assess its effectiveness. Figure 6 shows that for all images, the mean objective function values are improved, confirming that the grouping stage leads to improved thresholding performance.





4. Results and Discussion


In order to evaluate the performance of our proposed ME-GDEAR algorithm, we performed several experiments on a set of benchmark images which are widely used to test thresholding algorithms, namely Boats, Peppers, Goldhill, Lenna, and House, as well as seven images from the Berkeley image segmentation database [47], 12003, 181079, 175043, 101085, 147091, 101087, and 253027. Figure 7 shows the images and their histograms. As we can see, the image histograms show different characteristics; some images such as Lenna and Peppers have different peaks and valleys, while others such as 175043 have only one peak and images such as Goldhill have abrupt changes in the histogram.



We compared ME-GDEAR with a number of population-based image thresholding algorithms, including Masi entropy-based differential evolution (ME-DE), the Masi entropy-based firefly algorithm (ME-FA), Masi entropy-based bat algorithm (ME-BA), Masi entropy-based moth flame optimisation (ME-MFO), Masi entropy-based dragonfly algorithm (ME-DA), and Masi entropy-based whale optimisation algorithm (ME-WOA).



The population size and the number of function evaluations for all algorithms were 50 and 10,000, respectively. For ME-GDEAR,   C p   and   p r   are set to 5 and 0.2, respectively. For the other algorithms, we used the default values for the various parameters which are listed in Table 1. For all algorithms, the entropic parameter was set to 1.2. Each algorithm was run 25 times and we reported the average and standard deviation over these 25 runs.



4.1. Objective Function Results


We first compared the algorithms in terms of objective function values. Table 2 gives the results of all algorithms and all images for   D = 3  . For each image and algorithm, we give the average, standard deviation, and resulting rank (based on the average) of each algorithm. In addition, the average ranks and overall ranks are reported.



As we can see, ME-GDEAR is ranked first or second for 8 of the 12 images, leading to the first overall rank. ME-DE is ranked top for three images, while ME-FA gives the best results for two images and these two algorithms give the second-best results overall.



Table 3 reports the results for   D = 4  . ME-GDEAR is again clearly ranked first overall. By comparing Table 2 and Table 3, we can observe that ME-DE drops from an average rank of 3.25 to 4.50, leading to an overall rank of 5 for   D = 4  . In contrast, ME-MFO is ranked second overall for   D = 4  , improving from its fourth rank for   D = 3  .



For   D = 5  , similar results can be seen in Table 4. ME-GDEAR yields the first overall rank, while ME-MFO is ranked second. There is a clear difference between the average rank of ME-GDEAR (1.83) and that of ME-DE (4.17) which shows that our approach clearly outperforms differential evolution.



The curse of dimensionality is a challenging problem in solving an optimisation problem, since increasing the number of dimensions results in exponentially expanding the search space. To assess our proposed algorithm in higher dimensions, we compared ME-GDEAR for   D = 10   against the other algorithms in Table 5. It is obvious that our algorithm again yields the best results, being ranked first or second for 9 of the 12 images, while ME-BA is ranked second overall.



Overall, ME-GDEAR thus outperforms all other algorithms for all tested dimensionalities, indicating the impressive multi-level image thresholding performance.




4.2. Feature Similarity Index Results


The feature similarity index measure (FSIM) [53] is a popular measure for evaluating image quality which is based on two low-level features—phase congruency, which measures the significance of local structures; and gradient magnitude, which incorporates contrast information.



Table 6 lists the FSIM results for   D = 3  . From there, we can see that our proposed algorithm is again ranked top overall. The same holds for   D = 4   whose results are in Table 7 and for   D = 5   with results in Table 8.



The results for the higher-dimensional problem with   D = 10   are given in Table 9. From there, we can see that ME-GDEAR maintains its efficacy and outperforms all other algorithms.



Overall, ME-GDEAR also outperforms all other algorithms in terms of FSIM and does so for all dimensionalities, confirming the efficacy of our proposed algorithm.




4.3. Dice Measure


We further performed an evaluation based on Dice similarity [54], which measures the overlap between two segmented images. Since the Dice measure requires a ground truth, we can only apply it on the images of the Berkeley segmentation dataset. As there are multiple manual segmentations for each image, we take the maximum obtained Dice score as our measure for comparison.



Table 10 gives the results for   D = 3   and shows ME-GDEAR to give the best Dice score for 5 of the 7 images, and, consequently, the best average rank.



Similar results are obtained for   D = 4  ,   D = 5  , and   D = 10  , as can be observed from Table 11, Table 12 and Table 13, respectively.




4.4. Statistical Tests


Owing to the random characteristics of PBMHs, we also performed statistical tests, based on objective function performance, to further assess the algorithms. In particular, we conducted two non-parametric statistical tests, the Wilcoxon signed rank test and the Friedman test [55]. The Wilcoxon signed rank test is a pair-wise test to compare two algorithms, while the Friedman test allows to evaluate more than two algorithms. The null hypothesis (  H 0  ) states that there is no significant difference between algorithms, while the alternative hypothesis (  H 1  ) investigates a difference. Furthermore, the level of statistical significance  α  indicates the hypothesis rejection probability: if the calculated p-value is lower than  α ,   H 0   is rejected.



The results of the Wilcoxon signed rank test between ME-GDEAR and the other algorithms are given in Table 14. From there, we can see that in all cases, the obtained p-value is much smaller than   α = 0.05  , confirming that ME-GDEAR statistically outperforms the other algorithms.



The results of the Friedman test are given in Table 15. It is apparent that ME-GDEAR yields the lowest rank (1.96) and with a wide margin over the second ranked algorithm (ME-BA). The obtained p-value is negligible, confirming the fact that there is a significant difference between the algorithms. The critical value for (8 − 1) = 7 degrees of freedom with a 0.05 significance level is 14.067 (from chi-squared distribution table). The obtained chi-squared value of 87.6 is much higher than the critical value; in other words,   H 0   is rejected.




4.5. Visual Evaluation


In this section, we visually compare the results of the algorithms. For this, we select (due to length restrictions) image 147091 for   D = 5   and image 101087 for   D = 10   as representatives examples. Since the images are from the Berkley segmentation dataset, there are several ground truth segmentations available for each, although these are often quite different.



Figure 8 shows the manual segmentations together with the images thresholded by all algorithms for image 147091 for   D = 5  . We can notice that our proposed algorithm can segment the image with less noise, particularly the parts of the sky that are cloudless. In contrast, some algorithms such as ME-BA and ME-WOA are unable to distinguish between the left vertical margin and its adjacent parts.



Figure 9 shows the results for images 101087 and   D = 10  . Here, we can observe that some algorithms such as ME-WOA and ME-BA do not perform well, most noticeably in the sky part, while ME-GDEAR works significantly better and with less noise. Some algorithms such as ME-FA, ME-BA, and ME-WOA cannot properly segment the shadow part of the lake; these algorithms segment the shadow part into three different regions with almost the same proportions, while our proposed algorithm segments this part more reasonably into two partitions. It is worth noting that in our proposed method the distribution of the classes in the shadow part is not the same and most of the shadow part belongs to one single class, which is more in line with reality.




4.6. Effect of Parameters


In ME-GDEAR, we introduce two new parameters, namely   C P   and   P r  . To see their effect, we select three representative images, 147091, 101087, and 253027 with   D = 10  . As shown in Figure 10, the performance highly depends on   C P  . Therefore, finding a good value for   C P   is beneficial to achieve better thresholding. The best value was obtained for    C P  = 5  .



Figure 11 shows results for different values of   P r  . As we can see, 0.2 is an appropriate value for this parameter.





5. Conclusions


Multi-level image thresholding remains a popular image segmentation approach. Its aim is to find optimal thresholds based on information available in the image histogram. In this paper, we proposed an improved differential evolution algorithm for MLIT based on Masi entropy. Our ME-GDEAR algorithm introduces (1) a grouping strategy into DE to cluster the population and use cluster information to update the population; and (2) attraction and repulsion strategies to more effectively update individuals. Experiments on a benchmark image set with different characteristics clearly demonstrate that ME-GDEAR outperforms other MLIT approaches.



One challenge of image thresholding algorithm is that they may not be too widely used on their own, particularly for higher dimensions. However, they can also be effectively employed as a pre-processing technique. For example, ref. [56] uses image thresholding as a pre-processing step for the application of a subsequent graph cut segmentation algorithm. Therefore, in future work, we intend to integrate our approach with other image segmentation algorithms. Another challenge is that only the image histogram is used, thus ignoring 2-dimensional image information including texture.



Furthermore, some of the drawbacks of ME-GDEAR can be addressed in future work. For instance, it uses k-means to cluster the population which can be time-consuming. Using methods with lower computational demand can thus be considered. Furthermore, as is common with other population-based metaheuristic algorithms, parameter tuning is a demanding task and investigating mechanisms for automatic parameter-tuning will be beneficial. Other planned future work includes the application of alternative objective functions to improve segmentation and a multi-objective variant of the algorithm.
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Figure 1. General structure of the ME-GDEAR algorithm. 
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Figure 2. Population clustering: red points represent individuals and black points indicate cluster centres. The population is divided into 3 clusters. A is the set of cluster centres while B contains some random individuals. 
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Figure 3. Encoding strategy in ME-GDEAR. 
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Figure 4. Fractions of cluster centres and random individuals located in the golden region. 
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Figure 5. Distance between the centre of the golden region and the cluster centres/random individuals. 
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Figure 6. Mean objective function results with/without grouping strategy. 
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Figure 7. Test images and their histograms. 
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Figure 8. Thresholding results for image 147091 for   D = 5  . (a) Original image, (b–f) true manual segmentation, (g) segmented image for ME-DE, (h) segmented image for ME-FA, (i) segmented image for ME-BA, (j) segmented image for ME-MFO, (k) segmented image ME-DA, (l) segmented image for ME-WOA, and (m) segmented image for ME-GDEAR. 
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Figure 9. Thresholding results for image 101087 for   D = 10  . (a): original image, (b–f): different manual segmentations, (g) segmented image for ME-DE, (h) segmented image for ME-FA,(i) segmented image for ME-BA, (j) segmented image for ME-MFO, (k) segmented image for ME-DA, (l) segmented image for ME-WOA, and (m) segmented image for ME-GDEAR. 
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Figure 10. Effect of   C P   on the mean objective function value for images (a) 147091, (b) 101087, and (c) 253027 for   D = 10  . 
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Figure 11. Effect of   P r   on the mean objective function value for images (a) 147091, (b) 101087, and (c) 253027 for   D = 10  . 
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Table 1. Parameter settings for the experiments.
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	Algorithm
	Parameter
	Value





	ME-DE [33]
	scaling factor
	0.5



	
	crossover probability
	0.9



	ME-FA [49]
	light absorption coefficient ( γ )
	1



	
	attractiveness at   r = 0   (  β 0  )
	1



	
	scaling factor
	0.25



	ME-BA [50]
	loudness
	0.5



	
	pulse rate
	0.5



	ME-MFO [51]
	a
	−1



	
	b
	1



	ME-DA [52]
	no parameters
	



	ME-WOA [46]
	constant defining shape of logarithmic spiral
	1



	ME-GDEAR
	scaling factor
	0.5



	
	crossover probability
	0.9



	
	clustering period
	0.5



	
	   P r   
	0.2
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Table 2. Objective function results for   D = 3  .
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Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
35.23

	
34.25

	
33.98

	
34.85

	
34.73

	
34.45

	
34.71




	

	
std.dev.

	
0.02

	
0.97

	
0.96

	
0.49

	
0.54

	
0.41

	
0.64




	

	
rank

	
1

	
6

	
7

	
2

	
3

	
5

	
4




	
Peppers

	
mean

	
66.20

	
63.92

	
58.27

	
64.23

	
66.42

	
61.71

	
66.33




	

	
std.dev.

	
8.75

	
9.26

	
7.95

	
6.94

	
7.98

	
10.34

	
6.51




	

	
rank

	
3

	
5

	
7

	
4

	
1

	
6

	
2




	
Goldhill

	
mean

	
15.56

	
15.77

	
15.28

	
16.03

	
15.76

	
15.42

	
16.05




	

	
std.dev.

	
0.21

	
0.57

	
0.93

	
0.12

	
0.31

	
0.89

	
0.03




	

	
rank

	
5

	
3

	
7

	
2

	
4

	
6

	
1




	
Lenna

	
mean

	
70.74

	
64.87

	
62.04

	
65.91

	
61.05

	
63.54

	
67.10




	

	
std.dev.

	
2.17

	
5.39

	
5.83

	
5.67

	
4.92

	
6.56

	
5.04




	

	
rank

	
1

	
4

	
6

	
3

	
7

	
5

	
2




	
House

	
mean

	
64.75

	
66.38

	
64.67

	
64.43

	
64.69

	
65.16

	
66.64




	

	
std.dev.

	
2.92

	
7.13

	
3.44

	
1.5cm7

	
4.10

	
7.84

	
4.36




	

	
rank

	
4

	
2

	
6

	
7

	
5

	
3

	
1




	
12003

	
mean

	
66.30

	
62.38

	
58.57

	
62.06

	
64.88

	
64.44

	
64.29




	

	
std.dev.

	
6.61

	
6.47

	
5.77

	
7.10

	
5.17

	
6.29

	
7.17




	

	
rank

	
1

	
5

	
7

	
6

	
2

	
3

	
4




	
181079

	
mean

	
66.24

	
63.42

	
60.68

	
67.24

	
61.74

	
61.07

	
63.29




	

	
std.dev.

	
3.44

	
7.56

	
5.97

	
3.94

	
5.25

	
7.62

	
6.61




	

	
rank

	
2

	
3

	
7

	
1

	
5

	
6

	
4




	
175043

	
mean

	
63.16

	
65.59

	
59.16

	
63.62

	
62.32

	
61.72

	
64.77




	

	
std.dev.

	
3.50

	
6.04

	
4.16

	
4.75

	
5.49

	
6.50

	
6.30




	

	
rank

	
4

	
1

	
7

	
3

	
5

	
6

	
2




	
101085

	
mean

	
63.96

	
62.49

	
61.59

	
64.08

	
66.85

	
61.21

	
66.20




	

	
std.dev.

	
4.86

	
5.71

	
5.09

	
5.41

	
3.05

	
5.94

	
5.69




	

	
rank

	
4

	
5

	
6

	
3

	
1

	
7

	
2




	
147091

	
mean

	
67.88

	
67.97

	
65.16

	
67.62

	
66.95

	
65.15

	
68.05




	

	
std.dev.

	
1.56

	
2.70

	
3.82

	
1.61

	
1.20

	
4.40

	
2.22




	

	
rank

	
3

	
2

	
6

	
4

	
5

	
7

	
1




	
101087

	
mean

	
59.46

	
65.73

	
60.56

	
64.92

	
63.64

	
64.99

	
71.12




	

	
std.dev.

	
7.20

	
9.02

	
7.60

	
7.09

	
7.42

	
8.55

	
3.91




	

	
rank

	
7

	
2

	
6

	
4

	
5

	
3

	
1




	
253027

	
mean

	
29.99

	
30.07

	
29.87

	
30.03

	
29.92

	
29.97

	
30.03




	

	
std.dev.

	
0.07

	
0.07

	
0.23

	
0.13

	
0.17

	
0.16

	
0.13




	

	
rank

	
4

	
1

	
7

	
2

	
6

	
5

	
3




	
average rank

	
3.25

	
3.25

	
6.58

	
3.42

	
4.08

	
5.17

	
2.25




	
overall rank

	
2.5

	
2.5

	
7

	
4

	
5

	
6

	
1
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Table 3. Objective function results for   D = 4  .
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Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
35.39

	
35.84

	
35.22

	
35.87

	
35.79

	
35.80

	
35.84




	

	
std.dev.

	
0.20

	
0.02

	
0.48

	
0.11

	
0.19

	
0.21

	
0.02




	

	
rank

	
6

	
3

	
7

	
1

	
5

	
4

	
2




	
Peppers

	
mean

	
66.45

	
65.67

	
62.46

	
68.23

	
66.39

	
64.90

	
71.57




	

	
std.dev.

	
6.49

	
10.13

	
8.86

	
7.65

	
7.90

	
9.98

	
7.94




	

	
rank

	
3

	
5

	
7

	
2

	
4

	
6

	
1




	
Goldhill

	
mean

	
16.80

	
17.32

	
17.24

	
18.14

	
17.21

	
16.87

	
17.61




	

	
std.dev.

	
0.47

	
0.29

	
0.56

	
0.42

	
0.31

	
0.75

	
0.35




	

	
rank

	
7

	
3

	
4

	
1

	
5

	
6

	
2




	
Lenna

	
mean

	
71.57

	
66.49

	
63.34

	
68.87

	
63.74

	
65.17

	
70.22




	

	
std.dev.

	
2.06

	
5.90

	
5.44

	
5.58

	
5.09

	
6.61

	
5.22




	

	
rank

	
1

	
4

	
7

	
3

	
6

	
5

	
2




	
House

	
mean

	
64.92

	
67.11

	
64.48

	
67.14

	
65.55

	
64.82

	
68.62




	

	
std.dev.

	
2.41

	
8.91

	
2.61

	
4.27

	
3.78

	
7.53

	
4.19




	

	
rank

	
5

	
3

	
7

	
2

	
4

	
6

	
1




	
12003

	
mean

	
65.84

	
63.35

	
63.79

	
66.29

	
69.58

	
64.16

	
68.69




	

	
std.dev.

	
7.14

	
7.49

	
6.69

	
6.40

	
3.66

	
7.12

	
5.71




	

	
rank

	
4

	
7

	
6

	
3

	
1

	
5

	
2




	
181079

	
mean

	
68.29

	
68.97

	
60.33

	
68.33

	
65.18

	
62.18

	
65.78




	

	
std.dev.

	
2.79

	
5.29

	
5.14

	
4.08

	
5.40

	
7.61

	
6.79




	

	
rank

	
3

	
1

	
7

	
2

	
5

	
6

	
4




	
175043

	
mean

	
62.84

	
67.97

	
61.56

	
63.57

	
62.61

	
59.77

	
66.16




	

	
std.dev.

	
3.63

	
5.65

	
4.35

	
3.52

	
5.77

	
6.05

	
6.07




	

	
rank

	
4

	
1

	
6

	
3

	
5

	
7

	
2




	
101085

	
mean

	
64.24

	
64.36

	
62.44

	
66.87

	
69.09

	
65.96

	
68.04




	

	
std.dev.

	
4.22

	
5.80

	
4.35

	
5.69

	
1.54

	
5.86

	
4.98




	

	
rank

	
6

	
5

	
7

	
3

	
1

	
4

	
2




	
147091

	
mean

	
70.11

	
70.11

	
68.22

	
69.73

	
69.41

	
66.69

	
70.68




	

	
std.dev.

	
2.28

	
3.40

	
4.16

	
1.88

	
1.64

	
5.46

	
2.28




	

	
rank

	
2

	
3

	
6

	
4

	
5

	
7

	
1




	
101087

	
mean

	
62.25

	
69.13

	
62.67

	
68.57

	
69.01

	
66.49

	
70.57




	

	
std.dev.

	
5.94

	
10.06

	
6.96

	
7.21

	
8.01

	
9.04

	
7.82




	

	
rank

	
7

	
2

	
6

	
4

	
3

	
5

	
1




	
253027

	
mean

	
32.99

	
33.22

	
32.89

	
33.26

	
33.18

	
33.06

	
33.21




	

	
std.dev.

	
0.09

	
0.11

	
0.27

	
0.02

	
0.11

	
0.21

	
0.15




	

	
rank

	
6

	
2

	
7

	
1

	
4

	
5

	
3




	
average rank

	
4.50

	
3.25

	
6.42

	
2.42

	
4.00

	
5.50

	
1.92




	
overall rank

	
5

	
3

	
7

	
2

	
4

	
6

	
1
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Table 4. Objective function results for   D = 5  .






Table 4. Objective function results for   D = 5  .





	
Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
37.76

	
38.39

	
37.94

	
38.40

	
38.18

	
38.15

	
38.35




	

	
std.dev.

	
0.22

	
0.12

	
0.36

	
0.18

	
0.20

	
0.27

	
0.20




	

	
rank

	
7

	
2

	
6

	
1

	
4

	
5

	
3




	
Peppers

	
mean

	
68.26

	
68.96

	
65.50

	
69.32

	
64.66

	
66.02

	
70.44




	

	
std.dev.

	
7.76

	
7.89

	
8.12

	
6.85

	
7.07

	
10.10

	
8.67




	

	
rank

	
4

	
3

	
6

	
2

	
7

	
5

	
1




	
Goldhill

	
mean

	
17.48

	
18.82

	
18.28

	
19.86

	
18.61

	
18.49

	
19.01




	

	
std.dev.

	
0.64

	
0.64

	
0.71

	
0.30

	
0.41

	
0.46

	
0.28




	

	
rank

	
7

	
3

	
6

	
1

	
4

	
5

	
2




	
Lenna

	
mean

	
73.16

	
68.20

	
68.15

	
70.58

	
64.39

	
67.49

	
71.51




	

	
std.dev.

	
1.51

	
5.73

	
5.63

	
5.42

	
5.67

	
7.35

	
5.43




	

	
rank

	
1

	
4

	
5

	
3

	
7

	
6

	
2




	
House

	
mean

	
67.70

	
42.00

	
64.87

	
65.34

	
61.41

	
58.10

	
68.78




	

	
std.dev.

	
3.36

	
12.44

	
3.87

	
9.24

	
7.85

	
8.57

	
4.30




	

	
rank

	
2

	
7

	
4

	
3

	
5

	
6

	
1




	
12003

	
mean

	
68.55

	
69.43

	
65.12

	
68.96

	
67.90

	
64.66

	
71.27




	

	
std.dev.

	
4.65

	
7.55

	
8.30

	
7.07

	
4.65

	
6.83

	
5.62




	

	
rank

	
4

	
2

	
6

	
3

	
5

	
7

	
1




	
181079

	
mean

	
70.16

	
53.32

	
62.10

	
69.29

	
63.59

	
61.53

	
66.81




	

	
std.dev.

	
3.02

	
16.02

	
5.33

	
8.51

	
5.27

	
9.09

	
5.89




	

	
rank

	
1

	
7

	
6

	
2

	
4

	
5

	
3




	
175043

	
mean

	
63.96

	
54.01

	
61.11

	
64.55

	
59.43

	
60.84

	
68.18




	

	
std.dev.

	
4.80

	
13.72

	
3.48

	
4.80

	
4.70

	
6.85

	
6.20




	

	
rank

	
3

	
7

	
4

	
2

	
6

	
5

	
1




	
101085

	
mean

	
67.46

	
65.38

	
67.37

	
69.57

	
69.85

	
66.43

	
69.95




	

	
std.dev.

	
4.39

	
5.28

	
5.68

	
4.71

	
3.45

	
6.23

	
4.67




	

	
rank

	
4

	
7

	
5

	
3

	
2

	
6

	
1




	
147091

	
mean

	
70.68

	
71.75

	
67.48

	
70.72

	
70.01

	
69.16

	
70.73




	

	
std.dev.

	
1.67

	
4.51

	
3.65

	
4.44

	
2.49

	
5.00

	
1.49




	

	
rank

	
4

	
1

	
7

	
3

	
5

	
6

	
2




	
101087

	
mean

	
65.94

	
72.41

	
64.94

	
71.27

	
67.22

	
68.94

	
74.58




	

	
std.dev.

	
7.50

	
8.27

	
5.43

	
8.13

	
7.40

	
9.07

	
5.51




	

	
rank

	
6

	
2

	
7

	
3

	
5

	
4

	
1




	
253027

	
mean

	
35.87

	
36.29

	
36.02

	
36.28

	
36.16

	
36.25

	
36.22




	

	
std.dev.

	
0.15

	
0.05

	
0.34

	
0.10

	
0.16

	
0.17

	
0.17




	

	
rank

	
7

	
1

	
6

	
2

	
5

	
3

	
4




	
average rank

	
4.17

	
3.83

	
5.67

	
2.33

	
4.92

	
5.25

	
1.83




	
overall rank

	
4

	
3

	
7

	
2

	
5

	
6

	
1
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Table 5. Objective function results for   D = 10  .






Table 5. Objective function results for   D = 10  .





	
Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
50.61

	
51.20

	
51.02

	
51.38

	
50.54

	
51.14

	
51.10




	

	
std.dev.

	
0.16

	
0.15

	
0.22

	
0.11

	
0.27

	
0.16

	
0.24




	

	
rank

	
6

	
2

	
5

	
1

	
7

	
3

	
4




	
Peppers

	
mean

	
51.27

	
49.84

	
60.95

	
54.62

	
50.92

	
58.53

	
73.47




	

	
std.dev.

	
3.30

	
0.26

	
9.31

	
10.81

	
6.36

	
6.73

	
5.87




	

	
rank

	
5

	
7

	
2

	
4

	
6

	
3

	
1




	
Goldhill

	
mean

	
24.21

	
24.45

	
24.22

	
26.85

	
23.16

	
23.72

	
24.13




	

	
std.dev.

	
0.45

	
1.12

	
1.55

	
1.06

	
0.55

	
0.87

	
0.92




	

	
rank

	
4

	
2

	
3

	
1

	
7

	
6

	
5




	
Lenna

	
mean

	
58.84

	
49.93

	
70.03

	
54.82

	
50.07

	
60.99

	
74.63




	

	
std.dev.

	
7.21

	
0.23

	
5.47

	
10.61

	
2.08

	
5.09

	
6.31




	

	
rank

	
4

	
7

	
2

	
5

	
6

	
3

	
1




	
House

	
mean

	
49.51

	
50.06

	
63.28

	
50.29

	
49.22

	
51.92

	
64.51




	

	
std.dev.

	
0.21

	
0.17

	
6.97

	
0.05

	
0.32

	
5.59

	
8.08




	

	
rank

	
6

	
5

	
2

	
4

	
7

	
3

	
1




	
12003

	
mean

	
61.17

	
51.75

	
68.35

	
63.73

	
52.08

	
60.81

	
74.15




	

	
std.dev.

	
5.80

	
0.12

	
8.73

	
12.25

	
1.82

	
3.68

	
6.18




	

	
rank

	
4

	
7

	
2

	
3

	
6

	
5

	
1




	
181079

	
mean

	
50.30

	
50.74

	
64.51

	
51.17

	
49.90

	
58.92

	
63.68




	

	
std.dev.

	
0.36

	
0.39

	
6.95

	
0.03

	
0.52

	
4.47

	
5.65




	

	
rank

	
6

	
5

	
1

	
4

	
7

	
3

	
2




	
175043

	
mean

	
50.84

	
51.12

	
61.65

	
51.72

	
50.49

	
56.54

	
62.62




	

	
std.dev.

	
0.20

	
0.32

	
4.57

	
0.15

	
0.41

	
4.30

	
6.13




	

	
rank

	
6

	
5

	
2

	
4

	
7

	
3

	
1




	
101085

	
mean

	
60.09

	
52.61

	
68.84

	
58.63

	
55.00

	
66.96

	
74.33




	

	
std.dev.

	
7.01

	
0.14

	
7.57

	
8.43

	
5.81

	
4.63

	
4.24




	

	
rank

	
4

	
7

	
2

	
5

	
6

	
3

	
1




	
147091

	
mean

	
56.56

	
52.43

	
69.47

	
53.44

	
52.45

	
67.77

	
76.56




	

	
std.dev.

	
6.64

	
0.13

	
5.98

	
4.03

	
2.52

	
4.69

	
3.45




	

	
rank

	
4

	
7

	
2

	
5

	
6

	
3

	
1




	
101087

	
mean

	
55.69

	
50.39

	
62.74

	
56.56

	
49.60

	
56.76

	
76.40




	

	
std.dev.

	
6.80

	
0.14

	
9.65

	
11.74

	
0.33

	
11.03

	
8.46




	

	
rank

	
5

	
6

	
2

	
4

	
7

	
3

	
1




	
253027

	
mean

	
48.80

	
49.35

	
49.37

	
49.51

	
48.40

	
49.39

	
49.38




	

	
std.dev.

	
0.22

	
0.16

	
0.23

	
0.06

	
0.35

	
0.11

	
0.12




	

	
rank

	
6

	
5

	
4

	
1

	
7

	
2

	
3




	
average rank

	
5.00

	
5.42

	
2.42

	
3.42

	
6.58

	
3.33

	
1.83




	
overall rank

	
5

	
6

	
2

	
4

	
7

	
3

	
1
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Table 6. FSIM results for   D = 3  .






Table 6. FSIM results for   D = 3  .





	
Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
0.4784

	
0.5276

	
0.5365

	
0.4737

	
0.4713

	
0.4662

	
0.4855




	

	
std.dev.

	
0.0006

	
0.1130

	
0.1262

	
0.0083

	
0.0085

	
0.0077

	
0.0554




	

	
rank

	
4

	
2

	
1

	
5

	
6

	
7

	
3




	
Peppers

	
mean

	
0.6064

	
0.5988

	
0.6048

	
0.6034

	
0.5947

	
0.6089

	
0.6120




	

	
std.dev.

	
0.0196

	
0.0179

	
0.0175

	
0.0184

	
0.0175

	
0.0189

	
0.0164




	

	
rank

	
3

	
6

	
4

	
5

	
7

	
2

	
1




	
Goldhill

	
mean

	
0.6152

	
0.6237

	
0.6326

	
0.5951

	
0.6206

	
0.6089

	
0.6258




	

	
std.dev.

	
0.0565

	
0.0513

	
0.0418

	
0.0521

	
0.0562

	
0.0352

	
0.0036




	

	
rank

	
5

	
3

	
1

	
7

	
4

	
6

	
2




	
Lenna

	
mean

	
0.6381

	
0.6203

	
0.6129

	
0.6092

	
0.6112

	
0.6219

	
0.6237




	

	
std.dev.

	
0.0109

	
0.0271

	
0.0271

	
0.0262

	
0.0271

	
0.0263

	
0.0260




	

	
rank

	
1

	
4

	
5

	
7

	
6

	
3

	
2




	
House

	
mean

	
0.4519

	
0.4575

	
0.4512

	
0.4484

	
0.4524

	
0.4563

	
0.4537




	

	
std.dev.

	
0.0137

	
0.0141

	
0.0118

	
0.0105

	
0.0133

	
0.0146

	
0.0138




	

	
rank

	
5

	
1

	
6

	
7

	
4

	
2

	
3




	
12003

	
mean

	
0.5288

	
0.5267

	
0.5343

	
0.5329

	
0.5118

	
0.5182

	
0.5327




	

	
std.dev.

	
0.0214

	
0.0273

	
0.0276

	
0.0232

	
0.0206

	
0.0239

	
0.0309




	

	
rank

	
4

	
5

	
1

	
2

	
7

	
6

	
3




	
181079

	
mean

	
0.5123

	
0.5169

	
0.5152

	
0.5140

	
0.5120

	
0.5141

	
0.5138




	

	
std.dev.

	
0.0029

	
0.0048

	
0.0050

	
0.0028

	
0.0016

	
0.0039

	
0.0028




	

	
rank

	
6

	
1

	
2

	
4

	
7

	
3

	
5




	
175043

	
mean

	
0.2920

	
0.2918

	
0.2911

	
0.2917

	
0.2918

	
0.2923

	
0.2948




	

	
std.dev.

	
0.0033

	
0.0020

	
0.0045

	
0.0033

	
0.0028

	
0.0027

	
0.0023




	

	
rank

	
3

	
4

	
7

	
6

	
5

	
2

	
1




	
101085

	
mean

	
0.5475

	
0.5748

	
0.5862

	
0.5853

	
0.5607

	
0.5590

	
0.5631




	

	
std.dev.

	
0.0294

	
0.0462

	
0.0485

	
0.0477

	
0.0380

	
0.0445

	
0.0434




	

	
rank

	
7

	
3

	
1

	
2

	
5

	
6

	
4




	
147091

	
mean

	
0.5974

	
0.6270

	
0.6138

	
0.6018

	
0.5940

	
0.6541

	
0.6022




	

	
std.dev.

	
0.0126

	
0.0591

	
0.0546

	
0.0341

	
0.0016

	
0.0795

	
0.0207




	

	
rank

	
6

	
2

	
3

	
5

	
7

	
1

	
4




	
101087

	
mean

	
0.6353

	
0.6323

	
0.6282

	
0.6338

	
0.6349

	
0.6297

	
0.6384




	

	
std.dev.

	
0.0076

	
0.0134

	
0.0146

	
0.0111

	
0.0098

	
0.0156

	
0.0025




	

	
rank

	
2

	
5

	
7

	
4

	
3

	
6

	
1




	
253027

	
mean

	
0.6052

	
0.6169

	
0.6348

	
0.6173

	
0.6137

	
0.6154

	
0.6171




	

	
std.dev.

	
0.0113

	
0.0007

	
0.0462

	
0.0012

	
0.0060

	
0.0062

	
0.0015




	

	
rank

	
7

	
4

	
1

	
2

	
6

	
5

	
3




	
average rank

	
4.41

	
3.33

	
3.25

	
4.58

	
5.50

	
4.08

	
2.66




	
overall rank

	
5

	
3

	
2

	
6

	
7

	
4

	
1
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Table 7. FSIM results for   D = 4  .
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Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
0.7608

	
0.7674

	
0.7993

	
0.7549

	
0.7362

	
0.7465

	
0.7661




	

	
std.dev.

	
0.0870

	
0.0031

	
0.0272

	
0.0580

	
0.0982

	
0.0836

	
0.0023




	

	
rank

	
4

	
2

	
1

	
5

	
7

	
6

	
3




	
Peppers

	
mean

	
0.6094

	
0.6099

	
0.6057

	
0.6040

	
0.5991

	
0.6016

	
0.6098




	

	
std.dev.

	
0.0161

	
0.0201

	
0.0197

	
0.0202

	
0.0151

	
0.0205

	
0.0212




	

	
rank

	
3

	
1

	
4

	
5

	
7

	
6

	
2




	
Goldhill

	
mean

	
0.6856

	
0.6961

	
0.6928

	
0.6126

	
0.6783

	
0.6698

	
0.6937




	

	
std.dev.

	
0.0779

	
0.0745

	
0.0526

	
0.0488

	
0.0808

	
0.0787

	
0.0803




	

	
rank

	
4

	
1

	
3

	
7

	
5

	
6

	
2




	
Lenna

	
mean

	
0.6329

	
0.6080

	
0.6028

	
0.6141

	
0.6199

	
0.6207

	
0.6288




	

	
std.dev.

	
0.0193

	
0.0267

	
0.0237

	
0.0266

	
0.0270

	
0.0266

	
0.0234




	

	
rank

	
1

	
6

	
7

	
5

	
4

	
3

	
2




	
House

	
mean

	
0.4461

	
0.4617

	
0.4487

	
0.4564

	
0.4518

	
0.4531

	
0.4573




	

	
std.dev.

	
0.0076

	
0.0166

	
0.0105

	
0.0148

	
0.0136

	
0.0140

	
0.0146




	

	
rank

	
7

	
1

	
6

	
3

	
5

	
4

	
2




	
12003

	
mean

	
0.5347

	
0.5500

	
0.5372

	
0.5353

	
0.5089

	
0.5391

	
0.5324




	

	
std.dev.

	
0.0221

	
0.0208

	
0.0267

	
0.0247

	
0.0194

	
0.0268

	
0.0236




	

	
rank

	
5

	
1

	
3

	
4

	
7

	
2

	
6




	
181079

	
mean

	
0.5124

	
0.5153

	
0.5163

	
0.5148

	
0.5142

	
0.5160

	
0.5178




	

	
std.dev.

	
0.0022

	
0.0040

	
0.0061

	
0.0044

	
0.0034

	
0.0044

	
0.0023




	

	
rank

	
7

	
4

	
2

	
5

	
6

	
3

	
1




	
175043

	
mean

	
0.2925

	
0.2904

	
0.2924

	
0.2926

	
0.2913

	
0.2924

	
0.2924




	

	
std.dev.

	
0.0028

	
0.0033

	
0.0034

	
0.0028

	
0.0034

	
0.0034

	
0.0028




	

	
rank

	
2

	
7

	
4

	
1

	
6

	
5

	
3




	
101085

	
mean

	
0.5573

	
0.5858

	
0.6029

	
0.6112

	
0.5750

	
0.5793

	
0.5761




	

	
std.dev.

	
0.0354

	
0.0574

	
0.0577

	
0.0511

	
0.0397

	
0.0474

	
0.0457




	

	
rank

	
7

	
3

	
2

	
1

	
6

	
4

	
5




	
147091

	
mean

	
0.6045

	
0.6406

	
0.6226

	
0.6095

	
0.6034

	
0.6438

	
0.6204




	

	
std.dev.

	
0.0210

	
0.0570

	
0.0540

	
0.0398

	
0.0197

	
0.0701

	
0.0449




	

	
rank

	
6

	
2

	
3

	
5

	
7

	
1

	
4




	
101087

	
mean

	
0.6398

	
0.6292

	
0.6334

	
0.6383

	
0.6392

	
0.6289

	
0.6366




	

	
std.dev.

	
0.0082

	
0.0171

	
0.0116

	
0.0094

	
0.0077

	
0.0162

	
0.0116




	

	
rank

	
1

	
6

	
5

	
3

	
2

	
7

	
4




	
253027

	
mean

	
0.6512

	
0.6439

	
0.7278

	
0.6341

	
0.6456

	
0.7124

	
0.6538




	

	
std.dev.

	
0.0233

	
0.0366

	
0.0807

	
0.0070

	
0.0371

	
0.0856

	
0.0592




	

	
rank

	
4

	
6

	
1

	
7

	
5

	
2

	
3




	
average rank

	
4.25

	
3.33

	
3.41

	
4.25

	
5.58

	
4.08

	
3.08




	
overall rank

	
5.5

	
2

	
3

	
5.5

	
7

	
4

	
1
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Table 8. FSIM results for   D = 5  .
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Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
0.8391

	
0.8105

	
0.8440

	
0.8158

	
0.8282

	
0.8374

	
0.8440




	

	
std.dev.

	
0.0302

	
0.0188

	
0.0407

	
0.0272

	
0.0279

	
0.0368

	
0.0278




	

	
rank

	
3

	
7

	
1

	
6

	
5

	
4

	
2




	
Peppers

	
mean

	
0.6098

	
0.6067

	
0.6107

	
0.6141

	
0.6020

	
0.6010

	
0.6140




	

	
std.dev.

	
0.0169

	
0.0183

	
0.0157

	
0.0131

	
0.0173

	
0.0201

	
0.0208




	

	
rank

	
4

	
5

	
3

	
1

	
6

	
7

	
2




	
Goldhill

	
mean

	
0.7417

	
0.7613

	
0.7859

	
0.6458

	
0.7097

	
0.7432

	
0.7860




	

	
std.dev.

	
0.0879

	
0.0581

	
0.0625

	
0.0770

	
0.0768

	
0.0761

	
0.0505




	

	
rank

	
5

	
3

	
2

	
7

	
6

	
4

	
1




	
Lenna

	
mean

	
0.6400

	
0.6028

	
0.6086

	
0.6084

	
0.6082

	
0.6249

	
0.6358




	

	
std.dev.

	
0.0105

	
0.0242

	
0.0251

	
0.0259

	
0.0267

	
0.0258

	
0.0187




	

	
rank

	
1

	
7

	
4

	
5

	
6

	
3

	
2




	
House

	
mean

	
0.4565

	
0.4524

	
0.4524

	
0.4877

	
0.4678

	
0.4465

	
0.4565




	

	
std.dev.

	
0.0149

	
0.1245

	
0.0108

	
0.1083

	
0.0807

	
0.0083

	
0.0149




	

	
rank

	
4

	
6

	
5

	
1

	
2

	
7

	
3




	
12003

	
mean

	
0.5221

	
0.5483

	
0.5273

	
0.5494

	
0.5140

	
0.5422

	
0.5428




	

	
std.dev.

	
0.0200

	
0.0219

	
0.0302

	
0.0208

	
0.0192

	
0.0257

	
0.0296




	

	
rank

	
6

	
2

	
5

	
1

	
7

	
4

	
3




	
181079

	
mean

	
0.5129

	
0.6074

	
0.5151

	
0.5242

	
0.5141

	
0.5175

	
0.5260




	

	
std.dev.

	
0.0021

	
0.1071

	
0.0051

	
0.0456

	
0.0042

	
0.0049

	
0.0050




	

	
rank

	
7

	
1

	
5

	
3

	
6

	
4

	
2




	
175043

	
mean

	
0.2919

	
0.2917

	
0.2934

	
0.2922

	
0.2916

	
0.2908

	
0.2911




	

	
std.dev.

	
0.0033

	
0.2409

	
0.0021

	
0.0028

	
0.0039

	
0.0047

	
0.0024




	

	
rank

	
3

	
4

	
1

	
2

	
5

	
7

	
6




	
101085

	
mean

	
0.5916

	
0.5814

	
0.5914

	
0.6079

	
0.5845

	
0.5987

	
0.5864




	

	
std.dev.

	
0.0549

	
0.0594

	
0.0597

	
0.0538

	
0.0455

	
0.0527

	
0.0395




	

	
rank

	
3

	
7

	
4

	
1

	
6

	
2

	
5




	
147091

	
mean

	
0.5981

	
0.6270

	
0.6295

	
0.6353

	
0.6149

	
0.6626

	
0.6382




	

	
std.dev.

	
0.0016

	
0.0573

	
0.0603

	
0.0607

	
0.0396

	
0.0733

	
0.0016




	

	
rank

	
7

	
5

	
4

	
3

	
6

	
1

	
2




	
101087

	
mean

	
0.6419

	
0.6341

	
0.6356

	
0.6381

	
0.6360

	
0.6310

	
0.6405




	

	
std.dev.

	
0.0051

	
0.0145

	
0.0091

	
0.0142

	
0.0100

	
0.0163

	
0.0085




	

	
rank

	
1

	
6

	
5

	
3

	
4

	
7

	
2




	
253027

	
mean

	
0.7938

	
0.8103

	
0.8062

	
0.8055

	
0.7971

	
0.7917

	
0.8064




	

	
std.dev.

	
0.0358

	
0.0315

	
0.0459

	
0.0377

	
0.0448

	
0.0552

	
0.0391




	

	
rank

	
6

	
1

	
3

	
4

	
5

	
7

	
2




	
average rank

	
4.17

	
4.50

	
3.50

	
3.08

	
5.33

	
4.75

	
2.67




	
overall rank

	
4

	
5

	
3

	
2

	
7

	
6

	
1
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Table 9. FSIM results for   D = 10  .






Table 9. FSIM results for   D = 10  .





	
Image

	

	
ME-DE

	
ME-FA

	
ME-BA

	
ME-MFO

	
ME-DA

	
ME-WOA

	
ME-GDEAR






	
Boats

	
mean

	
0.9521

	
0.9646

	
0.9585

	
0.9613

	
0.9548

	
0.9575

	
0.9664




	

	
std.dev.

	
0.0157

	
0.0053

	
0.0111

	
0.0076

	
0.0119

	
0.0094

	
0.0063




	

	
rank

	
7

	
2

	
4

	
3

	
6

	
5

	
1




	
Peppers

	
mean

	
0.7943

	
0.8648

	
0.6669

	
0.8619

	
0.8301

	
0.8250

	
0.8716




	

	
std.dev.

	
0.1394

	
0.0064

	
0.1258

	
0.1083

	
0.1247

	
0.0164

	
0.0137




	

	
rank

	
6

	
2

	
7

	
3

	
4

	
5

	
1




	
Goldhill

	
mean

	
0.8447

	
0.8778

	
0.8766

	
0.8211

	
0.8567

	
0.8258

	
0.8708




	

	
std.dev.

	
0.0481

	
0.0328

	
0.0551

	
0.0468

	
0.0260

	
0.0615

	
0.0466




	

	
rank

	
5

	
1

	
2

	
7

	
4

	
6

	
3




	
Lenna

	
mean

	
0.6295

	
0.6345

	
0.6253

	
0.6403

	
0.6409

	
0.6397

	
0.6465




	

	
std.dev.

	
0.0902

	
0.0070

	
0.0235

	
0.1175

	
0.1346

	
0.0150

	
0.0281




	

	
rank

	
6

	
5

	
7

	
3

	
2

	
4

	
1




	
House

	
mean

	
0.9525

	
0.9645

	
0.9994

	
0.9637

	
0.9484

	
0.8953

	
0.9600




	

	
std.dev.

	
0.0131

	
0.0044

	
0.1913

	
0.0046

	
0.0110

	
0.1675

	
0.2078




	

	
rank

	
5

	
2

	
1

	
3

	
6

	
7

	
4




	
12003

	
mean

	
0.5950

	
0.5990

	
0.5357

	
0.5919

	
0.5921

	
0.5820

	
0.5980




	

	
std.dev.

	
0.1161

	
0.0112

	
0.0280

	
0.1845

	
0.1593

	
0.0163

	
0.0279




	

	
rank

	
3

	
1

	
7

	
5

	
4

	
6

	
2




	
181079

	
mean

	
0.8247

	
0.8753

	
0.8441

	
0.8613

	
0.8572

	
0.8205

	
0.8788




	

	
std.dev.

	
0.0950

	
0.0106

	
0.0953

	
0.0069

	
0.0192

	
0.0945

	
0.0053




	

	
rank

	
6

	
2

	
5

	
3

	
4

	
7

	
1




	
175043

	
mean

	
0.9327

	
0.9551

	
0.9369

	
0.9486

	
0.9252

	
0.9322

	
0.9488




	

	
std.dev.

	
0.0168

	
0.0070

	
0.1852

	
0.0045

	
0.0266

	
0.2206

	
0.0054




	

	
rank

	
5

	
1

	
4

	
3

	
7

	
6

	
2




	
101085

	
mean

	
0.8335

	
0.8441

	
0.8773

	
0.8331

	
0.8345

	
0.8270

	
0.8381




	

	
std.dev.

	
0.1426

	
0.0070

	
0.0455

	
0.1606

	
0.1413

	
0.0620

	
0.0501




	

	
rank

	
5

	
2

	
1

	
6

	
4

	
7

	
3




	
147091

	
mean

	
0.8307

	
0.8958

	
0.8308

	
0.8848

	
0.8706

	
0.8642

	
0.8769




	

	
std.dev.

	
0.1192

	
0.0067

	
0.0587

	
0.0541

	
0.0602

	
0.0833

	
0.0591




	

	
rank

	
7

	
1

	
6

	
2

	
4

	
5

	
3




	
101087

	
mean

	
0.8122

	
0.8123

	
0.8261

	
0.8417

	
0.8915

	
0.8194

	
0.8376




	

	
std.dev.

	
0.1178

	
0.0074

	
0.0082

	
0.1172

	
0.0180

	
0.1316

	
0.0149




	

	
rank

	
7

	
6

	
4

	
2

	
1

	
5

	
3




	
253027

	
mean

	
0.9057

	
0.9173

	
0.9069

	
0.9125

	
0.8978

	
0.9079

	
0.9197




	

	
std.dev.

	
0.0168

	
0.0106

	
0.0116

	
0.0069

	
0.0199

	
0.0114

	
0.0131




	

	
rank

	
6

	
2

	
5

	
3

	
7

	
4

	
1




	
average rank

	
5.67

	
2.25

	
4.42

	
3.58

	
4.42

	
5.58

	
2.08




	
overall rank

	
7

	
2

	
4.5

	
3

	
4.5

	
6

	
1
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Table 10. Dice score results for   D = 3  .






Table 10. Dice score results for   D = 3  .





	
Image

	

	
ME-DE

	
ME-BA

	
ME-ALO

	
ME-DA

	
ME-MVO

	
ME-WOA

	
ME-GDEAR






	
12003

	
mean

	
0.7775

	
0.7537

	
0.9412

	
0.7589

	
0.8207

	
0.8203

	
0.8128




	

	
std.dev.

	
0.0634

	
0.0706

	
0.0000

	
0.0676

	
0.0000

	
0.0000

	
0.0662




	

	
rank

	
5

	
7

	
1

	
6

	
2

	
3

	
4




	
181079

	
mean

	
0.3865

	
0.6533

	
0.7601

	
0.6533

	
0.7848

	
0.7847

	
0.6533




	

	
std.dev.

	
0.0651

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	

	
rank

	
7

	
4

	
3

	
6

	
1

	
2

	
5




	
175043

	
Mean

	
0.8148

	
0.8421

	
0.8355

	
0.8416

	
0.8314

	
0.8537

	
0.9438




	

	
std.dev.

	
0.0053

	
0.0521

	
0.0484

	
0.0523

	
0.0426

	
0.0578

	
0.0557




	

	
rank

	
7

	
3

	
5

	
4

	
6

	
2

	
1




	
101085

	
mean

	
0.6533

	
0.9412

	
0.6533

	
0.8207

	
0.8203

	
0.6533

	
0.9412




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	

	
rank

	
5

	
1.5

	
6.5

	
3

	
4

	
6.5

	
1.5




	
147091

	
mean

	
0.7967

	
0.9412

	
0.7875

	
0.8224

	
0.8271

	
0.7615

	
0.9412




	

	
std.dev.

	
0.0268

	
0.0000

	
0.0563

	
0.0058

	
0.0102

	
0.0579

	
0.0000




	

	
rank

	
5

	
1.5

	
6

	
4

	
3

	
7

	
1.5




	
101087

	
mean

	
0.6533

	
0.9412

	
0.6533

	
0.8207

	
0.8203

	
0.6533

	
0.9412




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	

	
rank

	
5

	
1.5

	
6.5

	
3

	
4

	
6.5

	
1.5




	
253027

	
mean

	
0.8228

	
0.9412

	
0.7889

	
0.8225

	
0.8218

	
0.7966

	
0.9412




	

	
std.dev.

	
0.0004

	
0.0000

	
0.0387

	
0.0008

	
0.0013

	
0.0389

	
0.0000




	

	
rank

	
3

	
1.5

	
7

	
4

	
5

	
6

	
1.5




	
average rank

	
5.29

	
2.86

	
5.00

	
4.29

	
3.57

	
4.71

	
2.29




	
overall rank

	
7

	
2

	
6

	
4

	
3

	
5

	
1
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Table 11. Dice score results for   D = 4  .






Table 11. Dice score results for   D = 4  .





	
Image

	

	
ME-DE

	
ME-BA

	
ME-ALO

	
ME-DA

	
ME-MVO

	
ME-WOA

	
ME-GDEAR






	
12003

	
mean

	
0.7749

	
0.7608

	
0.9394

	
0.7622

	
0.7934

	
0.8192

	
0.7031




	

	
std.dev.

	
0.0539

	
0.0617

	
0.0000

	
0.0611

	
0.0197

	
0.0000

	
0.0893




	

	
rank

	
4

	
6

	
1

	
5

	
3

	
2

	
7




	
181079

	
mean

	
0.4388

	
0.4603

	
0.7601

	
0.5376

	
0.6531

	
0.7847

	
0.5424




	

	
std.dev.

	
0.0500

	
0.0326

	
0.0000

	
0.0024

	
0.0000

	
0.0000

	
0.0140




	

	
rank

	
7

	
6

	
2

	
5

	
3

	
1

	
4




	
175043

	
mean

	
0.8226

	
0.8430

	
0.8329

	
0.8287

	
0.8442

	
0.8787

	
0.8383




	

	
std.dev.

	
0.0157

	
0.0513

	
0.0421

	
0.0353

	
0.0524

	
0.0637

	
0.0471




	

	
rank

	
7

	
3

	
5

	
6

	
2

	
1

	
4




	
101085

	
mean

	
0.5367

	
0.8196

	
0.5406

	
0.6531

	
0.8192

	
0.4894

	
0.9394




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0080

	
0.0000

	
0.0000

	
0.0403

	
0.0000




	

	
rank

	
6

	
2

	
5

	
4

	
3

	
7

	
1




	
147091

	
mean

	
0.7885

	
0.8221

	
0.7607

	
0.7862

	
0.8251

	
0.7467

	
0.9394




	

	
std.dev.

	
0.0311

	
0.0056

	
0.0635

	
0.0450

	
0.0081

	
0.0676

	
0.0000




	

	
rank

	
4

	
3

	
6

	
5

	
2

	
7

	
1




	
101087

	
mean

	
0.5367

	
0.8196

	
0.5367

	
0.6531

	
0.8192

	
0.4496

	
0.9394




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	

	
rank

	
6

	
2

	
5

	
4

	
3

	
7

	
1




	
253027

	
mean

	
0.8133

	
0.8196

	
0.7710

	
0.8155

	
0.8192

	
0.7820

	
0.9394




	

	
std.dev.

	
0.0029

	
0.0000

	
0.0351

	
0.0008

	
0.0000

	
0.0407

	
0.0000




	

	
rank

	
5

	
2

	
7

	
4

	
3

	
6

	
1




	
average rank

	
5.57

	
3.43

	
4.43

	
4.71

	
2.71

	
4.43

	
2.71




	
overall rank

	
7

	
3

	
4.5

	
6

	
1.5

	
4.5

	
1.5
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Table 12. Dice score results for   D = 5  .






Table 12. Dice score results for   D = 5  .





	
Image

	

	
ME-DE

	
ME-BA

	
ME-ALO

	
ME-DA

	
ME-MVO

	
ME-WOA

	
ME-GDEAR






	
12003

	
mean

	
0.7644

	
0.8196

	
0.9360

	
0.9360

	
0.7414

	
0.7268

	
0.9381




	

	
std.dev.

	
0.0405

	
0.0000

	
0.0000

	
0.0000

	
0.0567

	
0.0615

	
0.0000




	

	
rank

	
5

	
4

	
2.5

	
2.5

	
6

	
7

	
1




	
181079

	
mean

	
0.4826

	
0.7847

	
0.7597

	
0.7597

	
0.5485

	
0.6527

	
0.7589




	

	
std.dev.

	
0.0401

	
0.0000

	
0.0000

	
0.0000

	
0.0247

	
0.0000

	
0.0000




	

	
rank

	
7

	
1

	
2.5

	
2.5

	
6

	
5

	
4




	
175043

	
mean

	
0.8285

	
0.8266

	
0.8265

	
0.8398

	
0.8331

	
0.8672

	
0.8436




	

	
std.dev.

	
0.0164

	
0.0491

	
0.0347

	
0.0459

	
0.0422

	
0.0665

	
0.0502




	

	
rank

	
5

	
6

	
7

	
3

	
4

	
1

	
2




	
101085

	
mean

	
0.8196

	
0.9360

	
0.9360

	
0.5455

	
0.6527

	
0.8199

	
0.9381




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0000

	
0.0224

	
0.0000

	
0.0000

	
0.0000




	

	
R

	
5

	
2.5

	
2.5

	
7

	
6

	
4

	
1




	
147091

	
mean

	
0.8233

	
0.9360

	
0.9360

	
0.7557

	
0.7748

	
0.8215

	
0.9381




	

	
std.dev.

	
0.0049

	
0.0000

	
0.0000

	
0.0711

	
0.0455

	
0.0025

	
0.0000




	

	
rank

	
4

	
2.5

	
2.5

	
7

	
6

	
5

	
1




	
101087

	
mean

	
0.8196

	
0.9360

	
0.9360

	
0.5368

	
0.6527

	
0.8199

	
0.9381




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000

	
0.0000




	

	
rank

	
5

	
2.5

	
2.5

	
7

	
6

	
4

	
1




	
253027

	
mean

	
0.8196

	
0.9360

	
0.9360

	
0.7290

	
0.7342

	
0.8199

	
0.9381




	

	
std.dev.

	
0.0000

	
0.0000

	
0.0000

	
0.0249

	
0.0285

	
0.0000

	
0.0000




	

	
rank

	
5

	
2.5

	
2.5

	
7

	
6

	
4

	
1




	
average rank

	
5.14

	
3.00

	
3.14

	
5.14

	
5.71

	
4.29

	
1.57




	
overall rank

	
5.5

	
2

	
3

	
5.5

	
7

	
4

	
1
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Table 13. Dice score results for   D = 10  .
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Image

	

	
ME-DE

	
ME-BA

	
ME-ALO

	
ME-DA

	
ME-MVO

	
ME-WOA

	
ME-GDEAR






	
12003

	
mean

	
0.6094

	
0.5869

	
0.5886

	
0.6294

	
0.5824

	
0.5020

	
0.6506




	

	
std.dev.

	
0.0840

	
0.0210

	
0.1445

	
0.0711

	
0.0472

	
0.0769

	
0.0786




	

	
rank

	
3

	
5

	
4

	
2

	
6

	
7

	
1




	
181079

	
mean

	
0.6346

	
0.6297

	
0.5256

	
0.6322

	
0.6273

	
0.7311

	
0.6383




	

	
std.dev.

	
0.0147

	
0.0176

	
0.2312

	
0.0100

	
0.0147

	
0.0666

	
0.0274




	

	
rank

	
3

	
5

	
7

	
4

	
6

	
1

	
2




	
175043

	
mean

	
0.8067

	
0.8171

	
0.7149

	
0.8165

	
0.8105

	
0.6004

	
0.7849




	

	
std.dev.

	
0.0248

	
0.0173

	
0.1576

	
0.0136

	
0.0237

	
0.0864

	
0.0419




	

	
rank

	
4

	
1

	
6

	
2

	
3

	
7

	
5




	
101085

	
mean

	
0.6779

	
0.5834

	
0.5608

	
0.6248

	
0.6573

	
0.6934

	
0.7201




	

	
std.dev.

	
0.1409

	
0.0375

	
0.2307

	
0.1022

	
0.1205

	
0.2814

	
0.0711




	

	
rank

	
3

	
6

	
7

	
5

	
4

	
2

	
1




	
147091

	
mean

	
0.5510

	
0.4469

	
0.6957

	
0.4718

	
0.4815

	
0.5239

	
0.6560




	

	
std.dev.

	
0.1039

	
0.0235

	
0.0927

	
0.0452

	
0.0333

	
0.1151

	
0.0479




	

	
rank

	
3

	
7

	
1

	
6

	
5

	
4

	
2




	
101087

	
mean

	
0.4310

	
0.4334

	
0.4041

	
0.4234

	
0.4646

	
0.3783

	
0.4421




	

	
std.dev.

	
0.0333

	
0.0246

	
0.1592

	
0.0247

	
0.0062

	
0.0971

	
0.0677




	

	
rank

	
4

	
3

	
6

	
5

	
1

	
7

	
2




	
253027

	
mean

	
0.5256

	
0.5191

	
0.5210

	
0.5157

	
0.5136

	
0.5233

	
0.5205




	

	
std.dev.

	
0.0228

	
0.0268

	
0.0216

	
0.0215

	
0.0406

	
0.0238

	
0.0303




	

	
rank

	
1

	
5

	
3

	
6

	
7

	
2

	
4




	
average rank

	
3.00

	
4.57

	
4.86

	
4.29

	
4.57

	
4.29

	
2.43




	
overall rank

	
2

	
4.5

	
7

	
3.5

	
4.5

	
3.5

	
1
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Table 14. Results of Wilcoxon signed rank test.






Table 14. Results of Wilcoxon signed rank test.









	
	p-Value





	ME-GDEAR vs. ME-DE
	   5.8052 ×  10  − 5     



	ME-GDEAR vs. ME-BA
	   2.9061 ×  10  − 6     



	ME-GDEAR vs. ME-GWO
	   4.4433 ×  10  − 9     



	ME-GDEAR vs. ME-DA
	   9.4286 ×  10  − 5     



	ME-GDEAR vs. ME-MVO
	   1.1412 ×  10  − 7     



	ME-GDEAR vs. ME-WOA
	   3.6885 ×  10  − 9     
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Table 15. Results of Friedman test.






Table 15. Results of Friedman test.





	Algorithm
	Rank





	ME-DE
	4.24



	ME-BA
	3.92



	ME-GWO
	5.27



	ME-DA
	2.91



	ME-MVO
	4.90



	ME-WOA
	4.81



	ME-GDEAR
	1.96



	p-value
	   9.5625 ×  10  − 17     



	chi-squared
	87.6
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