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Abstract: This paper begins the study of the relation between causality and quantum mechanics, tak-
ing advantage of the groupoidal description of quantum mechanical systems inspired by Schwinger’s
picture of quantum mechanics. After identifying causal structures on groupoids with a particular
class of subcategories, called causal categories accordingly, it will be shown that causal structures
can be recovered from a particular class of non-selfadjoint class of algebras, known as triangular
operator algebras, contained in the von Neumann algebra of the groupoid of the quantum system.
As a consequence of this, Sorkin’s incidence theorem will be proved and some illustrative examples
will be discussed.

Keywords: causality; groupoids; causal categories; causal sets; von Neumann algebras; incidence
algebras; triangular algebras

1. Introduction: Causal Structures vs. Quantum Mechanics

The principle of causation, ”cause precedes effect” or ”every effect has a cause”, is
the bedrock of modern science, and beyond it, is magic. In fact, “we can assert that scientific
research, especially as it has been developed after the Renaissance, can be considered to be primarily
the practical application of the principle of causation based on observation, analysis (deductive or
inductive), experiment, formation of hypothesis and the formulation of theories and models” [1].
The scientific basis for the principle of causation itself was loosely implemented in the
interaction description of physical laws (Newtonian physics first and Einstein’s general
relativity thereafter since the beginning of the 20th century). The peculiar role played by
”time” in quantum mechanics, and the difficulties inherent to the foundations of quantum
field theories, has left aside the analysis of the principle of causation itself in quantum
theories.

This paper addresses the problem of the role of causality in quantum mechanics,
taking advantage of the recent developments on the categorical/groupoidal description
of quantum systems inspired by Schwinger’s picture of quantum mechanics (see, for
instance, [2–11] and references therein).

Causality is often described in a geometrical setting by means of a Lorentzian metric
on a manifold of spacetime events. Specifically, the family of events that can be “causally”
related is identified with a subset of points on a smooth manifold M , four dimensional in
most physical applications, whose geometrical properties are encoded in a metric tensor
η = ηµνdxµdxν, of signature −+ · · ·+, satisfying some additional properties that make
them adequate for physical interpretation (see discussion below in Section 2).
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This geometrical approach to causality drinks directly from Riemann’s conceptual-
ization of geometrical structures, it is firmly rooted in physical grounds by Einstein’s
description of the gravitational field, and has been used ever since to provide the ba-
sic background for physical theories. In particular, it was found quite early that major
modifications to the so-called standard Copenhagen interpretation were needed to render
quantum mechanics consistent with this description of causality. After strenuous work,
these modifications led to today’s various approaches to “quantum field theories”.

However, this is not the only route leading to the implementation of the principle
of causation in physical theories. Already, Kronheimer and Penrose [12] considered an
abstract description of the physical interpretation of the causality relation between the
events of the manifold M : “An event x causally precedes an event y if the interpretative principles
would allow an occurrence at x to influence what happens at y,..., such models contain a second,
more restrictive relation of chronological precedence, corresponding to the possible time-ordering
of events on the world-line of an idealized observer, whose velocity is less than that of light. In
certain manifolds such analysis of causal and chronological precedence may become ambiguous or
impossible; but we shall treat the existence of consistent relations of this character as a criterion of
admissibility”.

Kronheimer and Penrose proceeded to treat these notions of causal and chronological
precedence on an axiomatic basis, describing the event-space M as a set equipped with
two order-like relations: causality (�), and chronology (�), satisfying appropriate axioms
(see Section 2 below for details). The systems of axioms should be kept as small and
physically reasonable as possible without pretending to reproduce the manifold approach
in its entirety. In actuality, one of the main aims of such analysis would be [12] “to admit
structures which can be very different from a manifold. The possibility arises, for example, of a
locally countable or discrete event-space equipped with causal relations macroscopically similar
to those of a space-time continuum”. Certainly, these ideas were exploited and expanded
upon by R. Sorkin’s causal sets program [13], where a variation of Kronheimer and Penrose
axioms was established as the fundamental causal structure of a physical theory of gravity
(see, for instance, [14] and references therein).

It is hard to emphasize further the impact that the geometric implementation of
causality and its derived arguments, such as relativistic covariance and locality, had on the
development of quantum mechanics and quantum field theory. In actuality, it was precisely
trying to build a theory incorporating locality and relativistic covariance that led R. Haag
to build a consistent axiomatic approach to quantum field theory known today as algebraic
quantum field theory (AQFT) [15,16]. This approach is based on the notion of Haag–Kastler
nets, i.e., an assignment of a C∗-algebra A(Oy,x) to any causal double-cone Oy,x = 〈y, x〉
in a spacetime M , satisfying a set of axioms inspired by the notions of ”locality” and
“relativistic covariance”. Some of the main contributions that the development of AQFT
has provided are a solid framework to the theory of superselection rules, the CPT theorem,
and the spin–statistics connection.

Given the importance of causal structures highlighted by the previous discussion, it
appears at least reasonable to ask whether there is a way to understand how said causal
structures emerge from more fundamental quantum mechanical principles. However, in
this respect, it is relevant to note that, at least in principle, it may appear as paradoxical
that specific causal structures, such as Minkowski spacetime with its standard future time
orientation, could provide the background for a theory that is time reversible, as quantum
mechanics is (in accordance with Feynman’s principle of microscopic reversibility [17,18]).
Therefore, the purpose of this work is to try to shed some light on the meaning of this
question by combining the axiomatic approach to causality in the tradition of Kronheimer,
Penrose, Sorkin, etc., and the recently developed formulation of quantum theories based on
the groupoidal formulation of quantum mechanics inspired by Schwinger’s seminal work.

The high level of abstraction involved in the groupoidal picture of quantum mechan-
ics makes it well adapted to discuss these issues. Indeed, there is a relevant stream of
investigative efforts which focuses on considering the foundational aspects of quantum
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mechanics on a more abstract level as a way to better understand their nature (see, for
instance, the recent works [19–27]).

In the groupoidal picture of quantum mechanical systems, a groupoid is associ-
ated with each family of experimental settings used to describe the system (see later,
Section 3.2, and [2–10] for details). The objects x of the groupoid are the outcomes of the
measurements performed on the system, and its arrows, or morphisms, are the physical
transitions that the system experiences. Each transition, say α : x → y, has an intrinsic
orientation, the outcome x being the source and y the target of the observed transition.
The fundamental microscopic reversibility principle stated forcefully by Feynman is im-
plemented as a main axiom of the theory by imposing the family of transitions to form a
groupoid, that is, to be such that, for each transition α : x → y, there is an inverse transition
α−1 : y → x, whose composition with α leaves the system unchanged. Therefore, at the
kinematical level, there is no preferred “time orientation” or “arrow of time”. Specific causal
relations among events, and the outcomes of the theory associated with them, emerge only
when we introduce comparison dynamics in the system, that is, an auxiliary system whose
dynamical evolution is well known and that serves us to account for our observations (for
instance, a clock carried by the observer), and to exchange this information with other
observers and their own experimental settings. It is well known that natural conditions on
the consistency of such comparison dynamics leads to the determination of the possible
kinematical invariance groups of the theory, that, under a few simple assumptions, turn
out to be the Poincaré and Galilei groups (see, for instance, [28–30]).

In this context, it just makes sense that the outputs of a (sub)system of the given
system can be used to describe the “arrow of time” of the system. Note that these outputs
(the ticking of a clock, for instance) are part of the groupoidal description of the system,
together with other outputs used/needed by the experimenter to “locate” or “individuate”
the system (think, for instance, of the experimental setting used to study the behavior of an
electron in a cavity or box).

The germ of this idea was elevated to a principle by A. Connes and C. Rovelli introduc-
ing the notion of a thermodynamic time in the description of quantum systems in a general
covariant setting, the so called Connes–Rovelli thermodynamic time hypothesis [31]. More
precisely, such hypothesis considers that the system is described by a certain von Neumann
algebra of observables and that the dynamics provided by the Tomita–Takesaki modular
flow associated to a given reference state provides the natural choice for an arrow of time.

In this paper, we work around this idea by providing an algebraic characterization
of causality relations which is suitable to describe in terms of the von Neumann algebra
of the given system, which, in turn, is provided by the von Neumann algebra of the
groupoid associated with it. Quite obviously, we will work in the framework of the recently
introduced groupoidal description of quantum systems. In this setting, causal structures
will be identified with a particular class of subcategories of the groupoid of the system
under investigation. This formalism will lead us to identify causal relations with a particular
instance of subalgebras of the von Neumann algebra of the quantum system. Specifically,
these subalgebras are not ∗-algebras but, rather, triangular operator algebras, that is, a
subclass of the family of algebras known as Kadison–Singer algebras [32,33]. It will be
shown how to reconstruct the causal relation in the space of outcomes of the groupoid from
the algebras involved. This reconstruction theorem constitutes a nontrivial extension of
Sorkin’s theorem stating the existence of a one-to-one correspondence between maximal
indecomposable ideals in the incidence algebra of the given causal set and the events in
this set that reproduces the causal relation (see Section 3, Theorem 1). Thus, the main
conclusion of this paper is that Schwinger’s picture of quantum mechanics in its modern
presentation based on groupoids and their algebras provides a new way to deal with
causality in physical theories.

An important observation regarding the full program is that, in order to incorporate
both the mathematical technical tools and the physical background ideas, it is necessary to
extend the theory of causal relations from its standard topological/differentiable setting to
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a measure theoretical one. These aspects are discussed in detail in Section 3 of this paper.
However, in order to avoid technical difficulties and to help the main ideas be more easily
apprehended, only the discrete situation will be discussed in the analytical part of this work,
Section 4. Thus, after revising the standard geometrical approach to causality in Section 2,
Section 3 is devoted to the construction of the relevant categorical notions associated with
the notion of a causal structure and, finally, in Section 4, the operator algebras associated
with categorical causal relations will be studied in relation with the von Neumann algebra
of the given quantum system, and the previously mentioned reconstruction theorem will
be proved.

2. The Geometric Theory of Causality

As it was already mentioned in the introduction, A. Einstein laid a solid background
for the formal description of physical causal relations as a consequence of his critical
analysis of the structure of space and time. For the purposes of this work, Einstein’s main
observation can be stated as the identification of physical events with points in a smooth
manifold M carrying a Lorenztian metric η, of which Minkowski spacetime is the simplest
possible realization. More precisely, a (geometric) spacetime (M , η) is a time-oriented
connected Lorentz manifold. A Lorentz manifold is a smooth manifold (here, manifolds are
always assumed to be Hausdorff and paracompact). M of dimension m (typically m = 4),
endowed with a nondegenerate metric tensor η of signature (−,+, · · · ,+).

Causality emerges from the metric structure of spacetime because of its associated
distribution of light cones. Specifically, each tangent space TxM contains a causal cone
C(x) = {v ∈ TxM | η(v, v) = 0, v 6= 0}, that decomposes in two connected components,
called the causal cones at x. A time-orientation on M consists of a smooth choice of one of
the two causal cones at every x ∈M , which will be called the future cone and denoted by
C+(x) (and the nonchosen one will be called the past cone, denoted C−(x)). Note that the
smoothness condition before amounts to the family of cones C =

⋃
x∈M C(x) ⊂ TM being

a smooth submanifold of TM . This submanifold is invariant under the free action of the
Z2 group given by inversion v 7→ −v. The quotient space C/Z2 is a manifold and we will
say that the Lorentzian manifold is time-orientable if there exists a smooth section of the
canonical projection C → C/Z2. This is equivalent to saying that there is a smooth choice
of a causal cone C+(x), for every x ∈M .

A tangent vector v ∈ TM is timelike, null, causal, or spacelike, if η(v, v) < 0, η(v, v) =
0, η(v, v) ≤ 0, η(v, v) > 0, respectively (the conventions used here differ slightly from
the usual ones in standard Lorentzian causality theory [34] as ‘causal’ usually refers to
vectors such that η(v, v) ≤ 0, v 6= 0, but we will adopt the previous terminology as it
makes simpler the matching with more abstract notions of causality). The definitions above
extend naturally to vector fields X on M and curves γ : I → M . More explicitly, let I
denote an interval [a, b] ⊂ R, (−∞ ≤ a < b ≤ +∞), a timelike, lightlike, or causal curve is
a piecewise smooth curve γ : I →M , such that not only the tangent vectors γ̇(s), s ∈ I, are
timelike, lightlike or causal, respectively, but also the two lateral tangent vectors at each
break-point must lie in the same causal cone. It is easily shown that a Lorentzian manifold is
time-orientable if and only if (iff) it admits a globally defined timelike vector field T (which
can be chosen to be complete). Such vector field T can be chosen to be future-oriented
at all points x ∈ M , i.e., T(x) ∈ C+(x), and then, a causal tangent vector v is future
oriented iff ηx(v, T(x)) < 0. Any Lorentzian manifold admits a time-orientable double
covering. Any Riemannian metric g on a smooth manifold gives rise to a time-orientable
Lorentzian manifold provided that we choose a nonvanishing vector field X (the can be
chosen to be normalized, g(X, X) = 1) by means of η = g − 2g(X) ⊗ g(X), with g(X)
the canonical 1-form associated with X, hence the existence of time-oriented Lorentzian
structures reduces to the determination of nonvanishing vector fields [35] (Prop. 5.37).

Following Kronheimer and Penrose’s notion of causal relation, and complementing
the description introduced in the introduction, we can state [12] that “An event x precedes
an event y if a message could be transmitted from x to y”, or even more, we can consider the
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following information-based definition of causality: x � y if information can be transmitted
from x to y. Because information is physical and transmission implies that a physical
channel between x and y can be created such that information would be carried though
it, we conclude that the causal relation x � y amounts to the existence of a causal curve
γ : I = [a, b] → M , such that γ(a) = x and γ(b) = y, which constitutes the geometrical
implementation of the causal relation �. We will also write γ : x → y.

We will define the causal and timelike future domains J+(x), I+(x) as the sets of events
in M that can be reached by causal and timelike curves, respectively. In a similar way, the
causal and timelike past domains J−(x), I−(x) are defined. The timelike domains I+(x)
are open sets and the open double cones < y, x >= I−(y) ∩ I+(x) generate a topology
on M called the Alexandrov topology. A spacetime (M , η) is called strongly causal if
the Alexandrov topology coincides with the standard manifold topology. Strongly causal
spaces lie in the middle of the causality ladder (see, for instance, [34,36] and references
therein), and exhibit a wealth of significant geometrical properties, among them the fact
that their spaces of light rays are smooth manifolds, provided that an additional technical
condition is satisfied (see, for instance, [37] and references therein).

Now, Kronheimer and Penrose’s axioms for causal spaces can be spelled out from the
geometrical properties of (M , η), that is, we consider three different relations�, � and→,
called, respectively, chronological, causal, and horismos, and defined as x � y if y ∈ I+(x),
x � y if y ∈ J+(x), and x → y, if x � y but x �/ y, respectively. Then, the relation � is a
partial order, i.e., it is reflexive, transitive, and antisymmetric; the chronological relation�
is irreflexive, transitive, and antisymmetric and, in addition, it satisfies that x � y⇒ x � y,
x � y� z⇒ x � z, and x � y � z⇒ x � z (these properties can be succinctly expressed
saying that ≺ is a partial order and� is irreflexive contained in ≺).

Clearly, the geometrical theory of causality depicted so far is appropriate until we
need to consider situations where there is no natural geometrical spacetime background,
as it happens, for instance, when dealing with many problems in quantum mechanics
or in attempting to understand quantum properties of the spacetime itself. Kronheimer
and Penrose’s idea [12] of an abstract description of causality, following the remarks in
the previous paragraphs, fits naturally into these situations and was taken back by Rafael
Sorkin as a departing point for a fresh approach to quantum gravity [38].

3. Algebraic Causality: A Categorical Approach
3.1. Borel Causal Sets

Sorkin’s notion of causal sets (or “causets”), that is, discrete countable sets Ω with a
partial order �, such that the intervals [y, x] = {z ∈ Ω | x � z �} are finite [14], implies
the assumption that the basic notion underneath a causal structure on a physical system is
a set of events Ω partially ordered by a relation of causal precedence. Causal sets provide
a natural background to understand basic questions on gravity. A relevant step in this
program is achieved by a theorem that reproduces Gelfand’s duality theorem for Abelian
C∗-algebras: a compact space Ω is naturally homeomorphic to the space of maximal ideals
of the C∗-algebra of its continuous functions. Sorkin’s theorem asserts that a (finite) causal
set can be recovered from the structure of a family of ideals in its incidence algebra (see [39]
for a recent proof of this theorem). A new proof of this theorem will be obtained as a
consequence of the results discussed in Section 4.

Theorem 1. [40] Let (Ω,�) be a finite causal set. There is a one-to-one correspondence between
maximal indecomposable ideals of the incidence algebra ν(Ω,�) and points in Ω. Moreover, x � y
iff JyJx 6= 0, where Jx is the maximal indecomposable ideal canonically associated with x ∈ Ω.

Therefore, the abstract, axiomatic approach to causality is a natural way to learn more
about the role of causality in physical theories. In fact, such abstract axiomatic approach
can be placed nicely in the algebraic setting of category theory. Before proceeding to do
so, first we will enrich the notion of causal order as a partial order relation on sets with a
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measurable structure that, even if it is not going to be the central theme of this work, is the
natural framework to set the general analysis. The reason for that is that causal sets are
assumed to satisfy an interval finiteness condition [14], a condition which is not satisfied
in many natural applications. However, it is often the case in most physical applications
that the space of events Ω carries a measurable structure. Thus, it will be assumed that Ω
carries a measurable structure given by a σ-algebra B of sets on Ω, typically the algebra of
all subsets of Ω when Ω is discrete countable.

A measurable structure B on Ω is a family of sets, including the empty set and Ω
itself, which is closed with respect to countable intersections and complements (hence with
respect to countable unions too). The physical interpretation of such family of sets is that
sets ∆ ∈ B correspond to actual “events” on M , i.e., outcomes of actual measurements or
observations performed on the system. The axiom concerning countable intersections of sets
∆n in B corresponds to an idealization of the actual measurement processes taking place,
that is, it reflects the possibility of repeating an observation an unlimited number of times,
and the complementary axiom reflects that if ∆ ∈ B, then Ω\∆ ∈ B, is just the negation
of the observation ∆. An additional requirement, the consequence of such idealization, is
that “atomic events” {x}, x ∈ Ω, are measurable sets (Formally, it can be assumed that for
any x there exists a family {∆n(x)}) of measurable sets such that ∩n∆n(x) = {x}. A space
Ω equipped with a measurable structure B satisfying the previous conditions will also
be called a Borel space and the elements ∆ ∈ B Borel sets (Borel sets are often referred,
more restrictively, as the sets in the σ-algebra generated by a given topology on Ω). This
constitutes a crude axiomatic setting for a proper algebraic description of measurement
processes as described, for instance, by Resende using the notion of quantals in the context
of topology in “pointless” spaces [24,25], even though using Borel structures is sufficient
for the situations that will be met in this work.

A map F : (Ω, B) → (Ω′, B′) will be said to be measurable if F−1(∆) ∈ B, for any
∆ ∈ B′, and we will say that two Borel spaces (Ω, B) and (Ω′, B′) are Borel isomorphic if
there is an invertible measurable map F : Ω→ Ω′ such that F−1 is measurable too.

Then, we will say that the causal structure determined by the partial order � on the
Borel space (Ω, B) is a standard causal structure if Ω is a standard Borel space (i.e., Borel
isomorphic to a Borel subspace of a separable complete metrizable topological space), and
� is consistent with such measurable structure, that is, if we denote by R ⊂ Ω×Ω the
graph of the relation defined by �,R = {(y, x) ∈ Ω×Ω | x � y}, thenR is a Borel subset
of Ω×Ω, henceR is a standard Borel space itself. Standard Borel spaces have very good
properties from the point of view of measure theory. They are Borel isomorphic either to
a countable or finite set (our main situation in the current work), or to the interval [0, 1]
with its standard Borel structure. It would be necessary in many applications to consider a
more general class of measurable spaces though (see, for instance, Proposition 1 below),
called analytic spaces, which are spaces Borel isomorphic to continuous images of Polish
spaces (separable, complete metrizable topological spaces). We will keep our attention on
standard Borel spaces for the rest of this section and, in the coming ones, we will restrict
our interest to countable discrete spaces with their natural Borel structure.

Given a partial order relationR ⊂ Ω×Ω, we will denote by ◦ the natural composition
map ◦ : R(2) → R, given by

(z, y) ◦ (y, x) = (z, x) , x, y, z ∈ Ω , (z, y), (y, x) ∈ R ,

where R(2) denotes the subset of R × R determined by consistent pairs, i.e, (y, x) is
consistent with (v, u) if y = u.

We denote by s, t the maps fromR to Ω defined as s(y, x) = x and t(y, x) = x, called,
respectively, the “source” or “past” map, and the “target” or “future” map of the causal
relationR. Note that ifR is a Borel set, then s, t are measurable maps (indeed, if ∆ ⊂ Ω is
measurable, then s−1(∆) = R∩ (Ω× ∆) is the intersection of two measurable sets, hence
it is measurable too). In most applications, the past and future maps s, t, are measurable
submersions, that is, they are subjective, measurable, and the image of a measurable set
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is measurable. Note that such condition is satisfied if both s, t, possess measurable right
inverses. The previous discussion can be summarized as a formal definition:

Definition 1. A Borel causal set structure on a standard Borel space (Ω, B) is a partial-order
relation � such that its associated relationR ⊂ Ω×Ω is a Borel subset of Ω×Ω, the canonical
composition ◦ is a Borel map, and the source and target maps are Borel submersions. The space Ω
together with its Borel structure B and a Borel causal relation � will be called a causal Borel space
(or just causal space if there is no risk of confusion).

Note that, ifR is a Borel causal structure on Ω, the canonical map i : Ω→ R, given by
i(x) = (x, x), is Borel because i−1(∆) = ∆Ω ∩ ∆, where ∆Ω ⊂ Ω×Ω denotes the diagonal
subset, which is Borel.

Given two events x, y ∈ Ω, x � y, the double cone defined by x, y is the set of events z
such that x � z � y and it will be denoted as [y, x]. We will denote by < y, x > the “open”
double cone of events such that x ≺ z ≺ y, where x ≺ y means that x � y and x 6= y. Each
double cone (open or closed) in a causal space inherits a natural causal Borel structure.
Given a causal space Ω, there is a natural topology associated with it, its Alexandrov
topology, which is the topology generated by the family of open double cones < y, x >.

Given two causal Borel spaces (Ωa, Ba,�a), a = 1, 2, a Borel map φ : Ω1 → Ω2 will be
called causal if φ(x) �2 φ(y) whenever x �1 y, with x, y ∈ Ω1. Two causal Borel spaces
will be said to be causal isomorphic if there is a causal Borel isomorphism between them.

Simple, natural examples of causal Borel spaces include directed graphs, Kronheimer–
Penrose causal structures, and geometrical spacetimes. Thus, the simplest examples of
Borel causal structures are provided by oriented acyclic graphs Γ, that is, consider a set Ω
of vertices and a (at most countable) set Γ of links, i.e., a collection of ordered pairs (y, x),
x, y ∈ Ω. We consider that the graph defined in this way is acyclic, that is, it possesses no
closed paths. Then, letRΓ be the smallest partial order relation on Ω containing Γ. In other
words, consider the smallest subsetRΓ ⊂ Ω×Ω satisfying the axioms of a partial order
containing Γ. We may callRΓ the partial order generated by the graph Γ. Then,RΓ defines
a Borel causal structure with respect to the Borel structure generated by the vertices {x},
x ∈ Ω.

The simplest examples of such causal spaces are provided by any subset C of the
set of integer numbers, Z, with its natural total order: n � m iff m− n ≥ 0. Note that,
with the previous notations, open and closed double cones in Z are related as < m, n >=
[m− 1, n + 1]. A causal space will be said to carry a linear order if it is causal isomorphic to
< a, b >, a, b ∈ Z (where a, b could be ±∞). Sorkin’s causal sets are particular instances of
the previous examples [13,41].

As it was discussed at the end of Section 2, Kronheimer and Penrose’s causal spaces are
quadruples (M ,�,�,→) where the three relations �,�, and→, satisfy the axioms [12]
(KR axioms):

1. � is a partial order.
2. � is areflexive, i.e., not x � x.
3. � is finer that �, that is, if x � y, then x � y; x � y � z → x � z; x � y � z →

x << z.
4. x → y iff x � y and not x � y;

and they provide good examples of Borel causal set structures. In fact, if (M ,�) is a
complete metrizable separable topological space whose topology is generated by the
Alexandrov topology defined by open cones < y, x >, satisfying KP axioms, then the
chronological order � determines a standard Borel causal space relationR� on M .

A most relevant class of standard causal structures is provided by geometric causal
relations associated with metric structures on spacetimes (see Section 2). Thus, if (M , η)
is a strongly causal spacetime, then it is a standard Borel space with respect to the Borel
structure defined by the Alexandrov topology. A large class of spacetimes (M , η) of
physical interest satisfy this requirement, most notably the so-called globally hyperbolic
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spacetimes [36]. A particular instance of such spaces is given by the standard Minkowski
space M in dimension m, which is diffeomorphic to Rm equipped with the metric η =
−(dx0)2 + (dx1)2 + · · ·+ (dxm−1)2. In general, the causal order relation � defined on a
spacetime (M , η) will not be standard, but analytic, as mentioned above. In fact, we have
the following proposition:

Proposition 1. The natural partial order relation � defined on a strongly causal spacetime (M , η)
determines an analytic causal Borel structure on M .

Proof. The Borel structure will be that generated by the topology of the manifold. Because
the space is strongly causal, this implies that the topology and the Borel structure are both
generated by double cones. Hence, to show that the causal structure defined by x � y iff
y ∈ J+(x) is Borel, it suffices to show that the graph of the relationR = {(y, x) ∈M ×M |
x � y} is an analytic Borel set in M ×M . For that, it suffices to show thatR is the image
under a continuous map of a Borel set. Consider for each n ∈ N, the set Pn(M ), the space of
n-polygonal causal geodesics on M , that is, γ ∈ Pn(M ) is the union of n causal geodesics
γl : [al , bl ]→M such that al+1 = bl . Any two causally related events x � y can be joined
by an n-polygonal causal geodesic for n large enough. Hence, the image of the continuous
map F :

⋃∞
n=0 Pn(M )→M ×M , given by F(γ) = (γ(bn), γ(a1)), isR.

3.2. The Categorical Approach to Causality: Causal Structures as Borel Categories

We will now discuss a way to identify causal structures with abstract algebraic notions,
more precisely with categories, which will be particularly useful for the purposes of
the present work (see also [27,42,43] for other discussions of causality in the categorical
setting). The relationR has the structure of a category whose composition law is given by
(z, y) ◦ (y, x) = (z, x), whenever x � y � z. The composition law ◦ reflects the transitive
property of the causal relation �; moreover, the units 1x of the categoryR are the diagonal
pairs (x, x), and the antisymmetric property reflects the fact that only units have inverses.

On the other hand, any subcategoryR of the groupoid of pairs P(Ω) = Ω×Ω defines
a partial order in Ω setting x � y iff (y, x) ∈ R, provided that R∩R−1 = i(Ω), where
R−1 = {(y, x) | (x, y) ∈ R}, and i : Ω → R is the map sending the object x to the unit
1x = (x, x). We will say that a subcategoryR of the pair groupoid P(Ω) of a measurable
set Ω such thatR∩R−1 = i(Ω) is measurable if the partial order defined by it determines
a measurable causal structure on Ω. We will also denote the category R as R ⇒ Ω, to
emphasize the role played by the past and future maps s, t, s(y, x) = x, t(y, x) = y, and we
will say that R ⇒ Ω is a measurable causal category. A subset S ⊂ Ω×Ω, also called a
quiver over Ω, will be said to generate the categoryR ifR is the smallest subcategory in
P(Ω) containing S . All this lead us to the following formal definition:

Definition 2. A Borel category is a small category C ⇒ Ω carrying a Borel structure such that
the source, target, and composition maps are Borel. In addition, it will be assumed that the space of
units Ω is a Borel subset of C and the source and target maps are Borel submersions.

As it is customary, given a morphism α in the category C ⇒ Ω, we will denote it as
α : x → y, where x = s(α) is the source of α and y = t(β) is the target of α. The composition
law in C will be denoted as β ◦ α and is defined provided that t(α) = s(β), the family of
such composable pairs is denoted as C (2). The units of C will be denoted as 1x, for any
object x ∈ Ω. Then, we will denote by i the canonical assignment x 7→ 1x. We will also
denote by C opp the opposite category to C , i.e., the category whose arrows are the inverses
of the arrows in C .

Using the previous notions, it can be said that a Borel causal set structure on the
standard Borel space Ω is a Borel categoryR contained in Ω×Ω, i.e., a Borel subcategory
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of the groupoid of pairs P(Ω). On the other hand, if C ⇒ Ω is a Borel category over Ω,
then the canonical map Π : C → P(Ω) = Ω×Ω, given by

Π(α) = (t× s)(α) = (t(α), s(α)) = (y, x) , α : x → y ∈ C ,

determines a relation on Ω. This relation R = Π(C ) will be a partial order if Π(C ∩
C opp) = ∆Ω, with ∆Ω = {(x, x) | x ∈ Ω}, the diagonal set of P(Ω). In particular, if
C ∩ C opp = i(Ω), then C induces a partial order on Ω given by x � y iff there exists
α : x → y ∈ C . We will refer to this partial order as the partial order associated with the
category C , and we will say that C ⇒ Ω is a causal category.

Definition 3. A causal Borel category is a Borel category C ⇒ Ω such that Π(C ∩ C opp) ⊂
∆Ω = i(Ω). The induced partial order � on the Borel space Ω, defined as x � y iff there exists
α : x → y in C , defines a Borel causal structure on Ω called the causal structure associated with C .
The causal Borel category C will be said to be strict if C ∩ C opp = i(Ω).

We will upgrade the notations and terminology introduced in the previous sections
to the current situation. We will denote by Cx and C y the preimages s−1(x), x ∈ Ω, and
t−1(y), y ∈ Ω, respectively. Note that, if C ⇒ Ω is a causal Borel category, the family of
sets Cx ( C y) define a measurable partition of C .

As we did in Section 2, given x ∈ Ω, we will denote by J+(x) the causal future
set of x, that is, J+(x) = {y ∈ Ω | x � y} = {y ∈ Ω | ∃α : x → y ∈ C }. Note that
J+(x) = t(s−1(x)) = t(Cx), hence, it is a measurable set. Similarly, we define the past
causal set J−(y) = {x ∈ Ω | x � y} = {x ∈ Ω | ∃α : x → y ∈ C }. We will denote by [y, x]
the causal interval defined by x, y, that is, [y, x] = {z ∈ Ω | x � z � y} = J+(x) ∩ J−(y).
Causal intervals are measurable sets and they are also termed (closed) “double cones”. We
will say that the causal structure is past separating if J−(y) = J−(y′) implies that y = y′

(future separating is defined in a similar way).
It will be relevant for the discussion to follow to consider the analogue of the notion

of transitivity for causal categories. Any (causal) category C ⇒ Ω generates a groupoid
G⇒M , which is the smallest groupoid containing C . Given an object x ∈ Ω, the orbit of x,
with respect to the groupoid G, is the set of all objects y such that there exists α : x → y ∈ G.
The groupoid G is said to be transitive (or connected) if there is an x such that its orbit is the
full set Ω. Clearly, a similar notion can be introduced for the category C where the notion
of orbit is replaced by the causal sets J+(x) and J−(y). Then, we will say that the causal
structure determined by the causal category C ⇒ Ω is future (past) transitive if there is
x ∈ Ω such that J+(x) = Ω (J−(x)) = Ω, respectively). However, this notion of transitivity
is too restrictive for the purposes of this research, as not even Minkowski space satisfies it.
It is more natural to consider a weaker notion of transitivity, that will be referred in what
follows as relative transitivity, defined as follows: the causal category C ⇒ Ω will be said
to be future relative transitive, if for any x, y ∈ Ω, if there exists a finite sequence zn ∈ Ω
such that z1 � x, z1 � z2, z3 � z2, z3 � z4, . . . zn � y, in other words, x, y ∈ J+({zk}),
with J+(U) = {y ∈ Ω|∃x ∈ U, α : x → y ∈ C }. Similarly, past relative transitivity will be
defined, and C will be said to be relative transitive if it is both past and future relative
transitive.

Clearly Minkowski causal category is relative transitive, and the notion even applies
to Minkowski strips. Specifically, consider the strip in Minkowski space M(a,b) = {x ∈M |
a < x0 < b}. Then, the strip M(a,b) with the causal structure inherited from M is relative
transitive because any pair of events x, y, even if they are close to the boundary of M(a,b),
can be joined by a “seesaw” path of causal relations (see Figure 1).
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Figure 1. Diagram representing a Minkowski strip space M(a, b) (in blue) as a subspace of Minkowski
space. The causal cone C(u) of an event u is marked in orange (right). Two events x, y not causally
related can be joined by a seesaw path (x, z1, z2, z3, z4.z5, z6, z7, z8, z9, z10, z11, y), consisting of causal
geodesics (dark blue) contained in M(a, b). Note that the set of points J−(x) ∩ J−(y) in the common
causal past of x, y, is the causal past J−(z) of z (in red) which is out of the Minkowski strip.

We conclude this section by introducing the notion of causal structure in a groupoid
as a categorical causal structure contained in the groupoid itself.

Definition 4. Let G⇒ Ω be a Borel groupoid. Then, a Borel causal structure on G is a subcategory
C ⊂ G which is a Borel causal category over Ω. We will say that the causal structure C is
transitive if C ∨ C−1 = G, where C ∨ C−1 denotes the category generated by C and C−1 where
the subcategory C−1 is identified with the opposite category C opp.

As it was indicated before, Borel causal set relations are Borel causal structures on the
groupoid of pairs P(Ω). If Γ is a discrete countable group, then a causal structure on it
(considered itself as a category) will be a submonoid C ⊂ Γ, such that C ∩ C−1 = {e}. We
may consider, for instance, the causal structure on GL(n,C) defined by the set C of upper
triangular matrices with unit diagonal. This example provides the name for the algebras
discussed in the following section.

4. Analytic Causality: Groupoids and Quantum Mechanics

As it was discussed in the previous section, the categorification of the notion of a
causal relation leads to the notion of a causal structure on a groupoid. Groupoids have
proved to be the natural way to implement Schwinger’s notion of algebra of selective
measurements, his proposal for a foundational description of quantum mechanical systems.
Hence, the previous notions allows us to introduce a notion of causal structure on quantum
systems.

As discussed in the introduction, the physical interpretation of a groupoid G ⇒ Ω
is that morphisms α : x → y in the groupoid represent physical transitions of the system.
Objects x, y ∈ Ω, represent outputs of measurements of physical observables. The partial
associative composition law β ◦ α : x → z, of two transitions α : x → y, β : y→ z, represent
the observed concatenation of both (see, for instance, [2,3,7,11] for details). Hence, the
notion of groupoid contains a notion of “precedence” implicitly encoded in its composition
law, albeit symmetric, that is, Feynman’s microscopic reversibility principle imposes that
any transition α : x → y, must posses an inverse α−1 : y → x, such that α−1 ◦ α = 1x, and
α ◦ α−1 = 1y, in other words, the transition α−1 reverses the previously observed transition
α, leaving the system unchanged. If a “clock” were part of the experimental setting (as
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it is customary), i.e., a “time” parameter is also part of the outcomes of the system, then,
following the previous argument, transitions taking us back in time are also part of the
groupoidal description of the system. The way to reconcile this with the perception of a
causal structure on the description of quantum systems is by considering the “clock” as a
classical system with its own independent (classical) dynamics.

The notions introduced in Section 3 allow for a different, more natural and physically
deeper, way of understanding the emergence of causal structures on quantum systems
by selecting a causal structure in the sense of Definition 4. Thus, instead of claiming that
there is an “external” classical system (the “clock”) measuring the time of the observations
performed on our quantum system, we will consider that there is a causal subcategory of
the groupoid that has been selected to describe the given quantum system.

In this framework, the standard description of the “time” parameter in quantum
mechanics would correspond to consider two separate systems described, respectively, by
groupoids GA ⇒ ΩA and GB ⇒ ΩB, of which GA is our quantum system of interest and
GB describes a classical system with a prescribed dynamics (the “clock”). In such a case,
the space of outputs ΩB would be an interval [t0, t1] ⊂ R (or a interval in Z). The groupoid
GB, being a classical system, will be identified with the set ΩB itself as no nontrivial
transitions αB : t → s exist on GB apart from the units 1t : t → t (see [44] for details on
dynamics of classical and quantum systems). Hence, the direct product of both systems
GA ×ΩB ⇒ ΩA ×ΩB will represent the standard composition of both systems whose
transitions will have the form (α, 1t) : (x, t) → (y, t), so there is not an intrinsic notion of
causal precedence build in the system. The causal relation on the space of outcomes (x, t) is
introduced instead by hand as (x, t) � (y, s) iff t ≤ s (which is not a partial order relation as
it is not antisymmetric because all transitions (α, t) occur “instantaneously”, i.e., at a fixed
time t). This is clearly unphysical, and to mend it we have to introduce a relativistic picture,
that eventually lead us to the intrinsic difficulties of quantum field theories. Because of all
this, we conclude that a different approach must be considered to address the “problem of
time” in quantum mechanics. The framework proposed in this work will help to clarify it,
as will be shown in subsequent articles.

Instead of addressing the problem of time in quantum mechanics further, we will turn
our attention to study the structure and properties of causal structures in the analytical
context provided by the von Neumann algebra associated with a given groupoid. In doing
so, we will be able to study them using their “incidence algebras”, that is, the abstract
algebra that captures the relations between events. This algebra is much better understood
from the perspective of the algebra of a Borel category as a subalgebra of the von Neumann
algebra of a given groupoid. This would allow us to prove a reconstruction theorem that
will encompass, among other things, Sorkin’s theorem, Theorem 1 1.

4.1. The Incidence Algebra of a Causal Relation and Sorkin’s Theorem

As was mentioned before, we will restrict ourselves in what follows to discuss the
discrete case in order to keep the technical difficulties at bay. Thus, given a discrete
countable Borel category C ⇒ Ω, equipped with the counting measure, we will denote by
L2(C ) the space of square summable functions on C , i.e., functions ψ : C → C, such that
∑α∈C |ψ(α)|2 < ∞.

We will denote by C[C ] the complex linear space generated by C , that is, the set of
formal finite linear combinations a = ∑α∈C aαα, with only a finite number of nonvanishing
coefficients aα ∈ C. The linear space C[C ] carries a canonical associative product defined as

b · a = ∑
(β,α)∈C (2)

bβaα β ◦ α ,

and C[C ] becomes an associative algebra (nonunital if C is infinite). Notice that C[C ] is not
a ∗-algebra because the natural ∗-operator a 7→ a∗ = ∑α āαα−1, is not defined as, in general,
α−1 /∈ C .
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The algebra (C[C ], ·) is called the (algebraic) incidence algebra of C (actually, this is
the standard terminology when restricting ourselves to the situation C[C ] ⊂ P(Ω), i.e., C
is a relation on Ω). However, in order to build a robust analytical framework, it is necessary
to equip this algebra with a Banach algebra structure. There are two ways of doing this.
The first one mimics the definition of the von Neumann algebra of a group(oid) and departs
from the observation that the algebra C[C ] carries a natural representation, its right regular
representation in the space of bounded operators on L2(C ), R : C[C ]→ B(L2(C )), defined
as

(R(a)ψ)(β) = ∑
(β,α)∈C (2)

aαψ(β ◦ α) . (1)

It is a simple computation to check that R(a · b) = R(a)R(b). We will define the (analytical)
incidence algebra of the category C , and we denote it as ν(C ), as the double commutant of
the range of the regular representation R, that is,

ν(C ) = R(C[C ])′′ ,

where R(C[C ])′ = {A ∈ B(L2(C )) | [R(a), A] = 0, ∀a ∈ C[C ]}, and R(C[C ])′′ =
(R(C[C ])′)′. It is clear that the identity operator I belongs to ν(C ) and is the unital element
of ν(C ). The algebra ν(C ) inherits a Banach algebra structure from the operator norm on
B(L2(C )); however, we will delay the study of its structural properties until the discussion
of the second way to construct it.

Ideals of incidence algebras play a fundamental role in the statement of Sorkin’s
theorem. Let us recall that a left ideal J CA of an associative algebra is a subspace of A
which is a left-A -module, i.e., such that A J ⊂ J . Right ideals are defined in a similar
way, and two-sided ideal, or just ideals, are both left and right ideals. Given two ideals
J , I , we can define its sum, J + I , which is the ideal generated by the union of both. We
will say that an ideal J is indecomposable if there are no two (nontrivial) ideals J ′, J ′′
such that J = J ′ + J ′′. The product J I of two ideals is the ideal consisting of finite
linear combinations ∑i xiyi of products of elements xi ∈ J , yi ∈ I (note that, in general,
J I ⊂ J ∩ I). With this terminology, an improved version of Sorkin’s theorem, Thm. 1,
would be stated as follows:

Theorem 2. Let C ⇒ Ω be a discrete countable strict causal category. There is a one-to-one
correspondence between events x ∈ Ω and maximal indecomposable ideals Jx in the incidence
algebra ν(C ). Moreover, x � y, i.e., there is α : x → y ∈ C iff Jy · Jx 6= 0.

The second construction of ν(C ) takes advantage of the situation when the category
C is contained in a groupoid G, which is the situation we are mostly concerned with in this
paper and that will be kept until the end. Thus, we will assume that a discrete countable
groupoid G ⇒ Ω describing a certain quantum system is given and we will consider a
causal structure on it, that is, a Borel causal subcategory C ⊂ G.

The groupoid G carries natural left and right representations on the space of bounded
operators on L2(G). We will concentrate on the right regular representation R : C[G] →
B(L2(G)), defined by a formula similar to Equation (1), that allows us to define the von
Neumann algebra ν(G) of the groupoid as the double commutant R(C[G])′′, where C[G]
is the ∗-algebra defined, as in the case of a category, by formal finite linear combinations
of transitions α : x → y ∈ G. Note that the space C[G] can be identified naturally with
the space of functions on G with compact support Cc(G) with the convolution product
( f ? g)(α) = ∑γ◦β=α f (γ)g(β) = ∑s(β)=s(α) f (α ◦ β−1)g(β) = ∑t(γ)=t(α) f (γ)g(γ−1 ◦ α).
Hence, we may consider the von Neumann algebra ν(G) as the completion of the ∗-
algebra (Cc(G), ?) with respect to the weak or strong topology on B(L2(G)). Indeed, von
Neumann’s theorem states that the closure of R(Cc(G)) in both the (ultra) weak topology
and strong topology coincide and they are equal to its double commutant.
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Now, we will take advantage of that C ⊂ G, then we may embed L2(C ) as a closed
subspace VC ⊂ L2(G), extending trivially any function in L2(C ), i.e., given ψ ∈ L2(C ), we
define Ψ(α) = ψ(α) if α ∈ C , and zero otherwise (note that we can do this because the
space G is discrete countable equipped with the counting measure). Then, we can extend
the right regular representation of the algebra C[C ] in B(L2(C )), to a representation on
the larger algebra of bounded operators B(L2(G)), by simply stating

(R(a)Φ)(β) = ∑
(β,α)∈C (2)

aαΦ(β ◦ α) , ∀Φ ∈ L2(G) .

Then, we see immediately that R(a) leaves the subspace VC = {Ψ ∈ L2(G) | ψ ∈ L2(C )
invariant. Using the same idea, the algebra of bounded operators in L2(C ) can be identified
with a subalgebra of the algebra of bounded operators in L2(B). In fact, if we decompose
the Hilbert space L2(G) = VC ⊕ V⊥C , then any element A in the algebra B(L2(G)) has a
block decomposition given by

A =

[
A11 A12
A21 A22

]
, A11 : VC → VC , A12 : VC → V⊥C , A21 : V⊥C → VC, A22 : V⊥C → V⊥C ,

and the natural embedding B(L2(C )) ⊂ B(L2(G)) is provided by identifying B(L2(C ))
with the subalgebra B11(L2(G)) of B(L2(G)) whose elements A have zero components
Aij, except the component A11.

It is a simple computation to show that the double commutant ν(C ) = (R(C[C ]))′′ in
the algebra B(L2(C )) coincides with the double commutant of R(C[C ]) ⊂ B(L2(C )) ⊂
B(L2(G)), as a subset of the algebra B(L2(G)), and because B(L2(C )) is obviously
weakly closed as a subalgebra of B(L2(G)), then ν(C ) is weakly closed in B(L2(C ))
(hence in B(L2(G))). (Alternatively, ν(C ) could have been defined as the weakly closure
in B(L2(G)) of R(C[C ])).

Let us notice that if C ⊂ G is a causal structure in the groupoid G ⇒ Ω, then the
opposite category C opp can be identified with the inverse C−1, of C in the groupoid G.
Then, it is easy to check that ν(C−1) = ν(C )∗, with A∗ denoting the ∗-operation on the
von Neumann algebra ν(G) (which is just the induced adjoint operation from the ambient
algebra B(L2(G))).

4.2. Causal Structures in Groupoids and Triangular Operator Algebras

Because of the discussion at the end of the previous section, we conclude that the
incidence algebra ν(C ) of a causal category C in a groupoid G determines a closed
subalgebra of the von Neumann algebra ν(G) of the groupoid. In addition, because
Π(C ∩ C−1) ⊂ i(Ω), it follows that (in the discrete case again) we have an induced homo-
morphism of algebras: Π∗ : C[C ∩ C−1] = C[C ] ∩C[C−1]→ C[Ω], given by

Π∗(a) = ∑
α∈C∩C−1

aαΠ(α) ,

and, taking double commutants (or weak closures), we obtain a homomorphism of algebras
Π∗ : ν(C ) ∩ ν(C )∗ → L∞(Ω), as the double commutant of the Abelian algebra C[Ω] is just
L∞(Ω).

Now, this situation is closely related to that of the so-called triangular operator al-
gebras [33], that is, given a von Neumann algebra M, a closed subalgegra T ⊂ M is
triangular with respect toM if T ∩ T ∗ is a maximal Abelian subalgebra (MASA) ofM. In
our current circumstances,M would be the von Neumann algebra ν(G) of the groupoid
G, and the incidence algebra ν(C ) would play the role of the triangular algebra T . Nev-
ertheless, the situation we are dealing with is more general, as it is only the projection of
ν(C ) ∩ ν(C )∗ under the canonical homomorphism Π = (t, s) that is a (not necessarily max-
imal) Abelian subalgebra (Such algebras studied in relation with Kadison–Singer algebras,
see, for instance [32]). Strict causal categories on G will correspond to triangular algebras,
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such as in case we have C ∩ C−1 = i(Ω) (recall Def. 3), and ν(C ) ∩ ν(C )∗ = L∞(Ω).
Moreover, of particular interest is the situation whereM = B(H) is a type I factor. In such
case, the maximal Abelian algebras A of type I factors fall into one of the following three
cases [45–47]:

1. Diffuse case. A is isomorphic to L∞(Ω).
2. Discrete case. A is isomorphic to a diagonal algebra D of a matrix algebra.
3. Mixed case. A is isomorphic to D ⊕ L∞(Ω).

Hence, in the particular instance of a causal structure on the groupoids of pairs
G = P(Ω) (hence, necessarily strict), the von Neumann algebra of the groupoid P(Ω) is
isomorphic to the type I factor B(L2(Ω)). Consequently, the incidence algebra ν(C ) is a
triangular algebra with respect to the factor ν(P(Ω)) = B(L2(Ω)), and the intersection
ν(C ) ∩ ν(C )∗ = L∞(Ω) is a maximal Abelian subalgebra of B(L2(Ω). Thus, we have
proved the following theorem.

Theorem 3. Let C be a strict causal category on the discrete countable groupoid G ⇒ Ω, then
the incidence algebra ν(C ) is a closed subalgebra of the von Neumann algebra ν(G) and it is a
triangular operator algebra.

We will conclude this section by proving a reconstruction theorem for strict causal
structures on groupoids that answers the following question: Given a triangular operator
subalgebra C ⊂ ν(G), does it define a causal structure on G? The answer, at least for
discrete countable groupoids, is affirmative.

Theorem 4. Let G ⇒ Ω be a discrete countable groupoid and C ⊂ ν(G) a triangular operator
algebra with respect to the von Neumann algebra ν(G) such that C ∩ C∗ is the maximal Abelian
subalgebra L∞(Ω), then there is a one-to-one correspondence between weakly closed maximal
indecomposable ideals J of C and outcomes x in Ω. Moreover, the relation x � y, defined by
JyJx 6= 0, defines a causal set structure on Ω, where Jx is the ideal associated with x.

Proof. The proof of the theorem relies on the characterization of ultraweakly closed ideals
I CM of a von Neumann algebra. In fact, there is a one-to-one correspondence, order
preserving, between ultraweakly closed ideals I of M ⊂ B(H), and closed subspaces
W ⊂ H such that the projection pW = p∗W = p2

W is in the center of M, and the ideal
associated with W is IW =MpW .

Hence, let us consider a weakly closed left ideal J C C and let I be the ideal in ν(G)
generated by J ∪ J ∗. Then, the ideal I is associated with a closed subspace W ⊂ L2(G),
I = ν(G)pW , and pW is the corresponding orthogonal projection. We define the subspaces
VC, VC∗ , as the closure of the action of the algebras C and C∗ on L2(G), respectively, i.e.,
VC = CL2(G), VC∗ = C∗L2(G). Then, we consider the closed subspace W ∩ VC and its
associated orthogonal projection, denoted by pC. The projection pC = p∗C = p2

C defines
an ideal IC ⊂ I on ν(G) and, in addition, a left ideal on C given by JC = CpC because pC
belongs to C.

Note that the ideal JC will be indecomposable in C only if pC is such that the subspace
W ∩ VC is one-dimensional generated by an element α ∈ G, i.e., W ∩ VC = C|α〉, in
such a case, we will denote the projection pC as pα and the ideal as Jα. However, if
C ∩ C∗ ⊂ L∞(Ω), then Jα ∩ J ∗α ⊂ L∞(Ω), then pα is a projection on L∞(Ω) which can
only occur if α ∈ Ω, i.e., α = 1x for some x ∈ Ω. Hence, the ideal JC is the left ideal in C
generated by an outcome x ∈ Ω and subsequently denoted as Jx.

On the other hand, W ∩ VC contains the span of the action of J on L2(G), hence
J ⊂ Jx, but if J is maximal, then it must be Jx.

Theorems 1 and 2 are immediate corollaries of the previous result when C is the
incidence algebra of a strict causal category C ⊂ G.
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Note that if the groupoid G is a countable group Γ, then the previous theorem applies
to the situation that C ⊂ ν(Γ) is a closed subalgebra of the von Neumann algebra of
the group and C ∩ C−1 = CI, in which case we conclude that there are no nontrivial
indecomposable ideals of C.

5. Conclusions and Discussion

A novel approach to causality in the context of category theory and groupoids is
introduced. Causal relations on sets Ω are associated with the choice of a category C
over Ω satisfying some natural properties. They reproduce the vast majority of various
approaches to causality introduced before: from Einstein’s geometric causality to Sorkin’s
causal sets theories. In addition, they will allow to place them in the context of quantum
mechanical systems by using their Schwinger’s inspired groupoidal picture. In fact, a causal
structure on a groupoid is just a causal category that is a subcategory of the groupoid. The
analytical viewpoint provided by the von Neumann algebra of the groupoid allows to deal
with causal relations from the point of view of their associated algebras. In this setting,
it is found that strict causal categories determine triangular operator algebras and that,
in the particular instance of discrete countable groupoids, it is found that such algebras
determine a causal set structure on the space Ω, providing not only a new proof, but a
significant extension of Sorkin’s theorem on the characterization of causal structures by
means of their incidence algebra and its class of ideals. Particular instances of this theorem
will be discussed elsewhere, most significantly countably non-locally finite digraphs.

There remains, though, many relevant questions concerning the interplay of causality
and quantum mechanics that require further analysis and development. Most important
among them is the problem of time in quantum mechanics discussed at the beginning
of Section 4. In addition to this, the treatment of relativistic covariant systems from the
perspective discussed in this paper is a significant problem that will be dealt with in further
publications.

From a purely mathematical standpoint, apart from various problems that have been
already pointed out in the main text, such as the extension of the characterization of causal
structures to nondiscrete groupoids or the relation between nonstrict causal categories and
general Kadison–Singer algebras, the relation between causal structures, Kadison–Singer
algebras, and von Neumann algebras associated with groupoids is a new and promising
path of research that will be pursued by relating it to previous attempts to tamper the
problem of causality in quantum systems by using noncommutative geometrical ideas (see,
for instance, [48–50]).

Finally, we expect that the use of the ideas presented in a rather embryonic form in the
present paper will help to offer a new path towards a proof of the CPT theorem [51] and the
spin–statistics theorem without relying on covariant quantum field theoretical arguments,
a problem that goes back to W. Pauli and for which G. Sudarshan offered a solution partly
using Schwinger’s formalism (see [52] for a comprehensive description).
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