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Abstract: It is well known that the waveguide beam splitter can be used as a source for the quantum
entanglement of photons. The analysis of such quantum entanglement is a difficult problem even
for monochromatic photons, since the system under study is multiparametric. This paper will
show that quantum entanglement can be represented in a simple form not only for monochromatic
photons but also for non-monochromatic ones. It will be shown that quantum entanglement for
non-monochromatic photons can be very different from monochromatic photons, which can be used
to create large quantum entanglement.

Keywords: quantum entanglement; waveguide beam splitter; von Neumann entropy; monochro-
matic photons; nonmonochromatic photons; reflection coefficient

1. Introduction

It has long been known that the beam splitter (BS) is a source of quantum entangled
photons [1–4]. Such quantum entanglement sources can be used in many areas of modern
quantum technology: quantum metrology [5], quantum information [6], linear optical
quantum computing (LOQC) [7–10], etc. Beam splitters can be of different types. One of
the most promising types for quantum technologies is the waveguide BS. Such a BS consists
of two connected waveguides, so that the waveguides are brought together close enough
to each other that the electromagnetic fields overlap; in this case it is a directional coupler
(e.g., [11,12]), see Figure 1. For example, the waveguide beam splitter is an important
part in integrated quantum photonics, which is currently implemented in many circuits,
e.g., [13,14], and which can be part of an optical quantum computer [9,15].

Figure 1. 3D representation of the waveguide beam splitter. Photons (in the general case non-
monochromatic) fall on the input ports BS. At the output ports of the BS are detectors D1, D2

registering photons.
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Theories that describe quantum entanglement of the BS are based on the constancy
of its main parameters: reflection coefficient R and transmission T, where R + T = 1, see
e.g., [1,3–5,16–19]. Indeed, through these approaches it is possible to show that the BS is
a source of quantum entangled photons. Despite this, these approaches are difficult to
analyze and interpret, since the resulting expressions are not always simple. Moreover, all
these approaches are based on the fact that monochromatic photons are fed to the BS input
ports. In these theories, even if we take into account that non-monochromatic photons are
fed to the input ports of the beam splitter, the results will be the same as in the case of
monochromatic photons. This is due to the fact that in these theories coefficients R and
T are always constant for the waveguide BS. Recently, [20,21] the theory of a frequency-
dependent BS in the form of coupled waveguides was presented. In these papers, it was
shown that if the BS is represented as a coupled waveguide, the coefficients R and T depend
on the frequencies of the photons fed into both ports of the BS. Taking into account the
frequency dependence of the coefficients R and T, many known theories can be modified,
for example, the Hong–Ou–Mandel (HOM) theory of interference [22,23]. It should be
added that such a frequency dependence of the coefficients R and T is inherent only in
the [20] waveguide beam splitter. In the case of a prismatic beam splitter, the frequency
dependence of the coefficients R and T does not affect the studied effects [23]. Thus, it
is necessary to study the quantum entanglement of photons on the waveguide BS taking
into account the frequency dependence of reflection coefficient R and transmission T. It
is also important to present the results in a simple analytical form, without the use of
numerical calculations.

In this paper we investigated quantum entanglement of photons on a waveguide BS.
For monochromatic photons, the results are presented in a simple analytical form from
just one parameter of the system under study, which is the reflection coefficient R. In the
case of non-monochromatic photons, the results are also presented in an analytical form.
It is shown that quantum entanglement in the case of nonmonochromatic photons can
be of great importance and is very different from the case of monochromatic photons.
Quantum entanglement is analyzed using the von Neumann entropy. Unfortunately,
the von Neumann entropy is not always convenient for calculating quantum entanglement
because it is hard to calculate.

2. Quantum Entanglement of Monochromatic Photons

In the paper [18] it was shown that the wave function of monochromatic photons at
the outpu t ports of a waveguide BS can be represented

Ψout =
s1+s2

∑
k=0

ck,p|k, s1 + s2 − k〉, (1)

where |k, s1 + s2 − k〉 = |k〉|p〉 is the state of the photons at the output ports of the BS,

ck,p =
s1+s2

∑
n=0

As1,s2
n,s1+s2−n A∗k,p

n,s1+s2−ne−2in arccos(
√

1−R sin φ),

Ak,p
n,m =

µk+n
√

m!n!√
k!p!(1 + µ2)

n+m
2

P(−(1+m+n),m−k)
n

(
−2 + µ2

µ2

)
,

µ =

√
1 +

1− R
R

cos2 φ− cos φ

√
1− R

R
, (2)

where s1 is the numbers of photons in the first input port (Fock states) and k is the numbers
of photons in the first output ports; s2 is the numbers of photons in the second input
port (Fock states) and p is the numbers of photons in the second output ports; Pα,β

γ (x) is
the Jacobi polynomial. Moreover, the number of photons in the system does not change,
i.e., the condition k + p = s1 + s2 [18], where |k, s1 + s2 − k〉 = |k〉|p〉 is the state of photons
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at the output ports of the BS. In this case, the probability λk(R) of detecting photons in
k and p = s1 + s2 − k states at the first and second ports of the BS, respectively, will be
λk(R) =

∣∣ck,s1+s2−k
∣∣2. The most important characteristic of a BS is the reflection coefficient

R and the transmission coefficient T, which, as shown in [20,22], will be

R =
sin2

(
ΩtBS/2

√
1 + ε2

)
(1 + ε2)

; T = 1− R; cos φ = −ε

√
R
T

; ε =
ω2 −ω1

Ω
, (3)

where Ω is a certain frequency characterizing BS and depends mainly on how closely
the two waveguides in the beam splitter are connected [20]. As was shown in [22] that
tBS is the interaction time of photons in the beam splitter. It has been shown that if the
photons are monochromatic and identical then Equation (3) is the same as [11], where
R = sin2(Cz), φ = π/2, C = Ω/(2v) is a constant factor indicating the connection between
adjacent waveguides, z = vtBS, v is the wave propagation speed in the waveguide); ω1
and ω2—frequencies of incident photons at the first and second ports of the beam splitter,
respectively. It should be added that the coupling coefficient in the waveguide C is
proportional to the frequency Ω, i.e., the greater the coupling in the waveguide, the greater
the value of Ω and vice versa. Thus, the coupling in the waveguide is regulated by changing
the parameter Ω.

In the given Equations (1)–(3) you can find BS quantum entanglement. Let us
choose von Neumann entropy SN as a measure of quantum entanglement. It is well
known [20,21,24–26] that in this case the entropy will be SN = −∑k λk ln(λk).

Let us represent quantum entanglement SN(|s1〉, |s2〉) in a simple form for some initial
states s1, s2:

• for s1 = 1 and s2 = 1

SN(|1〉, |1〉) = −(1− 2R)2 ln(1− 2R)2 − 4R(1− R) ln(2R(1− R)), (4)

• for s1 = 0 and s2 = 2 (similarly for s1 = 2 and s2 = 0)

SN(|0〉, |2〉) = 2(−1 + R)(R ln 2 + ln(1− R))− 2R ln R, (5)

• for s1 = 2 and s2 = 2

SN(|2〉, |2〉) = 12(1− 2R)2(−1 + R)R ln
(
−6(1− 2R)2(−1 + R)R

)
−

12(−1 + R)2R2 ln
(

6(−1 + R)2R2
)
− (1 + 6(−1 + R)R)2 ln

(
(1 + 6(−1 + R)R)2

)
, (6)

• for s1 = 1 and s2 = 3 (similarly for s1 = 3 and s2 = 1)

SN(|1〉, |3〉) = 6(1− 2R)2(−1 + R)R ln
(
−6(1− 2R)2(−1 + R)R

)
+

4(−1 + R)3R ln
(
−4(−1 + R)3R

)
+ 4R2(−1 + R)R ln

(
−4(−1 + R)R3

)
−

R2(3− 4R)2 ln
(

R2(−3 + 4R)2
)
− (1− 5R + 4R2)2 ln

(
(1− 5R + 4R2)2

)
. (7)

Let us depict in Figure 2 the given functions, as well as the von Neumann entropy
for other cases. It is easy enough to find the maximum values of quantum entanglement
using the obtained Equations (4)–(7): [SN(|1〉, |1〉)]max = ln 3 with R = 1/2(1± 1/

√
3);

[SN(|0〉, |2〉)]max = 3/2 ln 2 with R = 1/2; [SN(|2〉, |2〉)]max = 1.5381 with R = 1/2(1±
0.31623); [SN(|1〉, |3〉)]max = 1.4478 with R = 1/2(1± 0.1001).
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Figure 2. (a) The von Neumann entropy is presented for the cases described in Equations (4)–(7).
(b) The von Neumann entropy is presented for such s1, s2, when s1 + s2 = 6. In the figures, the initial
states are selected as |s1, s2〉.

It should be added that here we give only some values for quantum entanglement
depending on the initial states s1, s2. For any other value can be directly calculated using
Equation (2) and the von Neumann entropy SN . Unfortunately, the von Neumann entropy
is not always convenient for calculating quantum entanglement because it is hard to
calculate. It is well known that a measure of quantum entanglement can also be the
Schmidt parameter K = 1/P, where P = Tr(ρ2) = ∑k λ2

k which is the purity of the system
under study. This measure of quantum entanglement is easier to calculate compared to
the von Neumann entropy. For example, in our case it is quite simple to calculate the
purity of the system P(s1, s2, R) for the case of Holland–Burnett (HB) states [18,27], i.e., for
s1 = s2 = s at R = 1/2

P(s, s, 1/2) =
Γ(s + 1

2 )
2

4F3(
1
2 , 1

2 ,−s,−s; 1, 1
2 − s, 1

2 − s; 1)
π(s!)2 , (8)

where Γ(x) is the gamma function, 4F3(x1, x2, x3, x4; y1, y2, y3; 1) is the generalized hyper-
geometric function. It is also not difficult to calculate the purity of the system P for the case
s2 = 0 for any R

P(s1, 0, R) = (1− R)2s1 2F1

(
−s1,−s1; 1;

(
R

1− R

)2
)

, (9)

where 2F1(x, y; z; a) is Gaussian hypergeometric function. By analyzing the Equation (9) for
extremum, we can obtain the maximum of this function at R = 1/2. Moreover, at R = 1/2
a simple expression for quantum entanglement can be obtained in the form

Kmax = 22s1
(s1!)2

(2s1)!
. (10)

From Equation (10) you can also find out parameter K for large values of quantum number
s1, we get Kmax(s1 � 1)→ √πs1.

3. Quantum Entanglement of Non-Monochromatic Photons

It is well known that the wave function Ψout accounting for non-monochromaticity of
photons can be represented as [20,21,28,29]

Ψout =
s1+s2

∑
k=0

∫
φ(ω1, ω2)ck,p|k, s1 + s2 − k〉dω1dω2, (11)

where |k, s1 + s2 − k〉 = |k〉|p〉 is determined similarly to monochromatic photons, i.e., is
the state of the photons at the BS output ports; s1 and s2 are the initial number of photons
at 1 and 2 input ports, respectively, φ(ω1, ω2) the joint spectral amplitude (JSA) of the
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two-mode wave function (
∫
|φ(ω1, ω2)|2dω1dω2 = 1), ck,p is determined from Equation (2).

In this case, the probability Λk of detecting photons in k and p = s1 + s2 − k states at the
first and second ports of the BS, respectively, will be

Λk =
∫
|φ(ω1, ω2)|2λk(R)dω1dω2, λk(R) =

∣∣ck,s1+s2−k
∣∣2. (12)

Let us study the quantum entanglement of the system in question. To see how BS
leads to the quantum entanglement of photons we will assume that there is no quan-
tum entanglement at the BS input ports. This is a natural assumption, since we need to
study how the BS affects the appearance of quantum entanglement. This means that we
will consider the incoming Fock states for photons, but the photons are not monochro-
matic. In this case, as previously well known, the wave function of the photon is fac-
torizable, i.e., Ψin =

∫
φ1(ω1)|s1〉dω1

∫
φ2(ω2)|s2〉dω2, where φ(ω1, ω2) = φ1(ω1)φ2(ω2).

To calculate quantum entanglement, it is natural to use von Neumann entropy SN =
−∑k Λk ln(Λk) [1,20,21,24–26] Next, let us choose φi(ωi) (i = 1, 2) in the most commonly
used form, this is a Gaussian distribution

φi(ωi) =
1

√
σi(2π)1/4 e

− (ωi−ω0i)
2

4σ2
i , (13)

where ω0i is the mean frequency (expectation) and σ2
i is the dispersion. Below, we will

use the condition that applies to most photon sources, ω0i/σi � 1. At first sight it seems
that the condition ω0i/σi � 1 is sufficient for photons to be considered monochromatic.
This is so, but only for Ψin, and for the wave function at the output ports of the beam
splitter Ψout this is no longer true. This is because the coefficients R, T depend on the
photon frequencies ω1, ω2, which eventually leads to the dependence of Ψout on the dis-
persion σi. Indeed, φi(ωi) at ω0i/σi � 1 behaves like the Dirac delta function, and at
σi → 0, it turns into the Dirac delta function. In other words, at ω0i/σi � 1 any integral∫

φi(ωi) f (ωi)dωi → f (ω0i) if function f (ωi) has no dependence similar to φi(ωi). In this
case it is easy to show that Ψin as well as Ψout will not be different from monochromatic
photons. If

∫
φ1(ω1)φ2(ω2) f (ω2 −ω1)dω1ω2 function f (ω2 −ω1) has a dependence simi-

lar to φ1(ω1) then φ2(ω2) at ω0i/σi � 1 does not behave like the Dirac delta function. Our
case considered here just corresponds to the case when in Ψout the function ck,p includes
the reflection coefficient R, which has a dependence similar to φi(ωi) at ω0i/σi � 1.

Let us show that in the case of non-monochromatic photons, quantum entanglement
can be very different from that of the monochromatic photons. Figure 3 represents the
dependence of the von Neumann entropy SN according to the dimensionless parameter
ΩtBS for identical photons, i.e., for σ1 = σ2 = σ and ω01 = ω02 = ω0. Let us compare the
results obtained for the monochromatic and non-monochromatic photons.

It should be added that if we use the result for monochromatic and identical photons [11],
for the reflection coefficient R = sin2(ΩtBS/2) and, for example, [1] to calculate quantum
entanglement, it is easy to obtain the dependencies shown in Figure 3a when σ/Ω = 0
(black thin lines). Thus, our result is more general and applicable to non-monochromatic
photons. The considered case in Equation (2) is an important case in quantum optics,
for example in the case of HOM interference. To analyze this case, it is convenient to
represent the contour plot for the von Neumann entropy depending on two parameters
σ/Ω and ΩtBS, see Figure 3. From Figure 3b one can see that at sufficiently large ΩtBS
(with σtBS � 1 also to be satisfied) the quantum entanglement tends to a constant value
depending on the σ/Ω parameter. Thus, it is not difficult to find a simple analytical
dependence, which is represented by the dependence Figure 3b (inset) as

SN = ln
2(1− J)J−1

(2J)J , J = 1 +
3
8

(
Ω
σ

)2
−
√

π

16

(
Ω
σ

)3{
3 + 10

( σ

Ω

)2
}

erf
(

Ω
2σ

)
e(

Ω
2σ )

2

, (14)
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where erf is an error function. From the presented graphs it is clear that the maximum of
quantum entanglement will be at σ/Ω = 0.445. It is also seen that quantum entanglement
is significant and large at σ/Ω ∼ 1, and as σ/Ω increases, it tends to zero.

a

b
0.0 0.5 1.0

Figure 3. (a) The dependence of the von Neumann entropy SN on the parameter ΩtBS is presented
for σ/Ω = 10 (brown); σ/Ω = 5 (blue); σ/Ω = 3 (red); σ/Ω = 1 (orange); σ/Ω = 1/3 (green);
σ/Ω = 0 (black). (b) A contour plot of von Neumann entropy SN from two system parameters ΩtBS

and σ/Ω is presented. The inset is presented for SN at ΩtBS → ∞ depending on the parameter σ/Ω.
Input photons are in the |1〉, |1〉 state.

In Figures 4–6 we also present the results of calculations similar to Figure 3, but for
other initial states.

0.0 0.5 1.0

a

b

Figure 4. (a) The dependence of von Neumann entropy SN on the parameter ΩtBS is presented for
σ/Ω = 10 (brown); σ/Ω = 5 (blue); σ/Ω = 3 (red); σ/Ω = 1 (orange); σ/Ω = 1/3 (green); σ/Ω = 0
(black). (b) A contour plot of von Neumann entropy SN from two system parameters ΩtBS and σ/Ω
is presented. The inset is presented for SN at ΩtBS → ∞ depending on the parameter σ/Ω. Input
photons are in the |0〉, |2〉 state.

Figure 4 shows that the von Neumann entropy at σ/Ω & 1 is quite different from the
case of monochromatic photons σ/Ω = 0. Figure 4b also shows that the large value of
entropy is at σ/Ω ∼ 1. The largest entropy value at ΩtBS → ∞ would be SN = 1.092 at
σ/Ω = 0.24.



Entropy 2022, 24, 49 7 of 9

a

0.0 0.75 1.5

b

Figure 5. (a) The dependence of von Neumann entropy SN on the parameter ΩtBS is presented for
σ/Ω = 10 (brown); σ/Ω = 5 (blue); σ/Ω = 3 (red); σ/Ω = 1 (orange); σ/Ω = 1/3 (green); σ/Ω = 0
(black). (b) A contour plot of von Neumann entropy SN from two system parameters ΩtBS and σ/Ω
is presented. The inset is presented for SN at ΩtBS → ∞ depending on the parameter σ/Ω. Input
photons are in the |2〉, |2〉 state.

Figure 5 shows that the von Neumann entropy also at σ/Ω & 1 is quite different from
that of the monochromatic photons. Figure 5b shows that the large value of entropy is at
σ/Ω ∼ 1. The largest entropy value at ΩtBS → ∞ would be SN = 1.591 at σ/Ω = 0.4044.

a

0.0 0.75 1.5

b

Figure 6. (a) The dependence of von Neumann entropy SN on the parameter ΩtBS is presented for
σ/Ω = 10 (brown); σ/Ω = 5 (blue); σ/Ω = 3 (red); σ/Ω = 1 (orange); σ/Ω = 1/3 (green); σ/Ω = 0
(black). (b) A contour plot of von Neumann entropy SN from two system parameters ΩtBS and σ/Ω
is presented. The inset is presented for SN at ΩtBS → ∞ depending on the parameter σ/Ω. Input
photons are in the |1〉, |3〉 state.

Figure 6 shows that the von Neumann entropy also at σ/Ω & 1 differs significantly
from that of the monochromatic photons. Figure 6b shows that the large value of entropy is
at σ/Ω ∼ 1. The largest entropy value at ΩtBS → ∞ would be SN = 1.595 at σ/Ω = 0.15.

It should be added that one can obtain analytical expressions for the von Neumann
entropy at ΩtBS → ∞, similarly to Equation (14). We do not cite them here, since they are
rather cumbersome. One can see in all figures that the value of quantum entanglement is
significantly different from the case of the monochromatic photons, i.e., at σ/Ω = 0. This is
one of the most important conclusions, since previously it has not been taken into account,
neither experimentally nor theoretically.

4. Discussion and Conclusions

The physical motivation for this work is determined by the fact that it is usually
assumed that in beam splitters, regardless of their type, the reflection R and transmission
T coefficients are always considered constant (independent of the photon frequencies)
when calculating quantum entanglement. Assuming the coefficients R, T to be constant,
quantum entanglement does not depend on whether we consider monochromatic or non-
monochromatic photons. Here, we investigated the quantum entanglement of monochro-
matic and non-monochromatic photons on a waveguide BS. A waveguide BS is frequency-
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dependent, i.e., reflection coefficients R and transmission T depend on the frequencies
of input photons in ports 1 and 2 of the BS. One of the main conclusions is the essential
difference between quantum entanglement of monochromatic and non-monochromatic
photons on the waveguide BS. Another important conclusion is that the quantum entan-
glement is more significant in the case of non-monochromatic photons. If we consider
identical incoming photons, it was obtained that the maximum quantum entanglement
at σ/Ω ∼ 1. If we choose R and T as constant values, our theory in the limiting case
is σ/Ω → 0 (in the general case ε → 0 in Equation (3)) and coincides with previously
known theories, for example for quantum entanglement [1,18]. Our approach is a more
general one that is applicable to for monochromatic (i.e., for constant values of R and T)
and non-monochromatic photons.

Analyzing the results obtained, we can conclude that the waveguide BS can be a good
source of quantum entangled photons. Such quantum entanglement can be easily adjusted
by changing the Ω parameter, which is the coupling parameter of the two waveguides.
This can be done, for example, by separating or bringing the waveguides closer together. It
is interesting to note that the waveguide BS can be used as a source for the large quantum
entanglement of photons. Such a source generates nearly the maximum possible quantum
entanglement at σ/Ω ∼ 1 and ΩtBS > 1. Indeed, it is well known that the maximum
quantum entanglement for von Neumann entropy SN = ln(1 + N) when N is the total
number of photons in a two-part system, e.g., [1,30]. In our case N = s1 + s2 [1]. In the case
of non-monochromatic photons, quantum entanglement is close to its maximum value for
identical photons when σ/Ω ∼ 1 and ΩtBS > 1. In the case of constants R and T, quantum
entanglement is a periodic function contingent on ΩtBS, and for large ΩtBS � 1 a rapidly
oscillating dependence, which is a negative factor for use in quantum technologies. It
should be added that in [21] the simplest case of |1〉|1〉 input states was analyzed in detail
and it was shown that quantum entanglement and photon statistics, at the BS output ports,
can be very different for non-monochromatic photons compared with monochromatic
photons. In this paper a similar conclusion is drawn, but in the general case, not limited
to |1〉|1〉 states. Moreover, in this work simple expressions for quantum entanglement as
a function of reflection coefficient R were presented for monochromatic photons. Thus,
in this paper the main conclusions and results for the calculation of quantum entanglement
on the waveguide beam splitter for monochromatic and non-monochromatic photons and
their main differences have been presented.

As a result, we can say that the waveguide BS can be used as a source of large
quantum entanglement of photons and the obtained results can be used in various fields of
quantum technologies.
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