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Abstract: Madelung showed how the complex Schrödinger equation can be rewritten in terms of two
real equations, one for the phase and one for the amplitude of the complex wave function, where both
equations are not independent of each other, but coupled. Although these equations formally look
like classical hydrodynamic equations, they contain all the information about the quantum system.
Concerning the quantum mechanical uncertainties of position and momentum, however, this is not
so obvious at first sight. We show how these uncertainties are related to the phase and amplitude of
the wave function in position and momentum space and, particularly, that the contribution from the
phase essentially depends on the position–momentum correlations. This will be illustrated explicitly
using generalized coherent states as examples.

Keywords: Madelung formalism; complex quantum hydrodynamics; coherent states

1. Introduction

Following numerous attempts at the beginning of the 20th century, a satisfactory solu-
tion to the wave–particle duality problem was found by Heisenberg, Born, and Jordan [1–3]
in 1925 with matrix mechanics and, almost simultaneously, by Schrödinger [4–6] with wave
mechanics. At a glance, both theories look quite different, but their physical equivalence
was shown already in the very beginning [7]. Both approaches also have in common the use
of complex quantities and the explicit occurrence of i =

√
−1. As C.N. Yang emphasized in

his talk on the occasion of Schrödinger’s 100th anniversary [8]: “...With matrix mechanics
and wave mechanics, however, the situation dramatically changed. Complex numbers
became a conceptual element of the very foundations of physics: the fundamental equations
of matrix mechanics and wave mechanics:

pq− qp = −ih̄ (1)

ih̄
∂ψ

∂t
= Hψ (2)

both explicitly contain the imaginary unit i =
√
−1”.

Considering, particularly, Schrödinger’s wave mechanics, the corresponding wave
equation is linear, so one could assume that changing from a real to a complex wave
function would not cause much difference; it would just produce two (almost, apart
from the real potential V) identical equations for real and imaginary parts of the complex
wave function. However, this is not the case, because i =

√
−1 occurs explicitly in the

Schrödinger equation, i.e., in position space. In the following, we particularly consider, in
detail, the one-dimensional case; the extension to higher dimensions is straightforward.

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m
∂2

∂x2 ψ(x, t) + Vψ(x, t). (3)
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Consequently, the time-derivative of the imaginary part of ψ corresponds to the second
spatial derivative of the real part of ψ, and vice versa (see also [9,10]), i.e., real and imaginary
parts are not independent of each other, but coupled.

This coupling is even more obvious in a formulation of wave mechanics that was
introduced by Madelung [11] shortly after Schrödinger’s communications. He considered
a polar form of the complex wave function, i.e.,

ψ(x, t) =
√

ρx(x, t) exp
[ i

h̄
Sx(x, t)

]
(4)

with the amplitude
√

ρx, where ρx = ψ∗(x, t)ψ(x, t), and the phase Sx(x,t)
h̄ . Inserting this

form into the time-dependent Schrödinger Equation (3) provides two (real) equations, one
for the phase Sx(x, t),

∂Sx

∂t
+

1
2m

(∂Sx

∂x

)2
+ Vqu,x + V = 0, (5)

a kind of modified Hamilton–Jacobi equation for the action Sx(x, t), which corresponds
to the real part of the Schrödinger equation, including the so-called “quantum potential”

Vqu,x = − h̄2

2m

∂2√ρx
∂x2√

ρx
, and one for the amplitude or density ρx,

∂ρx(x, t)
∂t

+
∂

∂x

(
ρxυR(x, t)

)
= 0 (6)

corresponding to the imaginary part of Equation (3), with the velocity field (The meaning
of the subscript “R” becomes obvious from Equation (23) with υR = 1

m PR.) υR = 1
m

∂Sx
∂x .

Because Equation (5), for the phase, contains explicitly the density ρx via the term Vqu,
and Equation (6), for the density, contains the phase via υR, the two components of the
complex wave function are, again, obviously coupled.

In 1951, Mrowka showed how a generalization of Madelung’s formulation can be used
as a basis for an axiomatic derivation of Schrödinger’s equation, including a magnetic field
and an extension to the nonrelativistic Pauli equation [12], as well as a generalization to
include the relativistic case [13].

Shortly afterwards, in 1952, Bohm [14,15] independently took up Madelung’s idea, but
tried to give it a deterministic interpretation, assuming that the integration of Madelung’s
velocity υR would provide trajectories that are real paths followed by physical particles.
(For a comprehensive review of the criticism of Bohm’s interpretation see [16–19] and the
references cited therein; a consistent explanation of the Bohmian trajectories in probabilistic
terms was given recently in [20].) Despite the ontological problems, the application of
the Bohmian approach developed very useful numerical methods for the treatment of
molecular reactions, tunnelling, and diffraction phenomena (see [21] for a review).

Common to all the above-mentioned hydrodynamic formulations is their exclusive
restriction to configuration space, a point Pauli and Heisenberg criticised with respect to
Bohm’s approach [16,22]. To achieve a complete dynamical picture, it must be possible
to formulate the hydrodynamic equations in any representation. Recently, Bonilla and
Schuch clarified how Madelung’s hydrodynamic picture can be extended consistently to
include both position and momentum representations. In this context, the connection of the
position and momentum uncertainties, and the corresponding uncertainty product with the
hydrodynamic quantities in the Madelung picture, need further examination, particularly
regarding what the contributions of phase and amplitude to these quantities are. This will
be analysed in detail for the position as well as for the momentum space in this paper.

For this purpose, in Section 2, a brief description of the Madelung picture and its
relation to the Heisenberg and Schrödinger picture is given. Particularly, the explicit ex-
pressions for the complex Madelung quantities in position and momentum space that are
used in the following are provided. In Section 3, it is shown how, in position space, the
momentum uncertainty has particular contributions from the phase and amplitude of the



Entropy 2022, 24, 20 3 of 13

wave function and that, vice versa, a corresponding relation exists in momentum space for
the position uncertainty. The connection with the correlation of position and momentum
uncertainties will also be discussed. These findings will be illustrated through an exam-
ple in Section 4, by considering Gaussian wave packet solutions of the time-dependent
Schrödinger equation. Section 5 closes our discussion by summarising the results.

2. Madelung Picture

Let us briefly outline the main characteristics of the Madelung picture. For instance,
in the Heisenberg picture, the observables F are time-dependent,

(
F
)

H = F̂H(t), while the
quantum state is time-independent, |ψ0〉. In the Schrödinger picture, the opposite holds,
i.e., the observable is time-independent,

(
F
)

S = F̂S, whereas the state is time-dependent,
|ψ(t)〉. Regarding the Madelung picture, we assume the observables are mapped onto
time-dependent complex functions (for more details, see also [19]),

(
F
)

M = F(a, t) =
FR(a, t) + iFI(a, t), where a denotes, e.g., position or momentum. Hereafter, position
and momentum representations will be exclusively considered, since the purpose is to
discuss the basic relations of quantum mechanics from the point of view of the Madelung
formulation. However, the underlying method of our Madelung picture can be applied to
any kind of representation (for details, see [19]). We consider, explicitly, the probability
density ρa = ρa(a, t) as well.

All three pictures provide the same mean values that are related via

〈F〉(t) = 〈ψ0|F̂H(t)|ψ0〉 = 〈ψ(t)|F̂S|ψ(t)〉 =
∫ +∞

−∞
da ρa(a, t)FM(a, t). (7)

where the positive definite density ρa(a, t) is given by

ρa(a, t) = 〈ψ0|a(t)〉〈a(t)|ψ0〉 = 〈ψ(t)|a〉〈a|ψ(t)〉 (8)

and the Madelung quantities
(
F
)

M = F(a, t) are obtained via

F(a, t) =
〈a(t)|F̂H(t)|ψ0〉
〈a(t)|ψ0〉

=
〈a|F̂S|ψ(t)〉
〈a|ψ(t)〉 . (9)

Since the mean values of observables must be real, according to (7), the mean value of
the imaginary part of the Madelung quantities must vanish:∫ +∞

−∞
da ρa(a, t)FI(a, t) = 0. (10)

This might raise the question, what is the purpose of considering the imaginary part if
the mean value seems to not be affected by it? The answer to this question will become
apparent in Section 3.

It should also be noted that the commutation relations are preserved, which implies,
in the Madelung picture, that in general, the quantities

(
XP
)

M and
(
PX
)

M are not simply
the product of the two complex quantities

(
X
)

M

(
P
)

M. Particularly for X, representing
position and P momentum, the products obey the commutation relation according to

〈
[
X̂H(t), P̂H(t)

]
−〉 = 〈

[
X̂S, P̂S

]
−〉 =

∫ +∞

−∞
da ρa(a, t)

(
(XP)M − (PX)M

)
= ih̄ (11)

where [·, ·]− denotes the commutator.
As the commutation relations hold, also in the Madelung picture, the time-evolution of

the mean values obeys the classical equations of motion according to the Ehrenfest theorem.
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2.1. Position and Momentum Spaces

We consider a quantum system with mass m obeying a quadratic Hamiltonian of the
form Ĥ = T̂ + V(X̂) = 1

2m P̂2 + 1
2 mω2X̂2 in the position and momentum representations. It

is worth noticing that constant terms and terms that are linear in position can be included
without problem into the potential, but are not relevant to the following discussion. Fur-
thermore, for a general potential, it can be expressed as a power series of the position
variable and treated iteratively.

As Madelung obtained his equations by separating the Schrödinger equation into two
equations (one for phase and one for amplitude of the time-dependent wave function),
we also base our discussion on the Schrödinger picture, considering now, however, the
complex quantities defined above.

In the Schrödinger picture, the operators representing the relevant observables X̂, P̂, V̂,
T̂, and Ĥ are given by:

Position space

〈x|X̂ = x ∈ R, (12)

〈x|P̂ = −ih̄
∂

∂x
, (13)

〈x|V(X̂) = V(x), (14)

〈x|T̂ = − h̄2

2m
∂2

∂x2 , (15)

〈x|Ĥ = ih̄
∂

∂t
. (16)

Momentum space

〈p|X̂ = ih̄
∂

∂p
, (17)

〈p|P̂ = p ∈ R, (18)

〈p|V(X̂) = V
(
ih̄

∂

∂p
)
, (19)

〈p|T̂ =
p2

2m
, (20)

〈p|Ĥ = ih̄
∂

∂t
. (21)

In their respective representations, position X̂, and momentum P̂, as well as observ-
ables that explicitly only depend on these variables, correspond to real quantities, whereas
all other quantities correspond to differential operators (which can also be imaginary).

Regarding the Madelung picture, the quantum state is hereafter expressed using a
polar ansatz according to 〈a|ψ(t)〉 =

√
ρa(a, t) exp

[ i
h̄ Sa(a, t)

]
, where a denotes the position

or momentum-representation variables x or p.
According to definition (9), the explicit expressions for X̂, P̂, V̂, T̂, and Ĥ are now given

by the quantities:
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Position space

X = x ∈ R, (22)

P =
∂S
∂x
− i

h̄
2

∂ρx
∂x
ρx

= PR + iPI , (23)

V =
mω2

2
x2, (24)

T =
1

2m

(
P2 − ih̄

∂P
∂x

)
, (25)

H = −∂S
∂t

+ i
h̄
2

∂ρx
∂t
ρx

. (26)

Momentum space

X = −∂S
∂p

+ i
h̄
2

∂ρp
∂p

ρp
= XR + iXI , (27)

P = p ∈ R, (28)

V =
mω2

2

(
X2 + ih̄

∂X
∂p

)
, (29)

T =
p2

2m
, (30)

H = −∂S
∂t

+ i
h̄
2

∂ρp
∂t
ρp

. (31)

As in the Schrödinger picture, in the Madelung picture, position and momentum
and quantities depending only on these variables correspond to real quantities in their
respective representations, whereas all other quantities are now complex.

It is important to point out that, in the Madelung picture, in general, the square of an
observable does not correspond to the square of the corresponding complex quantity, i.e.,
(F2)M 6=

(
(F)M

)2. This applies particularly to the kinetic energy in position representations,

as 〈x|P̂
2|ψ(t)〉

〈x|ψ(t)〉 =
(
〈x|P̂|ψ(t)〉
〈x|ψ(t)〉

)2
− ih̄ ∂

∂x

(
〈x|P̂|ψ(t)〉
〈x|ψ(t)〉

)
, or, according to definition (9), (P2)M =

P2 − ih̄ ∂P
∂x 6= P2. A similar argument applies to (X2)M in momentum space. The occurrence

of the additional (complex) derivative-term is due to the non-locality of quantum mechanics
(for a more detailed discussion, see also [19]).

The Madelung quantities (9) formally resemble the definition of the weak values [23–25].
Nevertheless, it is important to point out that although both the weak values formulation
and the Madelung picture make use of similar mathematical expressions, they are not the
same. Indeed, the essence of a theory is not reduced merely to a collection of mathematical
objects and equations, but the ontology also plays an important role, e.g., in the way these
objects and equations have to be understood and interpreted. In this sense, even though
our Madelung quantities match the structure of the weak values [26], the ontology is totally
different. Indeed, in the Madelung picture, contrary to the weak value formulation, there is
no measurement process under consideration, nor are there preselected and postselected
states [27]. Moreover, the Madelung picture is based on the same ontological grounds of
conventional quantum mechanics as the Schrödinger and Heisenberg pictures are. The
aim of the Madelung picture is not to give a more detailed description of the measurement
process than the conventional quantum mechanics. Instead, the main goal is a systematic
description of the quantum dynamics through the use of hydrodynamical objects for
any representation; in the same way, the Schrödinger picture describes the quantum
dynamics using a time-dependent state that, once projected on a given representation,
presents ondulatory or wave-like properties. Likewise, the Heisenberg picture describes the
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quantum dynamics using time-dependent operators whose entries, once the representation
is chosen, exhibit the properties of Fourier components of oscillation modes. (Note that the
reason for coining the name ”Madelung picture”, and not simply using the term ”Madelung
interpretation”, is that, as Bohm pointed out in [14], Madelung did not push forward the
logical rationale of his interpretation).

It is important to point out that a distinct feature of the dynamics of our Madelung
quantities is that they obey a transport equation in both position and momentum represen-
tation; for a detailed discussion, we refer to [28]. This is particularly helpful and important
when dealing with potentials with discontinuities, as in tunnelling problems. It should also
be noted that the character of the transport equations holds, even for a general potential.

3. Quantum Fluctuations in Position and Momentum Space

First of all, let us consider a given observable F̂, and let us compute its uncertainty by
means of its associated Madelung quantity F (see Equation (9)). It is clear that, for the space
(a, t),

σ2
F = 〈ψ|F̂2|ψ〉 − 〈F〉2 =

∫ +∞

−∞
ρa
(
F2)

Mda− 〈F〉2. (32)

Moreover, recall that the average of the imaginary part of a Madelung quantity can-
cels out (see Section 2). Then, Equation (32) is valid for any observable. The particular
expression of the uncertainty will depend on the structure of the real part of the Madelung
quantity associated with the square of such an observable. This, of course, depends also
on the representation that is chosen, since the effect of an operator generally changes from
representation to representation.

Now, regarding the momentum uncertainty σ2
p in the position representation in the

Madelung picture, i.e.,

σ2
p = 〈ψ|P̂2|ψ〉 − 〈p〉2 =

∫ +∞

−∞
ρx
(
P2)

Mdx− 〈p〉2 (33)

where (P2)M is related to the kinetic energy T via T = 1
2m (P2)M = TR + iTI . As already

mentioned in (10), the mean value of the imaginary part vanishes,
∫ +∞
−∞ ρxTIdx = 0, leaving

σ2
p = 2m

∫ +∞

−∞
ρxTdx− 〈p〉2. (34)

From (25), one obtains, for TR:

TR =
1

2m

(
P2

R − P2
I + h̄

∂

∂x
PI

)
=

1
2m

PR + Vqu,x (35)

with

Vqu,x = − 1
2m

(
P2

I − h̄
∂

∂x
PI

)
=

h̄2

8m

(
∂

∂x ρx

ρx

)2

− h̄2

4m
∂

∂x

(
∂

∂x ρx

ρx

)
= − h̄2

2m

∂2

∂x2
√

ρx
√

ρx
(36)

being the ”quantum potential” mentioned before. This contribution is entirely determined
by the imaginary part PI of the complex hydrodynamic momentum and its derivative and,
therefore, only depends on the amplitude of the wave function. Although the mean value
of PI vanishes, the mean value of Vqu,x does not.

The momentum uncertainty therefore contains two distinct contributions,

σ2
p =

[ ∫ +∞

−∞
ρxP2

Rdx− 〈p〉2
]
+ 2m

∫ +∞

−∞
ρxVqu,xdx = σ2

p,ph + σ2
p,am, (37)

i.e., one contribution from the phase and one from the amplitude.



Entropy 2022, 24, 20 7 of 13

The contribution from the phase depends on PR = ∂
∂x Sx and vanishes if Sx does not

explicitly depend on the position; the contribution from the amplitude is always present.
In the momentum representation, a similar calculation leads to the position uncertainty

σ2
x , i.e.,

σ2
x = 〈ψ|X̂2|ψ〉 − 〈x〉2 =

∫ +∞

−∞
ρp
(
X2)

Mdp− 〈x〉2 (38)

where, again, the imaginary part of (X2)M vanishes and the real part contains a contribution

from the phase Sp(p, t) and contributions from the amplitude
√

ρp(p, t), according to

(
X2
)

R
= X2

R −
(

X2
I + h̄

∂

∂p
XI

)
= −

( ∂

∂p
Sp

)
− h̄2

2

[ ∂2

∂p2 ρp

ρp
− 1

2

( ∂
∂p ρp

ρp

)2]
=
(
XR
)2 − h̄2

∂2

∂p2
√

ρp
√

ρp
. (39)

Defining a ”quantum potential” Vqu,p in momentum space, in formal analogy with the
one in position space (further details can be found in [28,29]), as

Vqu,p = −m
2

ω2h̄2
∂2

∂p2
√

ρp
√

ρp
, (40)

(where, this time, the expression ”potential” is, physically, actually correct), the position
uncertainty in momentum space (which should not be confused with the position uncer-
tainty in position space; more details in Section 4) can then, again, be written as the sum of
contributions from phase and amplitude as

σ2
x =

[ ∫ +∞

−∞
ρpX2

Rdp− 〈x〉2
]
+

1
mω2

∫ +∞

−∞
ρpVqu,pdp = σ2

x,ph + σ2
x,am. (41)

Again, the contribution from the phase XR = − ∂
∂p Sp vanishes if Sp does not now

explicitly depend on the momentum. Additionally, in this case, the contribution from the
amplitude depends on the imaginary part of the complex quantity X = XR + iXI and its
derivative, providing a non-vanishing contribution, although 〈XI〉 = 0.

This ”symmetry” between position and momentum representations is particularly
important for stationary states where the phase (or at least its derivative) does not depend
on the representation variable but is only explicitly time-dependent. In this case, the
contributions from the phase to the uncertainties vanish; however, the ones from the
amplitude do not, thus guaranteeing that Heisenberg’s principle can be fulfilled.

Finally, the correlation of position and momentum uncertainties, σxp, shall be given in
the Madelung picture. This quantity can be written as (see, e.g., [30])

σx,p =
1
2

〈
X̂P̂ + P̂X̂

〉
− 〈x〉〈p〉, (42)

which can be rewritten with the commutation relation (11) as

σx,p =
1
2

〈
2X̂P̂− ih̄

〉
− 〈x〉〈p〉. (43)

In position representation, this leads with definitions (22) and (23) to

σx,p =
∫ +∞

−∞
ρxxPdx− 〈x〉〈p〉 − i

h̄
2

. (44)
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Taking into account the form of PI as given in (23), it is obvious that for square
integrable wave functions, ∫ +∞

−∞
ρxxPIdx =

h̄
2

(45)

is always fulfilled, guaranteeing that expression (44) stays real.
The correlation (44) can then be written as

σx,p =
∫ +∞

−∞
ρxxPRdx− 〈x〉〈p〉 =

∫ +∞

−∞
ρx
(
x− 〈x〉

)(
PR − 〈p〉

)
dx. (46)

It is important to note that although 〈PR〉 = 〈 ∂
∂x Sx〉 = 〈p〉 is valid, the integral

does not have to vanish if the phase Sx explicitly depends on the position variable in a
nonlinear way (e.g., quadratically, such as in the case of generalized coherent states, which
is discussed in Section 4). The correlation, therefore, entirely depends on the phase of the
wave function, and not at all on the amplitude. A similar calculation can also be performed
in momentum space.

To give a more detailed illustration of the uncertainties and their correlations in
position as well as in momentum space, in the next section, exact analytic solutions of the
time-dependent Schrödinger equation, so-called generalized coherent states, i.e., Gaussian
wave packets with time-dependent widths, will be considered.

4. Illustrative Example: Uncertainties and Their Correlations for Generalized
Coherent States
4.1. Position Space

In this Section, our method of calculating uncertainties and correlations by means of
amplitude and phase is illustrated using correlated coherent states, i.e., Gaussian wave
packets with time-dependent maximums and time-dependent widths. The reason for
this choice is that these states are the simplest analytical solutions of the time-dependent
Schrödinger equation with non-trivial time-dependence of the uncertainties. For a com-
plete analysis of the uncertainty relations with correlated coherent states, we refer to an
outstanding paper by Dodonov et al. [31]. For more general potentials (at least in position
space), the analytic form of S and ρ and the quantities depending on them will change, but
the overall structure of our results and their dependence on S and ρ will not.

Gaussian wave packets with time-dependent maximums that obey the equations
of classical mechanics and (in general) with time-dependent widths that are related to
the quantum mechanical uncertainties are solutions of the time-dependent Schrödinger
equation with a quadratic Hamiltonian. In position space, a general ansatz for such a wave
packet (also called a generalized coherent state) can be written in the form

〈x|ψ(t)〉 = Nx(t) exp
[ i

h̄

(m
2
C x̃2 + 〈p〉x̃ + K(t)

)]
= Nx(t) exp

[
− x̃2

2σ2
x
+

i
h̄

(m
2
CR x̃2 + 〈p〉x̃ + K(t)

)]
(47)

with x̃ = x− 〈x〉 and a complex time-dependent coefficient C(t) = CR + iCI that fulfils the
nonlinear Riccati equation Ċ + C2 + ω2 = 0. The purely time-dependent functions Nx(t)
and K(t) are not relevant for the following.

The imaginary part of C is related to the position uncertainty via

CI =
h̄

2mσ2
x

(48)

with σ2
x = 〈x2〉 − 〈x〉2 = 〈x̃2〉. From the imaginary part of the Riccati equation,

CR = −1
2

d
dtCI

CI
=

1
2

d
dt σ2

x

σ2
x

(49)
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follows (for details, see [32]).
The density ρx(x, t), corresponding to the wave packet (47), can be written as

ρx(x, t) = |Nx(t)|2 exp
[
− m

h̄
CI x̃2

]
=

√
1

2πσ2
x

exp
[
− x̃2

2σ2
x

]
. (50)

Therefore, the position uncertainty is fixed by the width of the density ρx. This width,
however, can be time-dependent, and the time-dependence enters the coefficient CR(t) in
the phase of the wave function and contributes to the momentum uncertainty. Using our
complex Madelung picture, this can be expressed as

σ2
p = 〈

(
P2)

R〉 − 〈p〉
2 = 〈P2

R − P2
I + h̄

∂

∂x
PI〉 − 〈p〉2 (51)

with
PR =

∂

∂x
Sx = mCR x̃ + 〈p〉 (52)

and

PI = −h̄
∂

∂x ρ

ρ
=

h̄
2

x̃
σ2

x
. (53)

According to (46), the position–momentum correlation σxp can be written as

σxp = 〈x̃PR〉 = mCR〈x̃2〉 = m
d
dt

σ2
x , (54)

or, CR can be expressed in terms of the uncertainty correlation and the position uncer-
tainty as

CR =
1
m

σxp

σ2
x

. (55)

As has been shown in Section 3, the momentum uncertainty in position space has two
contributions, one from the amplitude and one from the phase. In our case, these have the
explicit form

σ2
p,am = −

(
〈P2

I 〉 − 〈
∂

∂x
PI〉
)
=

h̄2

4
1
σ2

x
(56)

and

σ2
p,ph = 〈P2

R〉 − 〈PR〉2 =
σ2

xp

σ2
x

. (57)

Therefore, the uncertainty product can be written as

σ2
x σ2

p = σ2
x
(
σ2

p,am + σ2
p,ph
)
=

h̄2

4
[
1 +

(2
h̄

σxp
)2], (58)

i.e., the minimum uncertainty h̄2

4 only depends on the amplitude of the wave function and
is, therefore, also guaranteed for time-independent widths. If the uncertainty product is
larger, this additional contribution originates entirely from the phase and is, in the case of
our generalized coherent states, related to the time-dependence of the wave packet width
that, again, reflects the correlation of position and momentum.

Thus, in position space, the uncertainties that determine the evolution of the wave
packet are essentially the position uncertainty σ2

x , which is responsible for the minimum
uncertainty product and the position–momentum correlation σxp, and which provides
additional contributions that depend, essentially, on the phase of the wave packet. The
complex quantity C(t) that determines the time-evolution via a complex Riccati equation
can be written using these contributions as



Entropy 2022, 24, 20 10 of 13

C = 1
m

σxp

σ2
x
+ i

h̄
2m

1
σ2

x
. (59)

4.2. Momentum Space

By analogy, in momentum space, a formulation is possible for the Gaussian wave
packet that, in this case, can be formulated as

〈p|ψ(t)〉 = Np(t) exp
[
− i

h̄

( 1
2m
U p̃2 + 〈x〉 p̃ + L(t)

)]
= Np(t) exp

[
− p̃2

2σ2
p
− i

h̄

( 1
2m
UR p̃2 + 〈x〉 p̃ + L(t)

)]
(60)

with p̃ = p− 〈p〉 and the complex quantity U = 1
C , where UR = CR

|C|2 , UI = − CI
|C|2 , and U

fulfils the complex Riccati equation −U̇ + ω2U 2 + 1 = 0. Again, Np(t) and L(t) are not
relevant for the following.

From the definition of U follows, for the imaginary part,

UI = −
mh̄
2

1
σ2

p
(61)

and, using (55), for the real part

UR = m
σxp

σ2
p

. (62)

The density ρp(p, t) can be obtained in analogy with the one in position space. In
this case, the momentum uncertainty is fixed by the width of ρp(p, t), but now the time-
dependence of the position uncertainty also has a contribution from the phase via XR.
Using the definition of the complex Madelung quantity as given in (27), the contribution to
the position uncertainty from the amplitude is simply given by

σ2
x,am = −

(
〈X2

I 〉+ 〈
∂

∂p
XI〉
)
=

h̄2

4
1
σ2

p
. (63)

The contribution from the phase depends on XR = 1
mUR p̃ + 〈x〉 with

(
X2)

R =
1

m2U 2
R p̃2 + 〈x〉2 + 2

mUR〈x〉 p̃ and 〈XR〉 = 〈x〉, and is given by

σ2
x,ph = 〈X2

R〉 − 〈XR〉2 =
1

m2U
2
R〈 p̃2〉 =

σ2
xp

σ2
x

. (64)

In this case, the uncertainty product takes the form

σ2
pσ2

x = σ2
p
(
σ2

x,am + σ2
x,ph
)
=

h̄2

4
[
1 +

(2
h̄

σxp
)2], (65)

i.e., the same as in position space.
The difference is that, now, in momentum space, the position uncertainty has two

contributions, one from the amplitude and one from the phase, whereas, in position space,
it was just vice versa. Like in position space, the minimum uncertainty entirely depends
on the amplitude of the wave function. Additionally, in momentum space, the complex
quantity that determines the time-evolution of the uncertainties via a Riccati equation can
be entirely expressed in terms of the uncertainty in the chosen representation, here σ2

p , and
the position–momentum correlation σxp, i.e.,

U = m
σxp

σ2
p
− i

mh̄
2

1
σ2

p
. (66)
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5. Conclusions

The analysis of the position and momentum uncertainties and their correlations in the
framework of the (complex) Madelung picture shows that these quantities have an internal
structure that is related to the complex structure of the quantum mechanical wave function.
There is at least a formal similarity between the definition of our Madelung quantities
and the weak values, but, as pointed out in Section 2.1, there are ontological differences
involved that we do not intend to discuss in detail in this paper. However, we would like
to refer interested readers to a recent paper by Pandey et al. [26], in particular, where an
approach that is formally close to ours is discussed and also shows connections between
weak values and modal theories such as Bohmian mechanics.

To avoid conceptual misunderstandings, the following points should also be clarified:
The imaginary part of our complex momentum P in position space (see Equation (23))
has formal similarities with the so-called osmotic momentum used by Nelson [33,34] in
his stochastic mechanics version of quantum mechanics. However, his quantity is purely
real (with different signs for forward and backward derivatives in time), whereas our
term is purely imaginary. This is an essential difference (even if the mean value of both
terms vanishes).

There is also a complex version of Bohmian mechanics where the (real) action from
the phase of the wave function is replaced by a complex action, following Schrödinger’s
original introduction of the wave function in [4]. This leads to a complex momentum or
velocity field, such as our momentum in Equation (23). However, from this, the incorrect
conclusion is drawn that the independent (!) position variable must also be replaced by
a complex one. Various attempts in this direction are in the literature, and all lead to a
different physical situation than the one described by the original Schrödinger equation
(see also our comment in [19], and the references cited therein).

In the context of our Madelung picture, momentum (37) and position (41) uncertainties,
as well as their correlation (46), were calculated. It was shown that the momentum and
position uncertainties, regardless of the potential considered, have a separable form, where
the influence from the probability density ρ and the phase S of the projected quantum
state can be distinguished. This was also illustrated particularly for the case of correlated
coherent states or Gaussian wave packets (see Section 4). The uncertainties of the conjugate
variable, however, have contributions from the amplitude as well as from the phase of
the wave function. The contribution from the amplitude is the one that, in both cases,
provides the minimum uncertainty h̄2

4 in the Heisenberg uncertainty product σ2
x σ2

p . The
phase of the wave function can add contributions to this product, as long as it depends
(more than linearly) on the variable of the representation. These contributions are usually
(such as in the demonstrated case of Gaussian wave packets) time-dependent and can be
expressed entirely in terms of the correlations of position and momentum uncertainties
in both representations. It is well-known from the pioneering work by Dodonov et al [31]
that, according to the Schrödinger–Robertson uncertainty relation [35,36], the difference
between the minimum uncertainty product h̄2/4 and a larger value is due to the correlation
of position and momentum. However, to our knowledge, it was never pointed out that
this correlation term entirely depends on the phase of the wave function. This certainly has
consequences for practical applications, such as the description of tunnelling phenomena.
Does a description in terms of stationary states with a purely time-dependent phase suffice
when the tunnelling dynamics actually explicitly involves contributions from the phase of
the wave function? At least in the case of Gaussian wave packets that were analysed in
more detail, an apparent symmetry between the description in both representations was
found. Finally, it should be noted that the analysis of the uncertainties and correlations of
Gaussian wave packets can also be performed in the Wigner formalism. This is, however,
only complementary to our presentation here, as we have shown in [37] how the Wigner
formulation is related to our Madelung picture. Therefore, any problem arising in one
formulation could be tackled in the other.
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