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Abstract: Multiple myeloma is a condition of cancer in the bone marrow that can lead to dysfunction
of the body and fatal expression in the patient. Manual microscopic analysis of abnormal plasma
cells, also known as multiple myeloma cells, is one of the most commonly used diagnostic methods
for multiple myeloma. However, as it is a manual process, it consumes too much effort and time.
Besides, it has a higher chance of human errors. This paper presents a computer-aided detection
and segmentation of myeloma cells from microscopic images of the bone marrow aspiration. Two
major contributions are presented in this paper. First, different Mask R-CNN models using different
images, including original microscopic images, contrast-enhanced images and stained cell images,
are developed to perform instance segmentation of multiple myeloma cells. As a second contribution,
a deep-wise augmentation, a deep learning-based data augmentation method, is applied to increase
the performance of Mask R-CNN models. Based on the experimental findings, the Mask R-CNN
model using contrast-enhanced images combined with the proposed deep-wise data augmentation
provides a superior performance compared to other models. It achieves a mean precision of 0.9973,
mean recall of 0.8631, and mean intersection over union (IOU) of 0.9062.

Keywords: multiple myeloma; plasma cells; deep learning; Mask R-CNN; data augmentation

1. Introduction

Multiple myeloma (MM)—Commonly known as bone malignancy—is the proliferation
of malignant plasma cells within the bone marrow. Bone marrow is a soft, spongy tissue
found in human bones and is made of three different cells, namely red blood cells (RBCs),
white blood cells (WBCs) and platelets [1]. Approximately eighty to ninety percent of the
bone marrow is filled with WBCs—essential cells for the human body’s immune system.
More precisely, B lymphocytes or B cells, a type of WBCs, make antibodies to fight against
infections and maintain humoral immunity. Once B cells respond to infections, they mature
and change into plasma cells. In healthy conditions, plasma cells produce antibodies
called “immunoglobulin” to fight against infections and diseases [2]. However, when
myeloma cancer occurs, plasma cells in the bone marrow accumulate and crowd out other
healthy RBCs and platelets. The main cause of myeloma is due to the deoxyribonucleic
acid (DNA) damages or changes during new plasma cell production [1]. In medical terms,
those produced abnormal plasma cells are called myeloma cells. Instead of producing
normal antibodies, the myeloma cells produce monoclonal antibodies that can lead to bone
problems, especially damage to the bone marrow and brittle bones. Unlike other types of
cancer, myeloma cancer will not form a tumor or a lump. However, it can affect other parts
of the body; hence it is called multiple myeloma (MM). Some examples of complications
caused by MM include renal failure, frequent infections, improper kidney functions, and
low red blood cell count (anemia).
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Based on the statistical data of the Global Cancer Observatory (GLOBOCAN), approx-
imately 160,000 global incidences of MM were found in 2018, and it was 0.9% of all cancer
diagnoses [2]. Moreover, there were around 106,000 global mortality cases, approximately
1.1% of all cancer deaths. Common symptoms of MM include bone pain, especially in the
spine or chest, nausea, constipation, loss of appetite, mental fogginess or confusion, fatigue,
frequent infections, weight loss, weakness or numbness in legs, and excessive thirst. When
a patient suffers symptoms that are suspected to be MM, he or she needs to perform one
or more diagnostic tests, for example, (i) lab tests such as complete blood count (C.B.C.),
blood chemistry test, urine test, quantitative immunoglobulins, electrophoresis, serum-free
light chains; (ii) bone imaging tests, such as x-rays, computed tomography scans, magnetic
resonance imaging (MRI), positron emission tomography (PET) scans; and (iii) biopsies
such as bone marrow biopsy and aspiration, fine-needle aspiration biopsy, and core needle
biopsy. Among those diagnostic tests, our research will focus on bone marrow aspiration.
Generally, biopsy and the aspiration of bone marrow have quite similar procedures. Bone
marrow consists of both solid and fluid parts. A bone marrow biopsy removes a small
sample of solid tissue from the bone marrow inside the patient’s bones for testing. It is
unlikely that aspiration takes the fluid sample from the bone marrow. The collected samples
are then lysed onto a slide and stained [3]. Thereafter, a microscopic exam of the stained
slides is conducted to investigate the percentage of plasma cells in the bone marrow.

For instance, a microscopic image captured from bone marrow aspirate slides of pa-
tients can be seen in the figures of Section 3.2.1. As we can see in the figures, the appearance
of myeloma cells and normal plasma cells is very similar; thus, it is very complex to dif-
ferentiate cells from each other. Generally, histology and morphological features of the
cells are needed to be thoroughly analyzed to differentiate them [1]. Therefore, in clinical
practice, one or more expert pathologists manually analyze the stained slides from the
microscopic images to detect the MM cells. However, as it is a manual process, it has
many limitations, such as being effort-and-time consuming as well as being sensitive to
human errors. For those reasons, researchers in computer and technological fields tried to
create computer-aided tools for a more straightforward, faster, and more reliable diagnosis
of MM.

Many research papers focused on the automatic detection and segmentation of cells
from microscopic images, but, to the best of our knowledge, there are inconsiderable num-
bers of papers that emphasize myeloma cells. The automatic detection and segmentation
of plasma cell segmentation for myeloma diagnosis is very challenging and complicated
due to the following reasons [4]:

(1) The number of nucleus and cytoplasm may vary from one cell to another;
(2) The boundary of the plasma cells is fuzzy because the cytoplasm of the cell and the

background of the image have a similar visual appearance;
(3) In some situations, cells may be isolated as single cells, but sometimes they may be

in clusters;
(4) If cells are in clusters, they may be in three different conditions: (i) Nuclei of cells are

touching; (ii) Cytoplasm of cells are touching; and (iii) Cytoplasm of one cell is touch-
ing the nucleus of other cells. In such cases, the computer-aided segmentation process
will be more challenging because the cytoplasm and nucleus expose different colors;

(5) In some situations, it is possible to have an unstained cell (for example, a red blood cell)
underneath the cell of interest (MM plasma cell). In such cases, the color and shade of
unstained cells may change and interfere with MM plasma cells. As a negative result,
it may interfere with the detection and segmentation of cells of interest.

Therefore, resolving the aforementioned difficulties is very important in developing a
high-performance computer-aided diagnosis system.

2. Related Works

The literature on computer-assisted diagnostic tools for multiple myeloma can be
roughly divided into two main parts, namely: (i) conventional machine learning-based
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methods; and (ii) modern deep learning-based methods. Significantly, research conducted
in the 2010s applied image processing, feature extraction, and conventional machine learn-
ing algorithms. For instance, Saeedizadeh et al. [5] (2015) applied contrast enhancement for
image preprocessing and thresholding for nucleus and cytoplasm detection. Moreover, they
applied bottleneck and watershed methods for separating touching cells. Then, features
such as nucleus eccentricity and nucleus–cell ratio were extracted and classified using
a support vector machine (SVM) classifier. They utilized a local dataset that contained
50 images with 678 cells (132 normal, 256 myelomas, and 290 other). They reported a
sensitivity of 96.52%, a specificity of 93.04% and a precision of 95.28%, respectively. Simi-
larly, in 2018, another conventional machine-learning-based MM diagnosis was proposed
by Gupta et. al. [4]. Their method was called PCSeg, and it mainly applied multi-phased
level set theory. Similar to [5], PCSeg also used watershed and circular Hough transform
methods for post-processing after segmentation. The performance of PCSeg was evaluated
using a public dataset called the MiMM_SBILab Dataset [6], which contains 85 microscopic
cell images, and it achieved 81.66% of recall, 76.56% precision, and 79.03% of F1-scores.
Even though the conventional machine learning-based methods reported high performance,
the outputs of those methods are highly dependent on the prior information of the images
or manually predefined parameters.

With the recent and advanced improvements in technology, deep learning-based
computer-assist tools became state-of-the-art systems. For example, a deep neural network-
based myeloma cell detection was found in Tehsin et al. [7]. They applied AlexNet as a
feature extractor to extract deep features from microscopic cells and then classified them
using SVM. Before extracting the features, they analyzed and preprocessed the images based
on a particular color channel. They used the same dataset as [5], containing 50 microscopic
images (34 with plasma cells and 16 with normal cells). They reported 89% sensitivity
without preprocessing and 100% with preprocessing. Nonetheless, their method performed
the classification only, and it could not provide the specific locations of the plasma cells.

Moreover, Vishnav et al. [3] also performed MM cell segmentation by comparing two
deep neural networks such as Mask R-CNN and U-Net. They validated their proposed
method on the MiMM_SBILab dataset [6]. They observed that Mask R-CNN (with a
precision of 82.61%) outperformed the U-Net (with a precision of 78.95%). However, in the
study of Voula et al. [8], U-Net gave a better performance in nucleus segmentation than
Mask R-CNN in terms of similarity index criteria. Meanwhile, Mask R-CNN was better if
the precision criteria were used. Therefore, they finally decided to develop an ensemble
of Mask R-CNN and U-Net to get the best outputs. Their approach provided a promising
result (0.523 mAP and 0.725 precision) on an extensive dataset containing 800 images with
different modalities, staining and microscopy techniques. Nevertheless, their focus was
solely on the segmentation of cell nuclei.

Bozorgpour et al. [1] also proposed an automatic myeloma cell detection using a
two-staged deep learning framework. First, they segmented the nucleus using U-Net at
the initial stage. Then, as the second stage, the cytoplasm of cells was segmented using
multi-scale regional attention deeplab3+. They also proposed an aggregation function to
select the most related scale for a single prediction. Their proposed method was the second
winner of the SegPC2021 competition and achieved a mean IOU value of 0.9385.

Unlike the previous studies, our paper performs multiple myeloma detection with
two main contributions. The first contribution is developing different Mask R-CNN models
not only using original microscopic images but also using contrast-enhanced and stained
cell images. The main reason behind the first contribution is due to the wide variability
natures of MM cells. As discussed in the introduction, such variability makes the computer-
aided detection and segmentation of MM cells very challenging. Therefore, we used
contrast enhancement and stained cell images to increase the separability between myeloma
cells and non-myeloma regions. Moreover, as a second contribution, we propose a deep
learning-based data augmentation method called deep-wise augmentation to enhance the
performance of Mask R-CNN models. The details of these contributions will be discussed
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in the later sessions. The rest of the paper is organized as follows: Section 3 will discuss the
materials and methods applied in this paper. Then, Section 4 will discuss the procedures
of experiments to validate the proposed method and discuss the experimental findings.
Finally, Section 5 will conclude the paper.

3. Materials and Methods
3.1. Materials

The microscopic images of multiple myeloma cells applied in this research were ob-
tained from the TCIA_SegPC_dataset [4,9,10]. It is a publicly released dataset for academic
and research purposes after the SegPC2021 challenge. It contains 775 images in total,
divided into three parts: training set (298 images), validation (200 images) and testing
(277 images). The ground truth data for the myeloma cells in the training and validation
dataset are provided along with the dataset. We apply 80% and 20% of the training set for
training and validation. The validation set from the original dataset is used for testing since
the ground truth data for the original test set is not available. The images in the dataset are
24 bits bitmap images (.bmp) with dimensions of 2560 × 1920.

3.2. Methods

The semantic diagram of the proposed MM detection system is illustrated in Figure 1.
As denoted in the figure, it consists of three major parts: (1) segmentation of stained
cells; (2) deep-wise data augmentation; and (3) Mask R-CNN. The first part—stained cell
segmentation—is a preprocessing task that enhances the quality of the input images. It
aims to improve the learning ability of Mask R-CNN by removing the unfocused regions
(unstained cells) from the input images. Then the second part—deep-wise augmentation—
generates augmented images of stained cells as naturally as possible. Finally, the last
part—Mask R-CNN—conducts the instance segmentation of myeloma cells. The details of
each part are discussed in the following sub-sections.
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parts: (1) Segmentation of stained cells, (2) Deep-wise data augmentation, and (3) Mask R-CNN.

3.2.1. Segmentation of Stained Cells

Multiple myeloma cells in their natural states are indistinguishable from normal
cells. Staining is an essential procedure in microbiology since it enhances the contrast and
visualization of cells under a microscope. The microscopic images used in this research had
already undergone a stain color normalization. For example, Figure 2a demonstrates an
input microscopic cell image. The stained objects in the figure generally expose blueish color,
whereas unstained parts expose a pinkish color. We try to remove unstained cells because
they can hinder the learning process of Mask R-CNN. A study by Gupta [4] performed a



Entropy 2022, 24, 134 5 of 12

detailed analysis of different objects from the input cells images. They emphasized four
different objects (ROIs): the nucleus of plasma cells, cytoplasm of plasma cells, unstained
cells, and background. The separability of those ROIs was then analyzed in different color
spaces, namely, RGB, HSV, and Lab. They reported that the maximum separability between
stained and unstained cells could be obtained in the H color channel.

However, in this study, we used the contrast stretching method to remove the un-
stained cells because it can provide better separability compared to the H channel images.
Contrast stretching can improve the quality of the images by stretching a specific range
of intensity values to fill the entire dynamic range [11]. As we can notice in Figure 2c, the
result of contrast stretching turns the color of unstained regions into greenish, making
them easier to distinguish from stained cells and background. Note that, in our ablation
study (Section 4.1), we will develop Mask R-CNN using the contrast stretched images
to validate its improvements in the separability of cells and learning abilities of Mask
R-CNN models. After enhancing the contrast of the original input images, we remove
unstained cells by replacing greenish color pixels with the background pixels, as illustrated
in Figure 2d. Instead of deleting or changing the unstained pixels into zeroes, replacing
them with background pixels ensures no additional regions for segmentation.
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3.2.2. Deep Wise Data Augmentation

Advances in deep learning methods provided significant improvements in computer-
aided diagnosis. Nevertheless, the performance of deep learning models crucially depends
on the quality and sufficiency of input data. In practice, a common problem of computer-
aided diagnosis methods is a shortage or a limited number of ground-truth data. Acquiring
high-quality ground-truth data is very cumbersome because it is a manual process; thus, it
is time-consuming, human-intensive, and sometimes due to the privacy of the medical data.
Data augmentation, a process of creating new data by transforming or synthesizing existing
data, is the most widely used solution for data insufficiency. It introduces the variability of
the images in the dataset and improves the generalization capabilities of the learning model.
It also works as a regularizer and solves the overfitting problem. The most commonly used
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data augmentation methods for current deep learning models include cropping, flipping,
rotation, translation, color augmentation, and so forth. Selecting appropriate augmentation
methods is oriented to the nature of images applied, the amount of data in the dataset.
Moreover, it may also rely on the main objective of using the deep learning model and the
expected performance.

The specific objective of this research is to perform instance segmentation of myeloma
cells from microscopic images. Once we compare the number of myeloma cells to the
non-myeloma regions, it is found that the myeloma cells dataset suffers an imbalance
problem. That is, the number of pixels in the myeloma cell regions is relatively fewer than
those of other regions. Although data augmentation can solve the overfitting, it can affect
the balance of the dataset as a trade-off. It will force an increase in the number of images
by generating new images of both minority (myeloma cells) and majority classes (non-
myeloma regions). For this reason, in this paper, we propose deep-wise data augmentation
that increases the minority class while controlling the augmentation of the majority class.

Initially, all myeloma cells from the training dataset are extracted using the polygon
masks created for Mask R-CNN. As an illustrative example, Figure 3a shows polygonal
masks of five myeloma cells of an input image from the training dataset. These masks
are generated using the VGG image annotator [12], and they will be used to train Mask
R-CNN. Then, Figure 3b shows the extracted myeloma cells (cell 1, 2, and 3) using polygon
masks. Subsequently, the basic augmentation methods, such as the flipping and rotation of
extracted myeloma cells are performed. Note that these data augmentation methods are
not applied for the whole input images. They are only applied for myeloma cell regions
(minority class); thus, it can prevent the increase in the number of pixels in non-myeloma
regions (majority class).

As we discussed earlier, the ultimate goal of our data augmentation is to augment
the minority class objects (myeloma cell regions) while limiting the increase of majority
class objects (non-myeloma regions). Based on Figure 3, we can increase the number of
myeloma cells, and it seems like we have reached our goal. Nevertheless, the augmented
myeloma cells were isolated as they were derived from the extracted cells using polygon
masks. The real nature of cells is sometimes in a cluster, as we discussed in the introduction.
Therefore, our augmented myeloma cells are not very realistic yet. Besides, the dimensions
of augmented cells vary among cells and are different from the dimension of the input
image. The possible solution to those problems is pasting the augmented cells on the
background image containing other non-myeloma regions.

Our proposed deep-wise data augmentation method will try to generate augmented
myeloma cells as realistically and naturally as possible. Instead of directly pasting the
augmented cells onto the background, it applies the deep learning-based blending method,
inspired by deep image blending by Zhang et al. [13,14]. It blends the foreground objects,
augmented myeloma cells, with the background in order to get more realistic effects. Unlike
the original deep blending method [13], our proposed deep-wise data augmentation blends
only the edge regions of the augmented cells and keeps remain the pixel values inside the
cells the same. Because we do not want to lose or change the pathological and morphologi-
cal information of pixels inside the myeloma cell regions. Moreover, to solve the problem of
increasing the majority classes (non-myeloma regions), we randomly select the background
images from the existing images of the training dataset. The random, augmented cells are
composited and blended onto the selected background. Figure 3c illustrates the augmented
images generated by our proposed deep-wise augmentation method.
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Figure 3. Deep-wise data augmentation. (a) Example of polygon masks (ground truths) for myeloma
cells using VGG annotation tool, (b) Basic data augmentations of cells 1, 2, and 3, (c) Deep-wise
augmentation of cell 1 (denoted by arrow), and (d) Deep-wise augmentation of cell 2 and 3 (denoted
by arrows).

3.2.3. Mask R-CNN

Mask R-CNN [15] is one of the most famous cutting-edge algorithms for instance
segmentation. It works on a two-staged structure. The first stage is a region proposal
network (RPN) that generates the proposals of the regions that might be our region of
interest (myeloma cells). The second stage is an R-CNN detector that predicts the class
of that object and generates the bounding boxes and binary masks. The architecture of
the proposed Mask R-CNN can be seen in the semantic diagram (Figure 1). The input
images to the first layer of Mask R-CNN are images of three types: original images,
contrast-enhanced images, stained cell images, and their associated polygon masks. We use
ResNet101 and Feature Pyramid Network (FPN) as a backbone of the proposed Mask R-
CNN. ResNet101 produces a feature map containing the low-level and high-level features
from the inputs. Then, the produced feature map is improved by FPN. Using the improved
feature map, the Region Proposal Network (RPN) will find all possible areas that contain
myeloma cells. Subsequently, ROI Align part will refine the locations and sizes of ROIs
proposed by the RPN. Afterwards, the specific classes of the ROIs (i.e., binary classes
of myeloma or non-myeloma cells) and their associated bounding boxes are generated
through the ROI classifier and bounding box regressor. Finally, a convolutional network
will generate the segmentation masks of ROIs by taking the positive regions selected by the
ROI classifier.

Based on the literature review, the outperformance of Mask R-CNN for MM detection
had been reported in [1,3,8]. However, all those methods applied the Mask R-CNN directly
from the original input images. Our Mask R-CNN will differ from previous studies in
two ways: (i) using three types of images: original image, contrast-enhanced images, and
stained cell images; (ii) adding more augmented cells using deep-wised augmentation
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method. We will analyze, compare, and contrast the effectiveness of each image type in the
following experimental results and discussion session.

4. Experimental Results and Discussion

The most initial and essential part of the experiments is data preparation. As discussed
in the materials (Section 3.1), we divide the original dataset into three parts—training, val-
idation, and testing. The training part is used to develop Mask R-CNN models, and the
validation part is for hyper-parameter tuning. We developed nine different Mask R-CNN
models: (i) Original Mask R-CNN that uses original microscopic images; (ii) Original Aug-
mented Mask R-CNN that uses original microscopic images with basic data augmentation
methods; (iii) Original Mask R-CNN with Deep-wise data augmentation that uses original
images and deep-wise augmented cells; (iv) Contrast-Enhanced Mask R-CNN that uses
contrast-enhanced images; (v) Contrast-Enhanced Augmented Mask R-CNN that uses
contrast-enhanced images with basic data augmentation methods; (vi) Contrast-enhanced
Mask R-CNN with deep-wise data augmentation; (vii) Stained Cells Mask R-CNN that
uses the images with only stained cells; (viii) Stained Cells Augmented Mask R-CNN
that uses the images with only stained cells and basic augmentation methods; and (ix)
Stained Cells Mask R-CNN with deep-wised data augmentation. All models have trained
200 epochs on an Nvidia GeForce RTX 3080 and saved the models that provide the highest
validation performance.

4.1. Ablation Study

The ablation study aims to analyze the performance of our proposed method in a
step-by-step procedure, and it will help to find a Mask R-CNN model with the highest
performance. We apply three assessment measures, namely mean precision, mean recall and
mean IOU, to identify the performance of the models. Table 1 summarizes and compares
the results of all models.

Table 1. Performance comparison of nine different Mask R-CNN models.

Model Mean
Precision

Mean
Recall

Mean
IOU

Original Mask R-CNN 0.8769 0.8178 0.7689
Original Augmented Mask R-CNN 0.9426 0.8406 0.7465
Original Mask R-CNN with Deep-wise data augmentation 0.9464 0.8478 0.8721
Contrast-enhanced Mask R-CNN 0.8966 0.8333 0.7324
Contrast-enhanced Augmented Mask R-CNN 0.9843 0.8566 0.8879
Contrast-enhanced Mask R-CNN with Deep-wise data augmentation 0.9973 0.8631 0.9062
Stained cell Mask R-CNN 0.9389 0.7372 0.6478
Stained cell Augmented Mask R-CNN 0.9614 0.8130 0.7324
Stained cell Mask R-CNN with Deep-wise data augmentation 0.9632 0.8328 0.7348

By analyzing the assessment measures in Table 1, we can reveal that using contrast-
enhanced images can provide a higher performance compared to the original and stained
cell images. We expected that the performance of using stain cell images would be better
but, in reality, the performance is not as good as contrast-enhanced images. Moreover, we
found that basic data augmentation can increase the performances of models in all image
types (i.e., original, contrast-enhanced, and stained cell images). It can increase approxi-
mately up to 0.0586 in mean precision, 0.0406 in mean recall and 0.0725 in mean IOU for all
image types. For our proposed deep-wise data augmentation, it can provide the highest
performance in all models. Compared to no augmentations, deep-wise augmentation can
increase the performance of models approximately up to 0.0648 in mean precision, 0.0518 in
mean recall and 0.1213 in mean IOU, respectively.

Therefore, we can summarize that, among all models, contrast-enhanced Mask R-CNN
with deep-wise data augmentation provides the highest performance with a mean precision
of 0.9973, mean recall of 0.8631, and mean IOU of 0.9062. It reached the highest performance
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with a training loss of 0.3006 and a validation loss of 0.6247 at epoch 137, as illustrated
in Figure 4.
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Some examples of segmentation results using our proposed method are illustrated in
Figure 5. From this figure, it is evident that our proposed method has promise to resolve
the challenges that are commonly found in automatic MM detection. Figure 5a shows the
segmentation of isolated MM cells. The green color bounding box and mask represent
the ground truth, and the red ones represent the outputs of our proposed method. The
caption above the bounding box describes the prediction score and IOU value for each
segmentation result. The MM cell in Figure 5a achieved a prediction score of 1.00 with an
IOU value of 0.96. Similarly, Figure 5b shows an example of an MM cell having a very
similar color intensity to a nucleus. Our proposed method can segment it with a prediction
score of 1.00 with an IOU of 0.93. Moreover, the segmentation results of cluster cells are also
demonstrated in Figure 5c,d. Figure 5c represents cluster MM cells with touching nuclei
and Figure 5d represents clusters with touching cytoplasm, respectively. For a cluster with
touching nuclei in Figure 5c, we got a precision score of 1.00 and an IOU of 0.94. For a
cluster with touching cytoplasm in Figure 5d, it can successfully separate the touching
boundary and well segment both cells with high IOU values 0.90 and 0.92.

4.2. Comparison with State-of-Art Methods

Among a number of previous methods described in the literature review, we select
Mask R-CNN [3], U-Net [3], and U-Net plus Attention deeplab3+ [1] for performance com-
parison because those methods are based on deep learning methods with the same objective.
Table 2 summarizes the results of the performance comparison. Based on these results, we
can reveal that our proposed method achieved higher precision and IOU than Mask R-
CNN [3] and U-Net [3], where the IOU of those methods are calculated from their reported
confusion matrix [3]. Our proposed method is a slightly lower IOU (0.03) compared to
deeplab3+ [1]. Nevertheless, our method would be a favorable alternative that can provide
promising results with high precision (0.9973) while using a single-staged detection.

Table 2. Performance comparison with state-of-the-art methods.

Methods Precision IOU

Mask R-CNN [3] 0.8261 0.7755
U-Net [3] 0.7895 0.6122

U-Net, Attention deeplab3+ [1] - 0.9385
Proposed Method 0.9973 0.9062
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Figure 5. Some examples of segmentation results, by contrast-enhanced Mask R-CNN with deep-
wise data augmentation. Each column represents the original image, contrast-enhanced image and
segmentation result, respectively. (a) Isolated MM cell (b) Nucleus and cytoplasm have similar color
intensity (c) MM cells in a cluster (Touching nuclei) (d) MM cell in a cluster (Touching cytoplasm),
Green colored bounding boxes and masks represent ground truth, and the red colored ones represent
segmentation result. The caption above the bounding box shows the prediction score/IOU value.
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5. Conclusions

In this study, we proposed an automatic detection and instance segmentation of
multiple myeloma cells from microscopic images of bone marrow aspiration slides. We
developed Mask R-CNN models using microscopic images taken from bone marrow
aspiration. We built nine different Mask R-CNN models using original, contrast-enhanced,
and stained cell images. Moreover, we also applied deep-wise data augmentation to
improve the performance of Mask R-CNN models. The models were developed using a
public dataset of microscopic myeloma cell images, and the performances of all models
were compared. Based on the empirical findings, the Mask R-CNN using the contrast-
enhanced images with deep-wise augmentation produced the best performance with a
mean precision of 0.9973, a mean recall of 0.8631, and an IOU of 0.9062, respectively. Our
proposed method well detects and segments not only the isolated but also a cluster of
myeloma cells. For future work, the performance of our method can be further improved
using an advanced modification of Mask R-CNN such as an attention Mask R-CNN or
ensemble Mask R-CNNs.
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