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Abstract: Quantum information theorists have created axiomatic reconstructions of quantum me-
chanics (QM) that are very successful at identifying precisely what distinguishes quantum probability
theory from classical and more general probability theories in terms of information-theoretic prin-
ciples. Herein, we show how one such principle, Information Invariance and Continuity, at the
foundation of those axiomatic reconstructions, maps to “no preferred reference frame” (NPRF, aka
“the relativity principle”) as it pertains to the invariant measurement of Planck’s constant h for Stern-
Gerlach (SG) spin measurements. This is in exact analogy to the relativity principle as it pertains
to the invariant measurement of the speed of light c at the foundation of special relativity (SR).
Essentially, quantum information theorists have extended Einstein’s use of NPRF from the boost
invariance of measurements of c to include the SO(3) invariance of measurements of h between
different reference frames of mutually complementary spin measurements via the principle of In-
formation Invariance and Continuity. Consequently, the “mystery” of the Bell states is understood
to result from conservation per Information Invariance and Continuity between different reference
frames of mutually complementary qubit measurements, and this maps to conservation per NPRF in
spacetime. If one falsely conflates the relativity principle with the classical theory of SR, then it may
seem impossible that the relativity principle resides at the foundation of non-relativisitic QM. In fact,
there is nothing inherently classical or quantum about NPRF. Thus, the axiomatic reconstructions of
QM have succeeded in producing a principle account of QM that reveals as much about Nature as
the postulates of SR.

Keywords: axiomatic reconstructions of quantum mechanics; quantum information theory; relativity
principle

1. Introduction

Feynman famously said, “I think I can safely say that nobody understands quantum
mechanics” [1]. Despite the fact that quantum mechanics “has survived all tests” and
“we all know how to use it and apply it to problems,” Gell-Mann agreed with Feynman,
saying, “we have learned to live with the fact that nobody can understand it” [2]. As a
result, there are many programs designed to interpret quantum mechanics (QM), i.e., reveal
what QM is telling us about Nature. We will not review such attempts here (the interested
reader is referred to Drummond’s 2019 overview of QM interpretations [3]), rather in this
paper we will explain how axiomatic reconstructions of QM based on information-theoretic
principles (e.g., see [4–23] or the review by Jaeger [24]) contain a surprising advance in
the understanding of QM. Specifically, we will show how the principle of Information
Invariance and Continuity [8]:

The total information of one bit is invariant under a continuous change between
different complete sets of mutually complementary measurements.
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at the basis of information-theoretic reconstructions of QM already implies the relativity
principle (aka “no preferred reference frame (NPRF)”) as it pertains to the invariant mea-
surement of Planck’s constant h when applied to spin- 1

2 measurements in spacetime. This
is in total analogy to the Lorentz transformations of special relativity (SR) being based on
the relativity principle as it pertains to the invariant measurement of the speed of light
c (light postulate). Thus, the information-theoretic reconstructions of QM (hereafter, “re-
constructions of QM”) provide a “principle” account of QM in total analogy to that of
SR [23,25–27], revealing a deep unity between these pillars of modern physics where others
have perceived tension [28–31].

Before proceeding further, some caveats are in order. First, the relativity principle, i.e.,
“The laws of physics must be the same in all inertial reference frames” or NPRF for short, is
not restricted to “The laws of classical physics”, it applies to all of physics. Second, that it
resides at the foundation of a theory does not mean the theory is “relativistic”. For example,
NPRF is at the foundation of Newtonian mechanics with its Galilean transformations and
Newtonian mechanics is certainly “non-relativistic”. Thus, there is no reason a priori to
exclude the possibility that NPRF resides at the foundation of non-relativistic QM.

Our use of NPRF deals exclusively with the kinematic structure underlying QM, i.e.,
denumerable-dimensional Hilbert space (of arbitrarily large, but finite, dimension). This is
in total analogy to the relativity principle underwriting the the kinematic structure of SR,
i.e., Minkowski spacetime (M4). In both cases, the kinematic structure constrains but does
not dictate the dynamics. Bub writes [32]:

The information-theoretic interpretation is the proposal to take Hilbert space as
the kinematic framework for the physics of an indeterministic universe, just as
Minkowski space provides the kinematic framework for the physics of a non-
Newtonian, relativistic universe. In special relativity, the geometry of Minkowski
space imposes spatio-temporal constraints on events to which the relativistic
dynamics is required to conform. In quantum mechanics, the non-Boolean pro-
jective geometry of Hilbert space imposes objective kinematic (i.e., pre-dynamic)
probabilistic constraints on correlations between events to which a quantum
dynamics of matter and fields is required to conform.

For example, the relativity principle is responsible for the light postulate and to-
gether they give M4 at the foundation of SR, but M4 does not dictate the contents of the
4-momentum vector. Likewise, reconstructions of QM give the qubit Hilbert space struc-
ture at the foundation of QM, but that qubit Hilbert space structure does not dictate the
Hamiltonian for the propagator.

Finally, we should also point out that our result is not related to quantum reference
frames [33–35], Lorentz invariance of entangled states [36], the relativity principle in
QM per Davis [37] or Dragan and Ekert [38], or the relativity of simultaneity applied to
quantum experiments [39,40]. The relativity principle will be applied herein to reference
frames related by spatial rotations SO(3). More specifically, these spatial reference frames
will be those established by mutually complementary qubit measurements [8] per the
“closeness requirement” between quantum theory and classical measurement devices [41,42]
(Section 2). While spatial rotations plus Lorentz boosts constitute the restricted Lorentz
group, spatial rotations plus Galilean boosts constitute the homogeneous Galilean group, so
the use of the relativity principle here does not imply Lorentz invariance. Again, conformity
to NPRF does not mean a theory is “relativistic” in that sense.

The relativity principle has a long history in physics, e.g., Galileo used the relativity
of motion principle to argue against geocentricism and Newtonian mechanics is invariant
under Galilean transformations. Einstein generalized Galileo’s version of the relativity
principle, “The laws of mechanics must be the same in all inertial reference frames” to “The
laws of physics must be the same in all inertial reference frames”, so he could apply it to the
value of c from Maxwell’s equations [43–45]. As Norton points out, Maxwell’s discovery of
c plus NPRF makes M4 of SR inevitable [43]. Here we will see that Planck’s discovery of h
plus NPRF makes the denumerable-dimensional Hilbert space of QM inevitable as well.
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Quantum information theorists engaged in reconstructions of QM have specifically
stated their desire to discover principles at the foundation of QM analogous to NPRF and
light postulate at the foundation of SR [9,13,15,19,22,46–48]. If not the relativity principle
specifically, at least principles that can “be translated back into language of physics” [11]. Of
course, different reconstructions of QM contain different information-theoretic principles,
precisely because quantum information scientists “design algorithms and protocols at an
abstract level, without considering whether they will be implemented with light, atoms or
any other type of physical substrate” [19]. Nonetheless, they all reveal directly or indirectly
that the key difference between classical and quantum probability theories resides in
the continuity of reversible transformations between pure states (Section 2). In what is
considered the first axiomatic reconstruction of QM [24], Hardy notes that by adding the
single word “continuous” to his reversibility axiom, one obtains quantum probability
theory instead of classical probability theory [4]. Indeed, many authors emphasize this
point [12,19,22,42], e.g., Koberinski and Müller write [23]:

We suggest that (continuous) reversibility may be the postulate which comes
closest to being a candidate for a glimpse on the genuinely physical kernel of
“quantum reality”. Even though Fuchs may want to set a higher threshold for
a “glimpse of quantum reality”, this postulate is quite surprising from the point
of view of classical physics: when we have a discrete system that can be in a
finite number of perfectly distinguishable alternatives, then one would classically
expect that reversible evolution must be discrete too. For example, a single bit can
only ever be flipped, which is a discrete indivisible operation. Not so in quantum
theory: the state |0〉 of a qubit can be continuously-reversibly “moved over” to
the state |1〉. For people without knowledge of quantum theory (but of classical
information theory), this may appear as surprising or “paradoxical” as Einstein’s
light postulate sounds to people without knowledge of relativity.

Our goal here is to show how this key difference between classical and quantum probability
theories per the principle of Information Invariance and Continuity relates directly to an
application of NPRF in spacetime.

Of course, as a “principle” account of QM, the information-theoretic reconstructions
do not provide “a constructive account of ontological structure” that many deem necessary
for a true interpretation of QM [23,49]. Einstein noted the difference between “principle”
and “constructive” theories in this famous passage [50]:

We can distinguish various kinds of theories in physics. Most of them are con-
structive. They attempt to build up a picture of the more complex phenomena out
of the materials of a relatively simple formal scheme from which they start out.
[The kinetic theory of gases is an example.] . . . Along with this most important
class of theories there exists a second, which I will call “principle-theories.” These
employ the analytic, not the synthetic, method. The elements which form their
basis and starting point are not hypothetically constructed but empirically discov-
ered ones, general characteristics of natural processes, principles that give rise to
mathematically formulated criteria which the separate processes or the theoretical
representations of them have to satisfy. [Thermodynamics is an example.] . . .
The advantages of the constructive theory are completeness, adaptability, and
clearness, those of the principle theory are logical perfection and security of the
foundations. The theory of relativity belongs to the latter class.

Nearly every introductory physics textbook introduces SR via the relativity principle and
light postulate without qualifying that introduction as somehow lacking an “interpretation”.
With few exceptions, physicists have come to accept the principles of SR without worrying
about a constructive counterpart. Thus, a principle account of QM based on NPRF as
with SR certainly constitutes an important advance in our understanding of QM. Perhaps
prophetically, Bell said ([51], p. 85):
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I think the problems and puzzles we are dealing with here will be cleared up, and
. . . our descendants will look back on us with the same kind of superiority as we
now are tempted to feel when we look at people in the late nineteenth century
who worried about the aether. And Michelson-Morley . . ., the puzzles seemed
insoluble to them. And came Einstein in nineteen five, and now every schoolboy
learns it and feels . . . superior to those old guys. Now, it’s my feeling that all this
action at a distance and no action at a distance business will go the same way.
But someone will come up with the answer, with a reasonable way of looking
at these things. If we are lucky it will be to some big new development like the
theory of relativity.

By revealing the relativity principle’s role at the foundation of QM, information-theoretic
reconstructions of QM have revealed what QM is telling us about Nature to no less an
extent than SR. And, SR’s principle explanation of Nature certainly constituted a “big
new development” for physics in 1905. As emphasized by Fuchs, “Where present-day
quantum-foundation studies have stagnated in the stream of history is not so unlike where
the physics of length contraction and time dilation stood before Einstein’s 1905 paper on
special relativity” [5]. At that time, “Maxwellian physicists were ready to abandon the
relativity of motion principle” [45] and even “Einstein was willing to sacrifice the greatest
success of 19th century physics, Maxwell’s theory, seeking to replace it by one conforming
to an emission theory of light, as the classical, Galilean kinematics demanded” before
realizing that such an emission theory would not work [43]. Thus, concerning his decision
to produce a principle explanation instead of a constructive explanation for time dilation
and length contraction, Einstein writes [52]:

By and by I despaired of the possibility of discovering the true laws by means of
constructive efforts based on known facts. The longer and the more despairingly
I tried, the more I came to the conviction that only the discovery of a universal
formal principle could lead us to assured results.

Therefore, being in a similar situation today with QM, it is not unreasonable to seek a
compelling principle account of QM along the lines of SR. Again, a principle account of QM
that maps to NPRF applied to h at its foundation would be as valuable to understanding QM
as NPRF applied to c is to understanding SR and, as we will show, the information-theoretic
reconstructions of QM entail exactly that understanding.

We start in Section 2 with an introduction to the relevant information-theoretic for-
malism on the qubit at the basis of the reconstructions of QM. This introduction is not a
mathematically detailed exposition on the reconstructions of QM (for that see [53] and as
related to this paper [54]). Rather, in this section we introduce only the key information-
theoretic concepts associated with the qubit in the reconstructions of QM, as required to
make our argument to the physicist interested in foundations of QM (but not necessarily
familiar with quantum information theory). Virtually all undergraduate physics textbooks
introduce the counterintuitive concepts of time dilation, length contraction, and the rel-
ativity of simultaneity using the relativity principle and the invariant measurement of c
at the foundation of SR. Our goal here is to present an equally accessible introduction to
the counterintuitive concept of the qubit using the relativity principle and the invariant
measurement of h at the foundation of QM, as implied by the reconstructions of QM. Here
we will see that the information-theoretic principles of Existence of an Information Unit and
Continuous Reversibility [19], or in combined form Information Invariance and Continuity,
already reveal a role for NPRF at the foundation of QM.

In Section 3, we finish our argument by looking at the role played by Planck’s constant
h in QM and its relation to the Existence of an Information Unit. In particular, we focus on
three facts: QM obtains because h 6= 0, h is a universal constant of Nature, and Stern-Gerlach
(SG) spin measurements constitute the invariant measurement of h. We then show why
continuous reversibility in SG spin measurements of h is “quite surprising from the point
of view of classical physics” [23], i.e., there is no constructive classical model for it and it
leads to “average-only” projection of spin angular momentum. Most generally, Information
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Invariance and Continuity leads to “average-only” projection/transmission/. . . between
the different reference frames of mutually complementary qubit measurements [8,55]. In
Section 4, we review how this result leads to the counterintuitive “average-only” conserva-
tion characterizing quantum entanglement per the Bell states [56–58]. Thus, “average-only”
conservation responsible for the Tsirelson bound is explained by conservation per Infor-
mation Invariance and Continuity (conservation per NPRF in spacetime). We conclude in
Section 5.

2. The Qubit and NPRF

We start by noting the term “quantum state” can refer to the probability amplitude
vector, e.g., |u〉, or to the probability (density) matrix ρ. It will be clear which is meant
by the context. Next, we review the difference between the classical bit and the qubit per
Hardy [4], starting with the qubit.

In a 2-dimensional (2D) Hilbert space spanned by |u〉 and |d〉, a general state |ψ〉 is
given by |ψ〉 = c1|u〉+ c2|d〉 with c1 and c2 complex and |c1|2 + |c2|2 = 1. In general, such
2D states are called qubits and the density matrix is given by ρ = |ψ〉〈ψ|. In quantum
information theory, these qubits represent an elementary piece of information for quantum
systems; a quantum system is probed and one of two possible outcomes obtains, e.g.,
yes/no, up/down, pass/no pass, etc. The structure of all such binary systems from an
information-theoretic perspective is identical.

A general Hermitian measurement operator in 2D Hilbert space has outcomes given
by its (real) eigenvalues and can be written (λ1)|1〉〈1|+ (λ2)|2〉〈2| where |1〉 and |2〉 are
the eigenstates for the eigenvalues λ1 and λ2, respectively. Any such Hermitian matrix M
can be expanded in the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
, and σz =

(
1 0
0 − 1

)
plus the identity matrix I

M = m0I + mxσx + myσy + mzσz (1)

where (m0, mx, my, mz) are real. The eigenvalues of M are given by

m0 ±
√

m2
x + m2

y + m2
z .

We see that mx, my, mz give two eigenvalues centered about m0. All measurement operators
with the same eigenvalues are related by SU(2) transformations given by some combination
of eiΘσj , where j = {x, y, z} and Θ is an angle in Hilbert space. Any density matrix can be
expanded in the same fashion

ρ =
1
2
(

I + ρxσx + ρyσy + ρzσz
)

(2)

where (ρx, ρy, ρz) are real. The Bloch sphere is defined by ρ2
x + ρ2

y + ρ2
z = 1 with pure states

residing on the surface of the sphere and mixed states residing inside the sphere, consistent
with the fact that mixed states contain less information than pure states. Since we will be
referring to spin- 1

2 measurements and states later, we will denote our eigenstates |u〉 for
spin up with eigenvalue +1 and |d〉 for spin down with eigenvalue−1. [See Figures 1 and 2
associated with the state space corresponding to |u〉 in the σz basis.] The transformations
relating various pure states on the sphere are continuously reversible, so that in going from
a pure state to a pure state, one always passes through other pure states. This is distinctly
different from the reversibility axiom between pure states for classical probability theory’s
fundamental unit of information, the classical bit, as noted above above by Koberinski and
Müller [23].



Entropy 2022, 24, 12 6 of 17

Figure 1. Probability state space for the qubit |u〉 in the z basis. Since this state space is isomorphic to
3-dimensional real space, the Bloch sphere is shown in a real space reference frame with its related
Stern-Gerlach (SG) magnet orientations (see Knight ([59], p. 1307) for an explanation of the SG
experiment). The probability is given for a +1 outcome at the measurement direction shown [55].
Compare this with Figure 2.

Figure 2. In this set up, the first SG magnets (oriented at ẑ) are being used to produce an initial state
|ψ〉 = |u〉 for measurement by the second SG magnets (oriented at b̂). Compare this with Figure 1.

In classical probability theory, the only continuous way to get from one pure discrete
state for a classical bit to the other pure state is through mixed states. For example, suppose
we place a single ball in one of two boxes labeled 1 and 2 with probabilities p1 and p2,

respectively. The probability state is given by the vector~p =

(
p1
p2

)
. When normalized, we

have ~p =

(
p1

1− p1

)
, which can be represented by a line segment in the plane connecting(

1
0

)
and

(
0
1

)
(Figure 3). We see here that reversibility of pure states is discrete, i.e.,

accomplished via permutation [4].
Notice that the state space for the classical bit is 1-dimensional and represented by a

2× 1 matrix, while that for the qubit is 3-dimensional and represented by a 2× 2 matrix. In
general, the dimension of the probability space for the generalized bit (gbit) of a general
probability theory is d = 2s − 1 with s = 1, 2, 3, . . . and the gbit is represented by a
2× 2× . . . × 2 tensor (d equals the number of 2’s) [60]. Having seen the fundamental
difference between classical probability theory and quantum probability theory per their
fundamental units of information, we now review how higher-dimensional Hermitian
operators in Hilbert space are related to the qubit.



Entropy 2022, 24, 12 7 of 17

p1 1
|1〉

p2

1

|2〉

p

Figure 3. Probability state space for the classical bit.

The structure of the qubit is important because any higher-dimensional Hermitian
matrix with the same eigenvalues can be constructed via SU(2) and the qubit from the
diagonal version, as explained by Hardy [4]. For example, suppose you want to construct

the Lx measurement operator with eigenvalues +1, 0,−1 in the Lz eigenbasis |u〉 =

 1
0
0

,

|0〉 =

 0
1
0

, |d〉 =

 0
0
1

. You simply use the SU(2) transformation eiΘσx sequentially,

first about the |d〉 axis with Θ = 90◦, then about the post transformed |u〉 axis with
Θ = 45◦, finally about the post transformed |0〉 axis with Θ = −45◦. That generates

Lx =
1√
2

 0 1 0
1 0 1
0 1 0

 from Lz =

 1 0 0
0 0 0
0 0 −1

. To obtain the third member of

the mutually complementary measurements, Ly, simply use the SU(2) transformation eiΘσx

about the |d〉 axis with Θ = −90◦, then again use the SU(2) transformation eiΘσx about the
post transformed |u〉 axis with Θ = 45◦, finally use the SU(2) transformation eiΘσy about

the post transformed |0〉 axis with Θ = 45◦. That generates Ly =
1√
2

 0 − i 0
i 0 −i
0 i 0


from Lz, giving the algebra of mutually complementary measurements [Lx, Ly] = iLz,
cyclic. In this example, the Pauli matrices (σx, σy, σz) are clearly visible in the matrices
(Lx, Ly, Lz), respectively. The completion of the reconstruction uses the tensor product
⊗ to add particles for any given dimension in accord with the “Locality” axiom [9] and
the relevant dynamical transformation of the state for the Schrödinger equation [4]. [For
more information on this mathematical structure and its extension to the probability states
for a continuous random variable see [54].] However, we do not need to proceed further
in the reconstruction process, as we have what we need to show the reconstruction of
QM via Information Invariance and Continuity maps to NPRF giving rise to the invariant
measurement of h in spacetime.

To summarize, we see that the reconstruction of QM builds the denumerable-dimensional
Hilbert space structure of QM foundationally upon a fundamental 2D object, the qubit. The
difference between classical probability and quantum probability then resides in the fact
that a pure state can be transformed into another pure state through other pure states in
continuous fashion for the qubit, while that is not possible for the classical bit. Of course,
this continuously reversible transformation property would also hold for a gbit with s > 2,
so why does Nature prefer the qubit?

In order to argue for the qubit from the gbit, Masanes et al. employed “Continuous
Reversibility, Tomographic Locality and Existence of an Information Unit, No Simultaneous
Encoding, All Effects Are Observable, and Gbits Can Interact” [19,48]. In other words,
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arguing for the qubit while keeping to the very general information-theoretic principles is
highly non-trivial. Dakic and Brukner presented an argument based on their “closeness
requirement: the dynamics of a single elementary system can be generated by the invariant
interaction between the system and a ‘macroscopic transformation device’ that is itself
described within the theory in the macroscopic (classical) limit” [41,42]. This is due to the
fact that the measuring devices used to measure quantum systems are themselves made
from quantum systems. For example, the classical magnetic field of an SG magnet is used
to measure the spin of spin- 1

2 particles and that classical magnetic field “can be seen as a
limit of a large coherent state, where a large number of spin- 1

2 particles are all prepared in
the same quantum state” [61].

Per Brukner and Zeilinger [8,55], if we identify the preparation state |ψ〉 = |u〉 at ẑ with
the reference frame of mutually complementary spin measurements [Jx, Jy, Jz] (Ji =

h̄
2 σi),

then the closeness requirement means our reference frame of mutually complementary
measurements is [x̂, ŷ, ẑ] in real space. Thus, they depict the Bloch sphere in that real
space reference frame with associated SG magnet orientations a la Figure 1 [55]. Unless
otherwise noted, we also make this association throughout, so that “the reference frame
of a complete set of mutually complementary measurements” is simply “the reference
frame”. While it may prove necessary to consider generalizations of QM that require
higher-dimensional space in order to produce a theory of quantum gravity [41,62], the
reconstruction of QM clearly shows that one may consider the qubit to reside at the
foundation of the denumerable-dimensional Hilbert space structure of QM. Additionally,
as we will now see, the qubit structure already reveals a role for the relativity principle at
the foundation of QM.

Again, by “relativity principle” we mean “The laws of physics must be the same
in all inertial reference frames”, aka NPRF. In SR, we are concerned with the fact that
everyone measures the same speed light c, regardless of their motion relative to the source
(light postulate). Here the inertial reference frames are characterized by motion at constant
velocity relative to the source and different reference frames are related by Lorentz boosts.
Since c is a constant of Nature per Maxwell’s equations, NPRF implies the light postulate
(or “NPRF + c” for short) [44,59]. Thus, we see that NPRF + c resides at the foundation
of SR.

Likewise, we have seen that different 2D Hilbert space measurement operators with
the same outcomes are related by SU(2) transformations and that SU(2) transformations in
Hilbert space map to SO(3) rotations between different reference frames in 3-dimensional
real space (Information Invariance and Continuity). In information-theoretic terms, the
total knowledge one has about the elementary system must be independent of how they
choose to represent that knowledge [8]. Since spatial rotations, like Lorentz boosts, relate
inertial reference frames, the information-theoretic qubit structure reveals a role for NPRF
at the foundation of QM.

Since we have so far only reviewed the very general structure of the qubit per
information-theoretic principles, we do not as yet have a fundamental constant of Na-
ture in play. However, we can already see that the qubit implies a role for the relativity
principle (NPRF) in QM. To complete our analogy with SR and its NPRF + c, we need
to relate all of this to the fundamental constant of Nature at the foundation of QM, i.e.,
Planck’s constant h.

3. Planck’s Constant and Spin

Planck introduced h in his explanation of blackbody radiation and we now understand
that electromagnetic radiation with frequency f is comprised of indivisible quanta (photons)
of energy h f . One difference between the classical view of a continuous electromagnetic
field and the quantum reality of photons is manifested in polarization measurements.
According to classical electromagnetism, there is no non-zero lower limit to the energy of
polarized electromagnetic radiation that can be transmitted by a polarizing filter. However,
given that the radiation is actually composed of indivisible photons, there is a non-zero
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lower limit to the energy passed by a polarizing filter, i.e., each quantum of energy h f either
passes or it does not. Thus, we understand that the classical “expectation” of fractional
amounts of quanta can only obtain on average per the quantum reality, so we expect the
corresponding quantum theory will be probabilistic. In information-theoretic terms, a
system is composed fundamentally of discrete units of finite information (the qubit). Since
the qubit contains finite information, it cannot contain enough information to account for
the outcomes of every possible measurement done on it. Thus, a theory of qubits must
be probabilistic [61,63,64]. Of course, the relationship between classical and quantum
mechanics per its expectation values is another textbook result, e.g., the Ehrenfest theorem.

The fact that classical results are obtained from quantum results for h→ 0 is common
knowledge. In information-theoretic terms, h represents “a universal limit on how much
simultaneous information is accessible to an observer” [17]. For example, [X, P] = ih̄ means
there is a trade-off between what one can know simultaneously about the position and
momentum of a quantum system. If h = 0, as in classical mechanics, there is no such limit
to this simultaneous knowledge. For spin- 1

2 measurements Ji, we have [Jx, Jy] = ih̄Jz, cyclic.
Therefore, we see that h 6= 0 in this case corresponds to the existence of a set of mutually
complementary spin measurements associated with the reference frame shown in Figure 1
(more on this in Section 5).

Given that h is a constant of Nature, NPRF dictates that everyone measure the same
value for it (“Planck postulate” in analogy with the light postulate) and the measurement
of spin via SG magnets constitutes a measurement of h [65]. Again, the ±1 eigenvalues
of the Pauli matrices correspond to ± h̄

2 for spin- 1
2 measurement outcomes. Thus, the

general result from Information Invariance and Continuity concerning the SO(3) invariance
of measurement outcomes for a qubit implies NPRF + h (relativity principle → Planck
postulate) for QM in total analogy to NPRF + c (relativity principle→ light postulate) for
SR. One consequence of the continuously reversible movement of one qubit state to another
when referring to an SG spin measurement is “average-only” projection.

Suppose we create a preparation state oriented along the positive z axis as in Figure 1,
i.e., |ψ〉 = |u〉, so that our “intrinsic” angular momentum is ~S = +1ẑ (in units of h̄

2 = 1).
Now proceed to make a measurement with the SG magnets oriented at b̂ making an angle θ
with respect to ẑ (Figure 2). According to the constructive account of classical physics [59,66]
(Figure 4), we expect to measure ~S · b̂ = cos (θ) (Figure 5), but we cannot measure anything
other than ±1 due to NPRF (contra the prediction by classical physics). As a consequence,
we can only recover cos (θ) on average, i.e., NPRF dictates “average-only” projection

(+1)P(+1 | θ) + (−1)P(−1 | θ) = cos(θ) (3)

Of course, this is precisely 〈σ〉 per QM. Equation (3) with our normalization condition
P(+1 | θ) + P(−1 | θ) = 1 then gives

P(+1 | θ) = cos2
(

θ

2

)
(4)

and

P(−1 | θ) = sin2
(

θ

2

)
(5)

again, precisely in accord with QM. If we identify the preparation state |ψ〉 = |u〉 at ẑ with
the reference frame of mutually complementary spin measurements [Jx, Jy, Jz], then the SG
measurement at b̂ constitutes a reference frame of mutually complementary measurements
rotated by θ in real space relative to the reference frame of the preparation state (Figure 6).
Thus, “average-only” projection follows from Information Invariance and Continuity when
applied to SG measurements in real space.
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Figure 4. The classical constructive model of the Stern-Gerlach (SG) experiment. If the atoms
enter with random orientations of their “intrinsic” magnetic moments (due to their “intrinsic” an-
gular momenta), the SG magnets should produce all possible deflections, not just the two that are
observed [59,66].

Figure 5. The “intrinsic” angular momentum of Bob’s particle ~S projected along his measurement
direction b̂. This does not happen with spin angular momentum due to NPRF.

Figure 6. State space for a qubit showing two reference frames of mutually complementary SG spin
measurements [55].
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The fact that one obtains ±1 outcomes at some SG magnet orientation is not myste-
rious per se, it can be accounted for by the classical constructive model in Figure 4. The
constructive account of the ±1 outcomes would be one of particles with “intrinsic” angular
momenta and therefore “intrinsic” magnetic moments [59] orientated in two opposite
directions in space, parallel or anti-parallel to the magnetic field. Given this constructive
account of the ±1 outcomes at this particular SG magnet orientation, we would then expect
that the varying orientation of the SG magnetic field with respect to the magnetic moments,
created as we rotate our SG magnets, would cause the degree of deflection to vary. Indeed,
this is precisely the constructive account that led some physicists to expect all possible
deflections for the particles as they passed through the SG magnets, having assumed that
these particles would be entering the SG magnetic field with random orientations of their
“intrinsic” magnetic moments [66] (Figure 4). However, according to this constructive ac-
count, if the ±1 outcomes constitute a measurement of h in accord with the rest of quantum
physics, then our rotated orientations would not be giving us the value for h required by
quantum physics otherwise. Indeed, a rotation of 90◦ would yield absolutely no deflection
at all (akin to measuring the speed of a light wave as zero when moving through the
aether at speed c). That would mean our original SG magnet orientation would constitute
a preferred frame in violation of the relativity principle, NPRF. Essentially, as Michelson
and Morley rotated their interferometer the constructive model predicted they would see a
change in the interference pattern [67], but instead they saw no change in the interference
pattern in accord with NPRF. Likewise, as Stern and Gerlach rotated their magnets the
constructive model predicted they would see a change in the deflection pattern, but instead
they saw no change in the deflection pattern in accord with NPRF. We next review what
this “average-only” projection per NPRF + h (or more generally, per Information Invariance
and Continuity) tells us about entanglement via the Bell states.

4. Implication for Entanglement via the Bell States

Since the qubit forms the foundation of all (finite) denumerable-dimensional QM built
in composite fashion, the most fundamental entangled states are the Bell states given by

|ψ−〉 = |u〉⊗|d〉 −|d〉⊗|u〉√
2

|ψ+〉 = |u〉⊗|d〉+|d〉⊗|u〉√
2

(6)

|φ−〉 = |u〉⊗|u〉 −|d〉⊗|d〉√
2

|φ+〉 = |u〉⊗|u〉+|d〉⊗|d〉√
2

in the σz eigenbasis. These correspond to the following density matrices

ρSing = |ψ−〉〈ψ−| =
(

I − σx ⊗ σx − σy ⊗ σy − σz ⊗ σz
)
/4

ρTripZ = |ψ+〉〈ψ+| =
(

I + σx ⊗ σx + σy ⊗ σy − σz ⊗ σz
)
/4 (7)

ρTripX = |φ−〉〈φ−| =
(

I − σx ⊗ σx + σy ⊗ σy + σz ⊗ σz
)
/4

ρTripY = |φ+〉〈φ+| =
(

I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz
)
/4

As always, Alice and Bob are making their measurements on each of the two Bell state
particles. If Alice makes her spin measurement σ1 with her SG magnets oriented in the â
direction and Bob makes his spin measurement σ2 with his SG magnets oriented in the b̂
direction, then

σ1 = â ·~σ = axσx + ayσy + azσz

σ2 = b̂ ·~σ = bxσx + byσy + bzσz (8)
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The first state |ψ−〉 is called the “singlet state” and it is invariant under any of the
SU(2) transformations eiΘσx , eiΘσy , or eiΘσz , corresponding to rotations of the SG magnets
about the x, y, or z axes, respectively (for computational details applicable to this section
see [57,58]). This fact aligns with the signature of ρSing in Equation (7). |ψ−〉 represents a total
conserved spin angular momentum of zero (S = 0) for the two particles involved, i.e., Alice
and Bob always obtain opposite outcomes (ud or du) when making the same measurement.
The other three states are called the “triplet states” and they are invariant under the SU(2)
transformations eiΘσz , eiΘσx , and eiΘσy , respectively. Again, note the correspondence with
the signatures in Equation (7), respectively. They represent a total conserved spin angular
momentum of one (S = 1, in units of h̄ = 1) in each of the spatial planes xy (|ψ+〉), yz
(|φ−〉), and xz (|φ+〉). [To see this for |ψ+〉, you have to transform the state to either the
σx or σy eigenbasis where it has the same form as |φ−〉 or |φ+〉, respectively [57].] Thus,
Alice and Bob always obtain the same outcomes (uu or dd) when measuring at the same
angle in the symmetry plane of the relevant triplet state, i.e., when they share the same
reference frame. In all four cases, the entanglement represents the conservation of spin
angular momentum for the process creating the state.

Suppose Alice and Bob are making measurements on their particles in the symmetry
plane of a triplet state such that â · b̂ = cos (θ). Partition the data according to Alice’s
equivalence relation (her ±1 outcomes) and look at her +1 outcomes. Since we know Bob
would have also measured +1 if θ had been zero (i.e., if Bob was in the same reference
frame), we have exactly the same classical expectation depicted in Figures 2 and 5 for the
single qubit measurement, i.e.,

2P(+1,+1 | θ)(+1) + 2P(+1,−1 | θ)(−1) = cos(θ) (9)

NPRF also requires that Alice and Bob each observe +1 half of the time and −1 half of the
time, and that P(−1,+1 | θ) = P(+1,−1 | θ), so we have

P(+1,+1 | θ) + P(+1,−1 | θ) =
1
2

P(+1,−1 | θ) + P(−1,−1 | θ) =
1
2

(10)

We can now solve these for the joint probabilities

P(+1,+1 | θ) = P(−1,−1 | θ) =
1
2

cos2
(

θ

2

)
(11)

and

P(+1,−1 | θ) = P(−1,+1 | θ) =
1
2

sin2
(

θ

2

)
(12)

in accord with QM.
In other words, while spin angular momentum is conserved exactly when Alice and

Bob are making measurements in the same reference frame, it is conserved only on average
when they are making measurements in different reference frames (related by SO(3) as
shown in Figure 6). This “surprising” result is a direct consequence of NPRF + h, exactly as
length contraction and time dilation are a direct consequence of NPRF + c. We could also
partition the data according to Bob’s equivalence relation (his ±1 results), so that it is Bob
who claims Alice must average her results to satisfy “average-only” conservation. This is
totally analogous to the relativity of simultaneity in SR. There, Alice partitions spacetime
per her equivalence relation (her surfaces of simultaneity) and says Bob’s meter sticks are
short and his clocks run slow, while Bob can say the same thing about Alice’s meter sticks
and clocks per his surfaces of simultaneity.



Entropy 2022, 24, 12 13 of 17

Of course, there is nothing unique about SG spin measurements, except that they can
be considered direct measurements of h. The more general instantiation of NPRF per Infor-
mation Invariance and Continuity described in Section 2 applies to any qubit. Therefore, for
example, if we are again talking about photons passing or not passing through a polarizing
filter, we would have “average-only” transmission for photons instead of “average-only”
projection for spin- 1

2 particles, both of which give “average-only” conservation of spin
angular momentum between the reference frames of different mutually complementary
measurements. Therefore, most generally, the information-theoretic principle of Informa-
tion Invariance and Continuity leads to “average-only” (fill in the blank) giving
“average-only” conservation of the measured quantity for its Bell states.

We should point out that the trial-by-trial outcomes for this “average-only” conser-
vation can deviate substantially from the target value required for explicit conservation
per Alice or Bob’s reference frame. For example, we might have Bob’s +1 and −1 out-
comes averaging to zero as required for the conservation of spin angular momentum per
Alice’s reference frame. Thus, Alice says Bob’s measurement outcomes are violating the
conservation of spin angular momentum as egregiously as possible on a trial-by-trial basis.
However, from the perspective of Bob’s reference frame, it is Alice’s +1 and −1 outcomes
averaging to zero that violate the conservation of spin angular momentum as egregiously as
possible on a trial-by-trial basis. In classical physics, our conservation laws hold on average
because they hold explicitly for each and every trial of the experiment (within experimental
limits). But here, that would require a preferred reference frame. Thus, “average-only”
conservation distinguishes classical mechanics and QM just as the relativity of simultaneity
distinguishes Newtonian mechanics and SR. Consequently, we see that “average-only”
conservation does not resolve the mystery of quantum entanglement, it is the mystery, i.e.,
it is what needs to be explained.

What we have seen here is that we can explain “average-only” conservation as con-
servation that results necessarily from Information Invariance and Continuity, which is
conservation per NPRF in spacetime, precisely as the relativity of simultaneity results
necessarily from NPRF + c. Of course, this then explains why quantum joint probabilities
for the Bell states violate the Clauser–Horne–Shimony–Holt (CHSH) inequality precisely to
the Tsirelson bound [56,68–70]. That fact obtains because the quantum joint probabilities
for the Bell states are precisely those that satisfy conservation in accord with NPRF. In
contrast, classical probability theory would satisfy the CHSH inequality by requiring a
preferred reference frame, thereby violating the invariant measurement of a fundamental
constant of Nature h. Thus, the reconstructions of QM reveal the relativity principle at
the foundation of QM precisely as it exists at the foundation of SR, i.e., demanding the
invariant measurement of a fundamental constant of Nature.

5. Conclusions

Quantum information theorists have a produced a principle account of denumerable-
dimensional QM whereby “quantum reality” is characterized most succinctly by the
information-theoretic principle of Information Invariance and Continuity. Accordingly,
reality is composed fundamentally of discrete bits of irreducible, finite information that can
be instantiated and measured physically in 3-dimensional space by measurement devices
which are themselves composed of such bits (“closeness requirement”). For the Bloch
sphere, Information Invariance and Continuity reflects the fact that it is always possible to
create a path from one pure state to another by passing through pure states only, i.e., the
surface of the Bloch sphere is composed of pure states. This is quite a “surprising” fact from
the point of view of classical probability theory, where the only path in probability state
space between pure states is through mixed states with lower information content. The
higher-dimensional and multi-particle Hilbert space structure of QM can all be built from
this fundamental, “surprising” qubit structure characterized by Information Invariance
and Continuity.
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To help clarify the significance of this information-theoretic result, we applied it to
the Stern-Gerlach (SG) measurements of a spin- 1

2 particle. In that case, the Pauli matrices
are used to represent spin- 1

2 measurements Ji = h̄
2 σi with [Jx, Jy] = ih̄Jz, cyclic, which

are responsible for the reference frames associated with complete sets of mutually com-
plementary spin measurements. Information Invariance and Continuity means the spin
measurement operators are related by SU(2) in Hilbert space, which means the correspond-
ing reference frames are related by SO(3) in real space. Thus, invariance of the eigenvalues
under SU(2) means invariance of measurement outcomes in real space under SO(3), which
is a transformation subgroup of both the Lorentz and Galilean transformation groups
between inertial reference frames. Since SG spin measurements constitute a measurement
of Planck’s constant h, Information Invariance and Continuity entails NPRF + h in exact
analogy to NPRF giving rise to the invariant measurement of the speed of light c at the
foundation of SR. Of course, it must be the case that NPRF + h is responsible for the
non-commutative algebra of the spin measurement operators to begin with.

To see that, suppose |ψ〉 = |u〉 along ẑ. Then classically, we know the exact measure-
ment outcome along b̂ will be b̂ · ẑ = cos θ. In other words, the measurement outcome in
one reference frame (+1 in the ẑ frame) determines the exact measurement outcome in
another reference frame (cos θ in the b̂ frame) in the classical case. However, this violates
NPRF because there is only one reference frame with the “right” eigenvalue (+1 in the
ẑ frame) and therefore only one frame that measures the correct value for h. So in the
classical case, the different measurement operators commute, e.g., [Jx, Jy] = 0. In contrast,
NPRF (and Information Invariance and Continuity) says we must obtain ±1 along b̂ just
like any other direction. Thus, NPRF does not allow us to deduce the exact measurement
outcome in the b̂ reference frame using our +1 measurement outcome in the ẑ reference
frame. Again, this is what Brukner and Zeilinger meant when they said the qubit does not
contain enough information to account for the outcomes of every possible measurement
done on it, so a theory of qubits must be probabilistic [61,63,64]. Thus in the quantum case,
the different measurement operators do not commute, i.e., [Jx, Jy] = ih̄Jz. Again, just like
elsewhere in QM, letting Planck’s constant go to zero recovers classical physics. Here we
see that NPRF + h is responsible for the non-commutative algebraic structure of QM, in
contrast to the commutative algebraic structure of classical mechanics.

Since NPRF (and Information Invariance and Continuity) requires we obtain ±1 along
b̂ just like any other direction, the classically expected result of b̂ · ẑ = cos θ can obtain only
on average. Thus, NPRF + h gives us “average-only” projection for measurement outcomes
in different reference frames. When applied to Bell state entanglement, we showed that
“average-only” projection for one particle leads to “average-only” conservation between
two entangled particles in different reference frames. Thus, according to the reconstruc-
tions of QM, the mysterious “average-only” conservation of Bell state entanglement, and
therefore the Tsirelson bound, follow from conservation per Information Invariance and
Continuity, which is conservation per NPRF in spacetime. How conservation per Infor-
mation Invariance and Continuity bears on other information-theoretic phenomena, e.g.,
macroscopic entanglement witnesses [71–73], is left for future work.

Whether or not one believes principle accounts are explanatory is irrelevant here. No
one disputes what the postulates of SR are telling us about Nature, even though there is
still today no (consensus) constructive account of time dilation and length contraction, i.e.,
there is no “interpretation” of SR. While Lorentz complained ([74], p. 230):

Einstein simply postulates what we have deduced, with some difficulty and
not altogether satisfactorily, from the fundamental equations of the electromag-
netic field.

he nonetheless acknowledged ([74], p. 230):

By doing so, [Einstein] may certainly take credit for making us see in the negative
result of experiments like those of Michelson, Rayleigh, and Brace, not a fortu-
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itous compensation of opposing effects but the manifestation of a general and
fundamental principle.

We have shown how the principle of Information Invariance and Continuity at the basis
of axiomatic reconstructions of QM provides an understanding of the qubit and Bell state
entanglement that is every bit the equal of Einstein’s postulates of SR for understanding
time dilation and length contraction. Thus, it is no longer true that “nobody understands
quantum mechanics” unless it is also true that nobody understands special relativity. Very
few physicists would make that claim.

Author Contributions: Conceptualization, W.S. and M.S.; formal analysis, W.S. and T.M.; writing—
original draft preparation, W.S.; writing—review and editing, W.S., T.M. and M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feynman, R. The Character of Physical Law. 1964. Available online: https://www.facebook.com/watch/?v=967586087044967

(accessed on 11 November 2021).
2. Wolpert, L. The Unnatural Nature of Science; Harvard University Press: Cambridge, MA, USA, 1993; p. 144.
3. Drummond, B. Understanding quantum mechanics: A review and synthesis in precise language. Open Phys. 2019, 17, 390–437.

[CrossRef]
4. Hardy, L. Quantum Theory From Five Reasonable Axioms. arXiv 2001, arXiv:quant-ph/0101012.
5. Fuchs, C. Quantum Mechanics as Quantum Information (and only a little more). arXiv 2002, arXiv:quant-ph/0205039.
6. Galindo, A.; Martín-Delgado, M. Information and computation: Classical and quantum aspects. Rev. Mod. Phys. 2002, 74, 347–423.

[CrossRef]
7. Barrett, J. Information processing in generalized probabilistic theories. Phys. Rev. Lett. 2007, 75, 032304. [CrossRef]
8. Brukner, C.; Zeilinger, A. Information Invariance and Quantum Probabilities. Found. Phys. 2009, 39, 677. [CrossRef]
9. Dakic, B.; Brukner, C. Quantum Theory and Beyond: Is Entanglement Special? In Deep Beauty: Understanding the Quantum World

through Mathematical Innovation; Halvorson, H., Ed.; Cambridge University Press: Cambridge, MA, USA, 2009; pp. 365–392.
10. Masanes, L.; Müller, M. A derivation of quantum theory from physical requirements. New J. Phys. 2011, 13, 063001. [CrossRef]
11. Chiribella, G.; D’Ariano, G.; Perinotti, P. Informational derivation of Quantum Theory. Phys. Rev. A 2011, 84, 012311. [CrossRef]
12. Hardy, L. Reformulating and Reconstructing Quantum Theory. arXiv 2011, arXiv:1104.2066.
13. Hardy, L. Reconstructing Quantum Theory. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R.,

Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 223–248.
14. Goyal, P. From Information Geometry to Quantum Theory. New J. Phys. 2010, 12, 023012. [CrossRef]
15. Kochen, S. A Reconstruction of Quantum Mechanics. Found. Phys. 2015, 45, 557–590. [CrossRef]
16. Oeckl, R. A first-principles approach to physics based on locality and operationalism. Proc. Sci. 2016, FFP14, 171.
17. Höhn, P. Toolbox for reconstructing quantum theory from rules on information acquisition. Quantum 2017, 1, 38. [CrossRef]
18. Höhn, P.; Wever, C. Quantum theory from questions. Phys. Rev. A 2017, 95, 012102. [CrossRef]
19. Masanes, L.; Müller, M.; Augusiak, R.; Perez-Garcia, D. Existence of an information unit as a postulate of quantum theory. Proc.

Natl. Acad. Sci. USA 2013, 110, 16373. [CrossRef]
20. de la Torre, G.; Masanes, L.; Short, A.; Müller, M. Deriving quantum theory from its local structure and reversibility. Phys. Rev.

Lett. 2012, 109, 090403. [CrossRef]
21. Fivel, D. Derivation of the Rules of Quantum Mechanics from Information-Theoretic Axioms. Found. Phys. 2012, 42, 291–318.

[CrossRef]
22. Barnum, H.; Müller, M.; Ududec, C. Higher-order interference and single-system postulates characterizing quantum theory. New

J. Phys. 2014, 16, 12302. [CrossRef]
23. Koberinski, A.; Müller, M. Quantum Theory as a Principle Theory: Insights from an Information-Theoretic Reconstruction. In

Physical Perspectives on Computation, Computational Perspectives on Physics; Cuffaro, M., Fletcher, S., Eds.; Cambridge University
Press: Cambridge, MA, USA, 2018; pp. 257–280.

24. Jaeger, G. Information and the Reconstruction of Quantum Physics. Ann. Pysik 2018, 531, 1800097. [CrossRef]
25. Bub, J. Quantum Mechanics as a Principle Theory. Stud. Hist. Philos. Mod. Phys. 1999, 31, 75–94. [CrossRef]
26. Van Camp, W. Principle Theories, Constructive Theories, and Explanation in Modern Physics. Stud. Hist. Philos. Sci. Part B Stud.

Hist. Philos. Mod. Phys. 2011, 42, 23–31. [CrossRef]
27. Felline, L. Quantum Theory is Not Only About Information. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2018,

1355–2198. [CrossRef]
28. Bell, J. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, MA, USA, 1987.

https://www.facebook.com/watch/?v=967586087044967
http://doi.org/10.1515/phys-2019-0045
http://dx.doi.org/10.1103/RevModPhys.74.347
http://dx.doi.org/10.1103/PhysRevA.75.032304
http://dx.doi.org/10.1007/s10701-009-9316-7
http://dx.doi.org/10.1088/1367-2630/13/6/063001
http://dx.doi.org/10.1103/PhysRevA.84.012311
http://dx.doi.org/10.1088/1367-2630/12/2/023012
http://dx.doi.org/10.1007/s10701-015-9886-5
http://dx.doi.org/10.22331/q-2017-12-14-38
http://dx.doi.org/10.1103/PhysRevA.95.012102
http://dx.doi.org/10.1073/pnas.1304884110
http://dx.doi.org/10.1103/PhysRevLett.109.090403
http://dx.doi.org/10.1007/s10701-011-9603-y
http://dx.doi.org/10.1088/1367-2630/16/12/123029
http://dx.doi.org/10.1002/andp.201800097
http://dx.doi.org/10.1016/S1355-2198(99)00032-5
http://dx.doi.org/10.1016/j.shpsb.2010.12.002
http://dx.doi.org/10.1016/j.shpsb.2018.03.003


Entropy 2022, 24, 12 16 of 17

29. Mamone-Capria, M. On the Incompatibility of Special Relativity and Quantum Mechanics. J. Found. Appl. Phys. 2018, 8, 163–189.
30. Alford, M. Ghostly action at a distance: A non-technical explanation of the Bell inequality. Am. J. Phys. 2016, 84, 448–457.

[CrossRef]
31. Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379–385. [CrossRef]
32. Bub, J. ‘Two Dogmas’ Redux. In Quantum, Probability, Logic: The Work and Influence of Itamar Pitowsky; Hemmo, M., Shenker, O.,

Eds.; Springer Nature: London, UK, 2020; pp. 199–215.
33. Brukner, C. Quantum Reference Frames and Spacetime. 2021. Available online: https://www.iqoqi-vienna.at/research/brukner-

group/quantum-reference-frames-and-spacetime (accessed on 11 November 2021).
34. Mikusch, M.; Barbado, L.; Brukner, C. Transformation of Spin in Quantum Reference Frames. arXiv 2021, arXiv:2103.05022.
35. Streiter, L.; Giacomini, F.; Brukner, C. Relativistic Bell Test within Quantum Reference Frames. Phys. Rev. Lett. 2021, 126, 230403.

[CrossRef] [PubMed]
36. Lamata, L.; Martin-Delgado, M.; Solano, E. Relativity and Lorentz Invariance of Entanglement Distillability. Phys. Rev. Lett. 2006,

97, 250502. [CrossRef]
37. Davis, M. A relativity principle in quantum mechanics. Int. J. Theor. Phys. 1977, 16, 867–874. [CrossRef]
38. Dragan, A.; Ekert, A. Quantum principle of relativity. New J. Phys. 2020, 22, 033038. [CrossRef]
39. Garner, A.; Müller, M.; Dahlsten, O. The complex and quaternionic quantum bit from relativity of simultaneity on an interferome-

ter. Proc. R. Soc. A 2017, 473, 20170596. [CrossRef] [PubMed]
40. Arraut, I. The solution to the Hardy’s paradox. arXiv 2021, arXiv:2106.06397.
41. Dakic, B.; Brukner, C. The classical limit of a physical theory and the dimensionality of space. In Quantum Theory: Informational

Foundations and Foils; Chiribella, G., Spekkens, R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 249–282.
42. Dakic, B. Operational Reconstruction of Quantum Theory. 2021. Available online: https://dakic.univie.ac.at/research/

operational-reconstruction-of-quantum-theory/ (accessed on 11 November 2021).
43. Norton, J.D. Einstein’s Special Theory of Relativity and the Problems in the Electrodynamics of Moving Bodies That Led Him

to It. In The Cambridge Companion to Einstein; Janssen, M., Lehner, C., Eds.; Cambridge Companions to Philosophy, Cambridge
University Press: Cambridge, MA, USA, 2014; pp. 72–102. [CrossRef]

44. Serway, R.; Jewett, J. Physics for Scientists and Engineers with Modern Physics; Cengage: Boston, MA, USA, 2019; p. 1080.
45. Moylan, P. The Galilean Transformation, Velocity Reciprocity and the Relativity Principle. Am. J. Phys. 2021, to appear.
46. Fuchs, C.; Stacey, B. Some Negative Remarks on Operational Approaches to Quantum Theory. In Quantum Theory: Informational

Foundations and Foils; Chiribella, G., Spekkens, R., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 283–305.
47. Chiribella, G.; Spekkens, R. Introduction. In Quantum Theory: Informational Foundations and Foils; Chiribella, G., Spekkens, R., Eds.;

Springer: Dordrecht, The Netherlands, 2016; pp. 1–18.
48. Müller, M. Reconstructions of Quantum Theory. 2021. Available online: https://www.iqoqi-vienna.at/research/mueller-group/

reconstructions-of-quantum-theory (accessed on 11 November 2021).
49. Brown, H.; Timpson, C. Why special relativity should not be a template for a fundamental reformulation of quantum mechanics.

In Physical Theory and Its Interpretation: Essays in Honor of Jeffrey Bub; Demopoulos, W., Pitowsky, I., Eds.; Springer: Dordrecht,
The Netherlands, 2006; pp. 29–41.

50. Einstein, A. What is the Theory of Relativity? London Times, 28 November 1919.
51. Bell, J. Indeterminism and Nonlocality. In Mathematical Undecidability, Quantum Nonlocality and the Question of the Existence

of God; Driessen, A., Suarez, A., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 78–89. Available online: https:
//philarchive.org/archive/DRIMUQ (accessed on 11 November 2021).

52. Einstein, A. Autobiographical Notes. In Albert Einstein: Philosopher-Scientist; Schilpp, P.A., Ed.; Open Court: La Salle, IL, USA,
1949; pp. 3–94.

53. Müller, M. Probabilistic Theories and Reconstructions of Quantum Theory (Les Houches 2019 lecture notes). SciPost Phys. Lect.
Notes 2021, 28. [CrossRef]

54. Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [CrossRef]
55. Brukner, C.; Zeilinger, A. Information and fundamental elements of the structure of quantum theory. In Time, Quantum,

Information; Castell, L., Ischebeckr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 323–354.
56. Stuckey, W.; Silberstein, M.; McDevitt, T.; Kohler, I. Why the Tsirelson Bound? Bub’s Question and Fuchs’ Desideratum. Entropy

2019, 21, 692. [CrossRef] [PubMed]
57. Stuckey, W.; Silberstein, M.; McDevitt, T.; Le, T. Answering Mermin’s Challenge with Conservation per No Preferred Reference

Frame. Sci. Rep. 2020, 10, 15771. [CrossRef]
58. Silberstein, M.; Stuckey, W.; McDevitt, T. Beyond Causal Explanation: Einstein’s Principle Not Reichenbach’s. Entropy 2021,

23, 114. [CrossRef] [PubMed]
59. Knight, R. Physics for Scientists and Engineers with Modern Physics; Pearson: San Francisco, CA, USA, 2008.
60. Paterek, T.; Dakic, B.; Brukner, C. Theories of systems with limited information content. New J. Phys. 2010, 12, 053037. [CrossRef]
61. Brukner, C. Information-Theoretic Foundations of Quantum Theory. 2021. Available online: https://www.iqoqi-vienna.at/

research/brukner-group/information-theoretic-foundations-of-quantum-theory (accessed on 11 November 2021).
62. Hardy, L. Towards Quantum Gravity: A Framework for Probabilistic Theories with Non-Fixed Causal Structure. J. Phys. A 2007,

40, 3081. [CrossRef]

http://dx.doi.org/10.1119/1.4945408
http://dx.doi.org/10.1007/BF02058098
https://www.iqoqi-vienna.at/research/brukner-group/quantum-reference-frames-and-spacetime
https://www.iqoqi-vienna.at/research/brukner-group/quantum-reference-frames-and-spacetime
http://dx.doi.org/10.1103/PhysRevLett.126.230403
http://www.ncbi.nlm.nih.gov/pubmed/34170182
http://dx.doi.org/10.1103/PhysRevLett.97.250502
http://dx.doi.org/10.1007/BF01807619
http://dx.doi.org/10.1088/1367-2630/ab76f7
http://dx.doi.org/10.1098/rspa.2017.0596
http://www.ncbi.nlm.nih.gov/pubmed/29290735
https://dakic.univie.ac.at/research/operational-reconstruction-of-quantum-theory/
https://dakic.univie.ac.at/research/operational-reconstruction-of-quantum-theory/
http://dx.doi.org/10.1017/CCO9781139024525.004
https://www.iqoqi-vienna.at/research/mueller-group/reconstructions-of-quantum-theory
https://www.iqoqi-vienna.at/research/mueller-group/reconstructions-of-quantum-theory
https://philarchive.org/archive/DRIMUQ
https://philarchive.org/archive/DRIMUQ
http://dx.doi.org/10.21468/SciPostPhysLectNotes.28
http://dx.doi.org/10.3390/e23050549
http://dx.doi.org/10.3390/e21070692
http://www.ncbi.nlm.nih.gov/pubmed/33267406
http://dx.doi.org/10.1038/s41598-020-72817-7
http://dx.doi.org/10.3390/e23010114
http://www.ncbi.nlm.nih.gov/pubmed/33467064
http://dx.doi.org/10.1088/1367-2630/12/5/053037
https://www.iqoqi-vienna.at/research/brukner-group/information-theoretic-foundations-of-quantum-theory
https://www.iqoqi-vienna.at/research/brukner-group/information-theoretic-foundations-of-quantum-theory
http://dx.doi.org/10.1088/1751-8113/40/12/S12


Entropy 2022, 24, 12 17 of 17

63. Zeilinger, A. A Foundational Principle for Quantum Mechanics. Found. Phys. 1999, 29, 631–6438. [CrossRef]
64. Brukner, C.; Zeilinger, A. Operationally Invariant Information in Quantum Measurements. Phys. Rev. Lett. 1999, 83, 3354–3357.

[CrossRef]
65. Weinberg, S. The Trouble with Quantum Mechanics. 2017. Available online: https://www.nybooks.com/articles/2017/01/19

/trouble-with-quantum-mechanics/ (accessed on 11 November 2021).
66. Franklin, A.; Perovic, S. Experiment in Physics: Appendix 5: Right Experiment, Wrong Theory: The Stern-Gerlach Experiment.

2019. Available online: https://plato.stanford.edu/entries/physics-experiment/app5.html (accessed on 11 November 2021).
67. Bane, D. The Mechanical Universe Episode 41: The Michelson-Morley Experiment; Albert Michelson Quote from 1931; Cal Tech:

Pasadena, CA, USA, 1985.
68. Cirel’son, B. Quantum Generalizations of Bell’s Inequality. Lett. Math. Phys. 1980, 4, 93–100. [CrossRef]
69. Landau, L. On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 1987, 120, 54–56. [CrossRef]
70. Khalfin, L.; Tsirelson, B. Quantum/Classical Correspondence in the Light of Bell’s Inequalities. Found. Phys. 1992, 22, 879–948.

[CrossRef]
71. Terhal, B. Bell inequalities and separability criterion. Phys. Lett. A 2000, 271, 319. [CrossRef]
72. Chruscinski, D.; Sarbicki, G. Entanglement witnesses: Construction, analysis and classification. J. Phys. A 2014, 47, 483001.

[CrossRef]
73. Brukner, C. Macroscopic Entanglement Witnesses. 2021. Available online: https://www.iqoqi-vienna.at/research/brukner-

group/macroscopic-entanglement-witnesses (accessed on 11 November 2021).
74. Lorentz, H. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat; G.E. Stechert and Co.: New York,

NY, USA, 1916.

http://dx.doi.org/10.1023/A:1018820410908
http://dx.doi.org/10.1103/PhysRevLett.83.3354
https://www.nybooks.com/articles/2017/01/19/trouble-with-quantum-mechanics/
https://www.nybooks.com/articles/2017/01/19/trouble-with-quantum-mechanics/
https://plato.stanford.edu/entries/physics-experiment/app5.html
http://dx.doi.org/10.1007/BF00417500
http://dx.doi.org/10.1016/0375-9601(87)90075-2
http://dx.doi.org/10.1007/BF01889686
http://dx.doi.org/10.1016/S0375-9601(00)00401-1
http://dx.doi.org/10.1088/1751-8113/47/48/483001
https://www.iqoqi-vienna.at/research/brukner-group/macroscopic-entanglement-witnesses
https://www.iqoqi-vienna.at/research/brukner-group/macroscopic-entanglement-witnesses

	Introduction
	The Qubit and NPRF
	Planck's Constant and Spin
	Implication for Entanglement via the Bell States
	Conclusions
	References

