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Abstract: A quantum phase transition (QPT) in a simple model that describes the coexistence of atoms
and diatomic molecules is studied. The model, which is briefly discussed, presents a second-order
ground state phase transition in the thermodynamic (or large particle number) limit, changing from a
molecular condensate in one phase to an equilibrium of diatomic molecules–atoms in coexistence
in the other one. The usual markers for this phase transition are the ground state energy and the
expected value of the number of atoms (alternatively, the number of molecules) in the ground state.
In this work, other markers for the QPT, such as the inverse participation ratio (IPR), and particularly,
the Rényi entropy, are analyzed and proposed as QPT markers. Both magnitudes present abrupt
changes at the critical point of the QPT.

Keywords: quantum phase transitions; exactly solvable models; inverse participation ratio; Rényi entropy

1. Introduction

The study of phase transitions in quantum systems is a topic of present interest,
usually referred to as quantum phase transitions (QPT) [1–3]. Since the seminal Gilmore
and collaborators works [4–6], there have been numerous papers characterizing QPTs
in two-level quantum systems of different dimensionalities used to model nuclear and
molecular systems, such as the interacting boson model (IBM) and the vibron model
(see [7–9] and references therein).

In connection with this, particular Hamiltonians based on algebraic structures that
are exactly solvable have been proposed, such as the Lipkin [10], the Bose-Hubbard [11],
the Jaynes–Cummings, the Tavis–Cummings and the Dicke models [12–14], just to cite a few
of them. These models present specific dynamical symmetries that correspond to different
equilibrium configurations of the system in the ground state. The algebraic structure of
these models allows for simple solutions in some cases, which provide important references
for more complex systems

In this work, a solvable two-level model that represents the coexistence of atoms and
homo-nuclear diatomic molecules is used to study QPTs [15–18]. The model is briefly
presented in Sect. II, where the matrix elements relevant in the model Hamiltonian are
given explicitly on a basis with two labels: the number of molecules and the number
of atoms. The eigenvalues and eigenvectors of the Hamiltonian are easily obtained by
diagonalizing the corresponding matrix. The thermodynamic or large particle number limit
of the model is also presented so as to classify the QPT and analyze the critical transition
point. The model has one control parameter that drives the system from a molecular
condensate, in one phase, to a new phase in which atoms and molecules coexist. Usual
markers for the critical point are the ground state energy and the behavior of an order
parameter that is zero in one phase and different from zero in the other one. Usually this
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order parameter is the expected value in the ground state of the number of atoms (or the
number of molecules). In this work, we propose the use of the inverse participation ratio
(IPR) and the Rényi entropy as other good markers for the critical point. They are presented
in Section 3. Section 4 is for conclusions.

2. The Model for the Atom–Diatomic Molecule Coexistence

A simple two-level model designed to describe a system of two coexisting components,
individual atoms and diatomic homo-nuclear molecules, is worked out. In Figure 1,
the model is represented schematically.

ω
0

− ω

a

b

Figure 1. Schematic representation of the model used in this work for the atom–diatomic coexistence.
This is a two-level model. Diatomic molecules (b) are in the lower level, while single atoms (a) are in
the upper level. The quantity ω0 −ω represents the energy needed for separating the molecule into
its two single atoms. This figure was taken from [16].

Each component in the model is represented in terms of bosons. There are two boson
types: a and b. Boson type a represents individual atoms of energy h̄ω0/2, whereas
b−bosons represent diatomic molecules of energy h̄ω. Atoms and molecules interact, and
the proposed Hamiltonian is (h̄ = 1 is used in this work) [16]

H =
ω0

2
a†a + ω b†b +

λ√
2M

(b†aa + ba†a†), (1)

where
M = 2nb + na (2)

is the total number of atoms and is a conserved quantity. This magnitude gives the size
of the system. Moreover, n̂a = a†a is the particle number operator of bosons of type a
(atoms) and n̂b = b†b is the particle number operator of b−bosons (diatomic molecules).
The expected values of these operators are the numbers of particles of the two boson types
(na and nb). To make everything simpler, only even M-values are considered in this work.
Furthermore, λ is a control parameter that drives the system from one phase to the other.
Given that ω0 > ω, for λ = 0 the ground state is just a molecular condensate without
any single atom. However, as λ increases, the interaction produces a more balanced atom–
molecule distribution. Thus, depending on the control parameter λ, the system has two
phases: one with just molecules and another with molecules and atoms.

2.1. Exact Solution of the Eigenvalue Problem

An obvious basis for studying the Hamiltonian (1) is obtained by giving the number
of molecules nb and the number of individual atoms na: |na, nb〉. Since M = 2nb + na is
conserved, one can use alternatively the notation |M, nb〉 with M being fixed and defining
the system.

The matrix elements of (1) in the mentioned basis are trivial and produce a tridiagonal
matrix that can be easily diagonalized for each selected M-value. The relevant matrix
elements are:
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〈M, nb|a†a|M, n′b〉 = δnb ,n′b
(M− 2nb), (3)

〈M, nb|b†b|M, n′b〉 = δnb ,n′b
nb, (4)

〈M, nb|b†aa|M, n′b〉 = δnb ,n′b+1
√

M− 2nb

×
√

M− 2nb − 1
√

nb + 1, (5)

〈M, nb|ba†a†|M, n′b〉 = δnb ,n′b−1
√

M− 2nb + 1

×
√

M− 2nb + 2
√

nb. (6)

For a given M, the matrix to be diagonalized is of dimensions (M/2 + 1), since one
can have from zero molecules (only M atoms) to M/2 molecules (no atoms). A simple diag-
onalization of the corresponding tridiagonal matrix will provide one with all Hamiltonian
eigenvalues and eigenfunctions. In particular, given an M-number, this diagonalization
allows one to obtain the ground state energy and the corresponding wavefunction as a
function of the control parameter λ. This can be used to study the ground state phase
transition of the system as a function of λ.

In particular, once the ground state wavefunction is obtained, |gs(λ)〉, one can use it
to calculate the expected value of the number of atoms 〈gs(λ)|n̂a|gs(λ)〉. We show in the
next subsection that this magnitude behaves as an order parameter. It is zero in one phase
and different from zero in the other one. In a later section we will show other observables
that can be used as markers for the critical point of the phase transition. In order to study a
reference for the phase transition, a mean field study of the model is presented next.

2.2. Mean Field for the Model Hamiltonian

In order to develop a mean field study for this model, it is useful to introduce the
operators:

K+ =
1
2

(
a†a†

)
, (7)

K− =
1
2
(aa), (8)

K0 =
1
2

(
a†a +

1
2

)
, (9)

which close under the su(1, 1) commutation relations. Using the Holstein–Primakoff
expansion [19], a new c−boson can be introduced as

K+ = c†
(

1
2
+ c†c

)1/2
, (10)

K− =

(
1
2
+ c†c

)1/2
c, (11)

K0 =

(
c†c +

1
4

)
. (12)

In terms of bosons b and c, the Hamiltonian (1) can be written as

H = ω0 c†c + ω b†b (13)

+
λ√
2M

[(
1
2
+ c†c

)1/2
cb† + bc†

(
1
2
+ c†c

)1/2
]

.
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To perform a semiclassical analysis of the system, the usual relation with atom coordinates
and momenta (x, p) and diatomic molecule coordinates and momenta (y, q) from the
harmonic oscillator are introduced:

c√
M

=
1√
2
(x + ip) ;

c†
√

M
=

1√
2
(x− ip); (14)

b√
M

=
1√
2
(y + iq) ;

b†
√

M
=

1√
2
(y− iq). (15)

These are canonical transformations, and in the thermodynamic limit, i.e., M→ ∞, the op-
erator’s position and momentum commute. In addition, in this limit the factor 1/2 can be
negligible in comparison with a term multiplied by M. Then, by introducing these relations
in the Hamiltonian, it is written as

H = H0 + H1 + H2 (16)

with

H0 = ω0
M
2
(x2 + p2) + ω

M
2
(y2 + q2), (17)

H1 = λ
M
2

√
(x2 + p2)(xy + pq + ipy− iqx), (18)

H2 = λ
M
2
(xy + pq− ipy + iqx)

√
(x2 + p2). (19)

To analyze the properties of the ground state of the system in the thermodynamic limit, it is
useful to rewrite the Hamiltonian (16) using polar coordinates:

x = r cos α ; p = r sin α ; y = s cos β ; q = s sin β.

Then it can be shown that the Hamiltonian (16) can be written as

H = M[
1
2
(ω0r2 + ωs2) + λr2s cos(α− β)]. (20)

It seems clear from this Hamiltonian that the minimum energy corresponds to cos(α− β) = −1
(it is the value that makes the second term, and therefore, the H minimum, since the other terms
are positive, r2 and s2). This corresponds to α− β = π. Any choices of α and β such that they
differ by π give the minimum energy. A possible combination is α = 0 and β = −π, which
correspond to p = 0 and q = 0, but any other selection of α and β (and, correspondingly,
of p and q) that satisfies α− β = π will give the same minimum energy surface per particle:

H/M = 1/2(ω0r2 + ωs2)− λr2s (21)

which is Equation (22) in terms of x and y, taking α = 0 and β = −π (or equivalently
p = q = 0),

V(x, y, λ) = M
[ω0

2
x2 − ω

2
y2 − λx2y

]
. (22)

This equation can be obtained in a more straightforward way from Equation (2) using
coherent boson states. However, it is interesting to illustrate some tools, such as those
presented above, that potentially can be used to extract finite size effects in the system
(expanding the potential energy surface in 1/M powers), thereby going beyond the mean
field description. Anyway, Equation (22) gives the classical energy surface associated with
this model.

On the other hand, the M conservation leads to the condition

x2 + p2 + y2 + q2 = 1, (23)
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which for p, q→ 0 gives x2 + y2 = 1. This allows us to reduce the original two dimensional
problem to another one with only one effective degree of freedom, x ∈ [−1, 1]. Taking into
account that the sign selection y = −

√
1− x2 produces lower energy than the positive sign,

the energy surface per particle can be written as

v(x, λ) =
V(x, λ)

M
=

ω

2
+

∆ω

2
x2 − λx2

√
1− x2, (24)

where ∆ω = ω0 −ω.
The condition for the minimum is

dv(x, λ)

dx

∣∣∣∣
xmin

= 0, (25)

and provides two solutions,

xmin =

{
x1 = 0 which is always a solution ;

x2 =
(

12λ2−∆ω2−∆ω
√

∆ω2+12λ2

18λ2

)1/2
.

(26)

This last solution provides energy lower than x1 = 0 when λ is larger than a critical value
that we call λc. It is also a solution of the problem of the expression of x2 with a positive
sign in front of the square root, but the written expression, with the minus sign, always
gives lower energy. A value for λc can be obtained to make x2 = 0:

12λ2
c − ∆ω2 ± ∆ω

√
∆ω2 + 12λ2

c = 0, (27)

which gives the critical point for the transition,

λc =
ω0 −ω

2
=

∆ω

2
. (28)

For given values of ω and ω0 (this fixes λc), the minimum energy per particle as a function
of λ is obtained:

e0(λ) =
E0(λ)

M
=

{
ω
2 λ ≤ λc,
ω
2 + ∆ω

2 x2
2 − λx2

2

√
1− x2

2 λ > λc.
(29)

Equation (29), with x2 from Equation (26), gives an analytic expression for the mini-
mum of the energy surface per particle as a function of the control parameter λ. In Figure 2,
the large-M limit of the ground state energy per particle (panel a), its first derivative
(panel b) and its second derivative (panel c) are represented, respectively, for the cases
ω0 = 2 and ω = 1. In the three plots it is clear that at λ = 0.5 there is a structural change in
the system. This value is the λc given in Equation (28). Furthermore, the discontinuity of
the second derivative indicates that this is a second-order (or continuous) phase transition.
From Figure 2 it is clear that the system undergoes a second-order QPT at λc.

Since we can solve the problem exactly for a finite M, in Figure 3 the mean field result
for the ground state energy per particle is represented, together with the exact numerical
calculations with M = 50 and M = 700 for the cases ω0 = 2 and ω = 1 that produce
λc = 0.5. The mean field calculation is depicted by a black line; the exact numerical results
for M = 50 are shown as a green line; and for M = 700, the exact numerical results are
shown as a dashed red line. For a system of size M = 50, the exact numerical result fits
quite well with the analytical mean-field, except in a small region close to the critical point
(finite-size effects). Nevertheless, the bigger the system is, the better the agreement with
the mean field calculation. This is shown in Figure 3 for M = 700, which is basically
indistinguishable from the mean-field result. In order to show better the convergence,
an inset is included in Figure 3 representing a function ε defined as:
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ε =
E(M)

0 − EMean−Field
0

EMean−Field
0

, (30)

as a function of λ for different M sizes.

Figure 2. Large–M limit (mean–field) results of the system as a function of the control parameter λ

for the cases of ω0 = 2 and ω = 1. In panel (a) the ground state energy per particle is represented.
In panel (b), its first derivative with respect to λ is plotted. Finally, in panel (c), the second derivative
of the ground state energy per particle is given as a function of λ. The system undergoes a QPT for
λc = 0.5.

Figure 3. Ground state energy per particle in the large–M limit of the system as a function of the
control parameter λ for the cases of ω0 = 2 and ω = 1. The system undergoes a QPT for λc = 0.5.
The mean field calculation is depicted in black full line; meanwhile, the exact numerical results
for M = 50 (full green line) and M = 700 (dashed red line) are also presented. In order to show
the convergence to the mean field with M, the inset represents the difference between the exact M
calculation and the mean field result. Different M sizes are shown.
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In addition to the energy, one can calculate analytically at the mean field level (large
M limit) the expected value for the number of atoms of type a. From Equations (9) and (12),
one gets the relation na = 2nc. Using the definitions of c† and c as a function of x and p,
and by taking the classical limit (p→ 0 and [x, p] = 0), one obtains easily that the number
of individual atoms per particle, na/M, is x2. The expected value of this observable in the
system ground state is then

〈gs|n̂a/M|gs〉 = 〈gs|x2|gs〉 =
{

0 λ ≤ λc,
x2

2 λ > λc,
(31)

with x2 being given in Equation (26). This expression can be compared with real finite-M
calculations to check how fast is the convergence to the large-M limit, and consequently
how large are the finite-M effects.

In Figure 4, the large M limit of the expected value of n̂a/M in the ground state is
plotted as a function of λ. It is clear that this observable is an order parameter for the phase
transition, since it is zero in one phase and different from zero in the other one. When
λ→ ∞, this order parameter tends to 2/3, as given by Equations (31) and (26). The latter
means means that there would be a coexistence phase of atoms and molecular particles in
which it is equally likely for an atom to either be chemically bonded or to remain unbound.
In Figure 5, the exact expected value for n̂a/M is presented for M = 700, along with three
different selections for ∆ω: 1, 2 and 3, that lead to λc: 0.5, 1.0 and 1.5, respectively. For this
large M value, the plots match the mean field result given by Equations (31) and (26). It is
clearly seen in Figures 4 and 5 that this order parameter marks the critical point (represented
in Figure 5 with filled dots for each ω selection).

Figure 4. The large-M value for na/M, number of atoms of type a per particle, as a function of the
control parameter λ for the cases of ω0 = 2 and ω = 1. The system undergoes a QPT for λc = 0.5.
This observable behaves as an order parameter. It is zero for λ < λc and different to zero for larger
values of λ.
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Figure 5. Numerical exact calculation for the expected value of n̂a/M. Number of atoms of type a
per particle, as a function of the control parameter λ for three different cases: ∆ω = 1 (full black line),
∆ω = 2 (dashed red line) and ∆ω = 3 (dotted and dashed blue line). In all these cases, the critical
value for λ has been marked: λc = 0.5, λc = 1, and λc = 1.5, respectively. All calculations were done
for M = 700.

In all cases, we have checked that the numerical results tend to the mean field ap-
proximation expressions as M is increased, and that the critical point corresponds to
Equation (28).

In our model, as in the Tavis–Cummings and Jaynes–Cummings models [20], quantum
fluctuations are zero, and consequently, these fluctuations cannot be responsible for the
corresponding vacuum instability. In this respect, some researchers consider that this is not
a quantum phase transition. However, this model possesses non-analyticity in the ground
state, in agreement with a continuous quantum phase transition. As such, it is a matter of
taste whether the transition should be termed quantum or not.

3. Other Markers for the QPT

In this section, we propose other markers for the critical point in the QPT.

3.1. Inverse Participation Ratio

The inverse participation ratio (IPR) is defined as

IPR = P(k) =
1

∑i |c
(k)
i |4

. (32)

This magnitude measures the degree of delocalization of a quantum state within a specific
basis. The coefficients c(k)i are the coefficients of the state k in the used basis. On one hand,
in case of full localization, the k state is one of the basis states, so only one ci = 1 and the
IPR will be close to 1. On the other hand, if the state k is equally distributed among all basis
states, then the normalization condition is

∑
i
|c(k)i |

2 = D|c(k)1 |
2 = 1, (33)

with D being the dimension of the matrix diagonalized. Then

|c(k)i | =
1√
D

. (34)
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In this case, the maximum IPR is obtained IPRmax = M/2 + 1. Consequently, any values of
IPR between 1 and M/2 + 1 are expected in general.

For the model discussed here, an IPR = 1 is expected for λ = 0, since in this case
our Hamiltonian eigenstates are those of the harmonic oscillator. For other λ−values,
the Hamiltonian eigenstates will be a mixture of harmonic oscillator states and the IPR
will increase. However, not every state of the harmonic oscillator will "participate" in
the eigenstate of the coexistence phase. Only a linear combination of states in which the
expected number of atoms is 2/3 of M will contribute. Thus, IPR will reach a constant but
smaller size than the maximum possible value.

The numerical results from the exact diagonalization of the system Hamiltonian
have already been presented, and these were compared to the mean-field results in the
preceding section. For a given M, the exact diagonalization produces the ground state, and
consequently provides the coefficients cgs

M,nb
. With these, one can calculate the IPR (32).

In Figure 6, the ground state IPR values for M = 700 and for different ∆ω choices as a
function of the control parameter λ are presented.

Figure 6. IPR for the ground state as a function of the control parameter λ for M = 700 and for three
different ω selections: ∆ω = 1 (full black line), ∆ω = 2 (dashed red line) and ∆ω = 3 (dotted and
dashed blue line).

The IPR marks clearly the transition of the system at the corresponding λc. The ground
state is well localized (small IPR) in the harmonic oscillator basis for λ below to the QPT
critical point, whereas it tends to be delocalized for values of λ above the critical value.
Indeed, an abrupt change of IPR occurs at λc = ∆ω/2 in the QPT.

A natural question in relation to Figure 6 is: what are the asymptotic values for λ→ 0
and λ→ ∞? In order to show the λ→ ∞, we plot in Figure 7 the IPR for the cases ∆ω = 1
and M = 700. It is seen that the IPR for large λ is around 30.

Whilst an IPR = 1, or approximately 1, is expected for λ ≤ λc, for which the ground
state is close to a molecular condensate (the state is basically |M, na = 0, nb = M/2〉).
For larger λ−values the Hamiltonian eigenstates will be mixtures of harmonic oscillator
states, in which there will be more than one relevant state, and therefore, the IPR will
increase. The limit of M/2+1 is obtained when all the basis states are contributing with
equal weight. However, this is not reasonable, and states in which the number of atoms is
na = 2M/3, and consequently nb = M/6 (we notice that na + 2nb = M), are expected to
have larger weights. In fact, if one assumes for the wavefunction coefficients a binomial
distribution with D = M/2 components, |M, na, nb〉, whose probability of nb is p = 1/3,
the corresponding IPR would be around 31. Although the distribution in our ground state
is not exactly binomial, something similar is expected. In that case, the IPR will not reach
the maximum possible value, and an IPR around 31 is expected for M = 700.
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Figure 7. IPR for the ground state as a function of the control parameter λ for ∆ω = 1 and M = 700.

In Figure 8, the binomial distribution for D = 350 that corresponds to M = 700 (basis
dimension 351) and p = 1/3 (which corresponds to nb = M/6 = D/3) is represented
against nb (dashed red line). Superimposed is the plot for the calculated ground state
wavefunction components squared for the case M = 700 and λ = 1000 (full blue line). The
similarity of the distributions is clearly shown, and that is why the IPR value for the large λ
limit is close to the corresponding binomial distribution (around 30 in the case of Figure 7).

Figure 8. Representation of the components of the binomial distribution for D = 350 and p = 1/3
(dashed red line) compared with the computed squared coefficients for the components of the ground
state wavefunction in the basis |M, nb〉 (full blue line). This last calculation was done for ∆ω = 1
with M = 700 and λ = 1000.

In order to show the behavior of the IPR as a function of the system size, we present in
Figure 9 the IPR for different M-values. From this figure, we can observe that the bigger
the size of the system, the sharper the change in the value of the IPR at the critical point.
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Figure 9. IPR for different M-values as a function of λ. These calculations were done for ∆ω = 1.

A final comment on the IPR maximum observed right after the critical point: This is
seen in Figure 7. This exact same behavior is confirmed to exist for all sizes. It is not more
or less accentuated depending on M. We have already established which states are relevant
in both the molecular condensate phase and the coexistence phase. However, right after the
critical value is reached, the state of minimum energy is given by a linear combination of a
set of states wider than the one observed for large λ values. It is a sort of transition region in
which more components (fluctuations) are participating in the ground state wavefunction.
As a consequence, the greatest value of the IPR is observed right there.

3.2. Renyi Entropy

Information was first defined rigorously by Claude Shannon [21]. It is a magnitude that
measures how much communication it takes to transmit a message. If one has a discrete
list of possible messages (events) with different probabilities, that wishes to transmit,
the information value of every message depends on that probability. For instance, if one
were to repeat the same message over and over, the information transmitted is measured
with lower units of information. Conversely, if within this list of repeated messages
something different is suddenly communicated only once, it is considered to give much
more information. In other words, information measures how surprising, how unlikely,
an event is. Thus, information theory does not account for content or usefulness, rather
it measures only the quantity of information. The later is measured by a magnitude
called entropy.

Different entropies can be defined. The most popular entropy was defined by Shan-
non [21],

S = −
∫

dQ ρ(Q) ln ρ(Q), (35)

where Q are the generalized coordinates (x and y for our model), and ρ(Q) is the probability
density (|Φ(x, y)|2, in our case). Then,

S = −
∫

dx
∫

dy |Φ(x, y)|2 ln |Φ(x, y)|2. (36)

Here we propose to use the Rényi entropy [22,23] that depends on one parameter α,
for characterising the phase transition in our system. The Rényi entropy has as a limit
situation the Shannon entropy (α→ 1). The Rényi entropy is defined as

R(α) =
1

1− α
ln
(∫

dQ ρα(Q)

)
, ∀α ∈ [0, 1) ∪ (1, ∞)] (37)



Entropy 2022, 24, 113 12 of 16

that for the model discussed is,

R(α) =
1

1− α
ln
(∫

dx
∫

dy |Φ(x, y)|2α

)
, (38)

∀α ∈ [0, 1) ∪ (1, ∞)].

For the model under study, the ground state is a combination of harmonic oscillator states
in the coordinates (x, y),

Φgs(x, y) = ∑
na

∑
nb

cna ,nb Na Hna(x) exp[−x2/2]

× NbHnb(y) exp[−y2/2], (39)

where N are normalization constants and Hn are Hermite polynomials. The ground
state coefficients cna ,nb are obtained from the Hamiltonian diagonalization. Consequently,
the entropies can be calculated with Equation (39). However, this is computationally
inefficient since for large M values it implies factorials of large numbers and make the
calculation very heavy and inaccurate. As of that, we prefer to go to Shannon’s original
idea. The entropy [21] of a state describing a physical system is a quantity expressing
the diversity, uncertainty or randomness of the system. Shannon viewed this uncertainty
attached to the system as the amount of information carried by its state. His idea was
based on the following consideration. If a physical system has a large uncertainty and
one receives information on the system, then so-obtained information is more valuable
(because it is less likely) than received from a system having less uncertainty. This is why
entropy is measured in units of information. Shannon also drafted in A mathematical theory
of communication [21] what is one of the most popular definitions of entropy. Let nb be a
discrete random variable with probability distribution {pi} of N elements. That is

N

∑
i=1

pi = 1,

then Shannon entropy is given by

S = −
N

∑
i=1

pi log pi. (40)

When one takes the binary logarithm, entropy is expressed in shannons (Sh), also
known as bits. Moreover, when taking the natural logarithm, as we do in this work, entropy
is expressed in the natural unit of information or nat. It is merely a difference in scale
(1 Sh ≈ 0.693 nat). Note that if one event is much more likely than the others, that is pj → 1
and pi 6=j → 0, then entropy tends to 0. In the opposite case, if all events were equally likely,
then pi = 1/N, ∀i and S = log N, which is a function that increases with N. Furthermore,
take notice of the fact that both the maximum and minimum possible values of Shannon
entropy correspond to maximum and minimum values of IPR.

Should one need to measure the information provided by events giving it greater or
lesser differences between likely and unlikely ones, a different definition of entropy would
have to be used.

A generalization of Shannon entropy was made by Alfred Rényi [22]. Classical Rényi
entropy for a parameter α ≥ 0 and α 6= 1 is defined for the same discrete random variable as

R(α) =
1

1− α
log

N

∑
i=1

pα
i . (41)

The same minimum and maximum possible values of entropy Rényi are reached,
independently of α. In fact, the limiting value of Rényi entropy as α → 1, that can be
calculated using L’Hôpital’s rule, is the Shannon entropy S = limα→1 R(α).
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In the context of quantum theory of information, for a density matrix in a Hilbert
space, ρ ∈ N (H), we can define quantum Rényi entropy [24] as

R(α) =
1

1− α
log Tr(ρα). (42)

If {pi} are the diagonal elements of ρ in the basis of eigenfunctions, then the quantum
Rényi entropy reduces to a Rényi entropy of a random variable nb as defined in (41). This
means that for the ground state of our system we can define the probabilities pi = |ci|2
where ci are the coefficients of the ground state wavefunction. Note that we already took
the dimension of the Hamiltonian matrix N as the number of elements in the discrete
random distribution.

For α < 1, all random events are weighted more equally, resulting in a smaller change
in entropy from one state to another. As α tends to zero, the entropy is just the logarithm of
the size of the support of nb, no matter the phase.

For α > 1, all random events are weighted more differently. As α grows, more likely
events make larger contributions to entropy, whereas less likely events are disregarded.
This tends to give bigger differences between quantum phases.

For α → 1, we have Shannon entropy, which results in something in the middle of
both cases.

Besides α dependency, there is another factor which affects entropy values. As happens
with thermodynamic entropy, quantum entropy is an extensive property, meaning that it
scales with the size of the system. This behavior has already been hinted at by substituting
into Shannon entropy a set of values equally likely.

On account of the above, results are expressed according to the following criteria.

• Entropy dependency with M

All calculations have been done for ∆ω = 1, which gives λc = 0.5.
In Figures 10–12 we can observe the dependency of different entropies with M.

The transition is sharper with increasing M for all values of α. Note that entropy is
independent of M in one phase but is increasingly different with larger M-values in the
other phase. The reason behind this phenomenon lies in the characteristics of both phases.

In the first one, the possibility of measuring the lowest eigenvalue of the harmonic
oscillator (p0 = |c0|2), is almost 1 and the rest are almost zero (which is why the IPR is
approximately 1). Since the dimension N is irrelevant (to a certain point), because it would
not really matter how many pi there are, entropy values will be very similar and will mostly
depend on α. In the second phase, we need to reach a certain proportion of particles, given
by a number of relevant coefficients that is proportional to M. This is the reason why the
IPR also increases with M.

• Entropy dependence with α

In Figure 13, for a system of M = 700, the values of Rα(λ) are represented for a set
of α values both under and over the unit as well as the Shannon entropy, which is given
by the limit α → 1. It is confirmed that bigger values of α make the difference between
both phases more evident since it distinguishes more abruptly between likely and unlikely
events. It can be also confirmed that Shannon entropy is indeed between the entropy for
α < 1 and α > 1.

Perhaps plenty more examples and evaluations could be made by toying with different
values of M and α. However, the most important conclusion one should make is the
following. The entropy, when set to an adequate α for it to be a good marker, is yet another
quantum magnitude that experiences an abrupt (but continuous, as seen for lower α values)
change from one phase to another, evidencing the existence of a second-order QPT.
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Figure 10. Rényi entropy with α = 1/2, R(1/2), as a function of λ for different M values.

Figure 11. Shannon entropy as a function of λ for different M values.
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Figure 12. Rényi entropy with α = 2, R(2), as a function of λ for different M values.

Figure 13. Different Rényi entropy values as a function of λ for different α values, M = 700 and
∆ω = 1 in all cases. The case α→ 1 is the Shannon entropy.

4. Conclusions

We have studied a two-level model for the coexistence of atoms and diatomic molecules.
This model has been studied using mean-field techniques and shows a ground state second-
order quantum phase transition. The critical point has been obtained for the large M-
number limit. Analytic expressions for the ground state energy per particle and for the
number of atoms per particle, as a function of the control parameter λ, have been worked
out. This last observable was shown to be a good order parameter. We have proposed as ad-
ditional markers for the phase transition the inverse participation ratio (IPR) and different
types of entropies. Both observables clearly mark the critical phase transition point.
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