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Abstract: Quantum equations for massless particles of any spin are considered in stationary un-
charged axially symmetric spacetimes. It is demonstrated that up to a normalization function,
the angular wave function does not depend on the metric and practically is the same as in the
Minkowskian case. The radial wave functions satisfy second order nonhomogeneous differential
equations with three nonhomogeneous terms, which depend in a unique way on time and space
curvatures. In agreement with the principle of equivalence, these terms vanish locally, and the radial
equations reduce to the same homogeneous equations as in Minkowski spacetime.
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1. Introduction

In a sufficiently small region of spacetime, no experiment can distinguish between
gravity and uniform acceleration. Known as the principle of equivalence (POE), this is a
fundamental hypothesis of Einstein’s theory of general relativity (GR). GR gives a unified
description of gravity as a geometric property of four-dimensional spacetime (see, for
example, Refs. [1,2]). Minkowski spacetime is flat and uniform throughout, and takes
no account of gravitation. It serves merely as a static background for whatever physical
phenomena are present. In GR, however, the spacetime is curved, due to the presence of
matter, and it is no longer a static background but actively interacts with physical systems.
Instead of thinking of gravity as a real force that can be detected like other fundamental
forces, in GR, gravity is a feature of the spacetime itself. Gravity is the curvature of
spacetime, which affects the energy and momentum of particles. Thus, a transformation
from a Cartesian coordinate system to a curved coordinate system should unveil the
impacts of gravity on whatever matter or energy are present. Spacetime curvature depends
on the metric, and in this sense, it represents the “gravitational” potential. Our main
objective in what follows is to study how curvature of a spacetime influences the dynamics
of free massless particles. To this aim, we consider quantum equations for free massless
particles of any spin in a flat Minkowski spacetime and in axially symmetric spacetimes,
namely, the static Schwarzschild, Friedmann–Robertson–Walker (FRW) and the stationary
rotating Kerr spacetimes. The POE quoted above implies that in a sufficiently small region
of any point of a curved spacetime, the mathematical representation of a physical law can
be reduced to its representation in a Minkowski spacetime; therefore, the dynamics of
particles in curved spacetimes and in a Minkowski spacetime must have some common
features, and, whatever differences are present, they must vanish locally. The organization
of this paper is as follows. In Section 2, we consider quantum equations for free massless
particles of any spin in Minkowski spacetime. In Section 3, we reformulate the analogous
equations in an arbitrary curved spacetime. To track the impacts of gravity in some
detail, we study these equations in the axially symmetric spacetimes mentioned above in
Section 4, whereby simple quantum modes are found. In turn, we use these modes to carry
out quantization of the corresponding fields in Section 5. We conclude in Section 6. Some
details of mathematical calculations are reserved to the Appendix A. Axially symmetric
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spacetimes are exact solutions of the Einstein field equations and serve as models of black
holes and neutron stars. Generally speaking, we anticipate that the results we report
herewith hold well for particles in the vicinity of massive objects.

Throughout this work, we use natural units with h̄ = c = 1 and a metric signature
(−,+,+,+). Greek indices refer to the general world index, whilst Latin indices refer to a
flat Minkowskian spacetime. We take Minkowski metric to be ηab = diag(−1,+1,+1,+1)
and gµν(x) = ea

µ(x)eb
ν(x)ηab, the metric of an arbitrary curved spacetime. Here, ea

µ and Eµ
a

stand for a vierbein field and its inverse, respectively (see, for example, Ref. [3] for more
details). Though expected to be quantized, the spacetimes are taken to be continuous.

2. Field Equations in Minkowski Spacetime

Relativistic wave equations in Minkowski spacetime for free particles were obtained
long ago by factorizing the Klein–Gordon operator. Dirac’s equation was derived from
the relativistic condition on energy, mass and momentum. Dirac derived equations for
spin s particles, which are written, in ordinary vector notation, as one main equation
and three subsidiary conditions [4]. These four equations were derived and studied
extensively by Bacry [5], using Wigner’s condition [6] on the Pauli–Lubanski Vector [7,
8] for massless fields. More recently, quantum equations for free massless particles in
a Minkowski spacetime were derived from first principles [9–12] by applying general
methods based on the factorization of the d’Alembertian operator and from a scalar
Lagrangian. Applying these methods, quantum equations for free massless particles of
any spin with the subsidiary conditions included implicitly, are written as a single matrix
equation in the following form:

i
(

Γ(4s)
0 ∂t + Γ(4s) · ∇

)
Φ(4s) = 0, (1)

i
(

Γ(4s)
0 ∂t − Γ(4s) · ∇

)
Φ∗(4s) = 0, (2)

where Γ
(4s)
i are 4s× 4s Hermitian matrices and Γ(4s)

0 stands for the identity matrix. These
matrices form a reducible representation of the Pauli matrices and have the same eigen-
values as the Pauli matrices , i.e., ±1. Following Ref. [10], we use the angular basis of the
D(s− 1

2 , 1
2 ) representation of the Lorentz group. This basis is the sum of the basis of spin s

and s− 1, altogether (2s + 1) + (2s− 1) = 4s components. Explicitly the wave function is
taken to be as follows:

Φ(4s) =



ψ
(2s−1)
s−1

.

.

.
ψ
(2s−1)
s−1

ψ
(2s+1)
s

.

.

.
ψ
(2s+1)
−s


. (3)

As shown in Ref. [10], the advantage of using this basis is that by equating the spin (s− 1)
components of the wave function ψ

(2s−1)
λ , (2s− 1) subsidiary conditions which eliminate

non-forward and non-backward helicities are automatically satisfied so that solutions of
Equations (1) and (2) become restricted to forward and backward helicity, respectively (for
more details, see Ref. [10]). The Hermitian conjugate of Φ(4s) is defined as the transposed
of the complex conjugate [Φ(4s)]H = [Φ(4s)∗]T so that [Φ(4s)]HΦ(4s) is positive definite and
is interpreted as a probability density. For spin 1/2 particles, Equations (1) and (2) coincide
with those of left and right Majorana particles. For spin 1, they are equivalent to the four
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Maxwell’s equations, and for spin 2, to Dirac’s equations [4]. For the spin 1 and 2 particles,
the Γ matrices are constructed to exactly reproduce the main equations and subsidiary
conditions [9].

Each of Equations (1) and (2) has only two solutions corresponding to positive and
negative energy. Solutions of Equation (1) are restricted to forward helicity, and those
of Equation (2) to backward helicity. As the energy operator is proportional to the he-
licity, solutions of Equation (1) are also the solutions of Equation (2) with the opposite
sign of helicity. Thus, the positive energy forward helicity solution of Equation (1) is the
negative energy backward helicity solution of Equation (2); likewise, the negative energy
forward helicity solution of Equation (1) is the positive energy backward helicity solution
of Equation (2). Imposing the physical requirement that the energy of massless particles
is restricted to positive values, a general solution of these equations can be written as a
combination of positive energy solutions with opposite helicities. In the interest of general-
ity, we replace the Γµ matrices with 4s× 4s block diagonal matrices γµ = diag(σµ, ··, σµ),
where σµ (µ = 0, 1, 2, 3) denoting the Pauli matrices. The Γs are related to the γµ via a
similarity transformation; γµ = SΓµS−1, where S is non-singular and unitary. With the γµ

matrices, Equation (1) reads as follows:

iγbηab∂aΦ(4s) = 0, a = t, x, y, z, (4)

with the new solutions being Φ(4s)
γ = SΦ(4s)

Γ . We use the above expression as our starting
point to derive particle equations in an arbitrary curved spacetime.

3. Field Equations in Curved Spacetime

Based on the principle of equivalence, a local Minkowski metric can be associated to ev-
ery regular point (to exclude singularities) of curved spacetime. Accordingly, Equation (4)
is valid within a sufficiently small region around any point of a curved spacetime. In
what follows, we derive particle equations in a global curved spacetime, analogous to
Equation (4). To do so, three modifications are required. First, the Minkowski metric ηab
must be replaced by a global metric tensor gµν. Secondly, the partial local derivatives ∂a
must be replaced by covariant derivatives [∂ν + Ων(x)], where Ων(x) is a connection com-
ponent for the spinor wave function Φ. Thirdly, the local gamma matrices γa (a = t, x, y, z),
which carry local Minkowski space indices must be replaced by global gamma matrices
γµ = Eµ

a γa, where Eµ
a stands for inverse vierbein fields [3]. Part of the discussion to fol-

low is reported briefly in Ref. [13]. Inserting these modifications in Equation (4) yields
the following:

Eµ
a γagµν[∂ν + Ων(x)]Φ(x) = 0 . (5)

To evaluate the connection Ωµ(x), we consider the scalar S(x) = ΦH(x)γ0Φ(x) and
the vector Va(x) = ΦHγaΦ(x). These must obey the transformation rules for scalars
and vectors, respectively. A parallel transport of the wave function should satisfy the
following relation:

Φ(x + dx) = Φ(x)−Ωµ(x)Φ(x)dxµ . (6)

Consider first S(x), which must remain unchanged under parallel transport. With Equation
(6), one obtains the following:

S(x + dx) = S(x)−ΦH(x)[γ0ΦH
µ (x) + Ωµ(x)γ0]Φ(x)dxµ, (7)

where terms of order dxµdxν are omitted. For Equation (7) to satisfy a scalar parallel
transport rule, the quantity in the square bracket must vanish, i.e., the following:

ΩH
µ (x) = −Ωµ(x). (8)
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Next, consider the vector Va(x), which must transport as a local vector, i.e., Va(x −→
x + dx) = Va(x)−ωa

µb(x)Va(x)dxµ, where ωa
µb(x) is the spin connection [3]. Again, using

Equation (6), one obtains the following:

Va(x + dx) = Va(x)−ΦH(x)[γa, Ωµ(x)]Φ(x)dxµ. (9)

Then, the second term in the above expression must satisfy the following:

ΦH(x)[γa, Ωµ(x)]Φ(x) = ωa
µbVb. (10)

This last expression indicates that the commutator in the expression above is proportional
to γb and that Ωµ is related to a product of two gamma matrices. Assume now that the
following holds:

Ωµ = Cωµbcγbγc, (11)

where C is a constant to be determined. It is straightforward to show, using properties of
the gamma matrices (see Appendix A), that the following commutator holds:

[γa, Ωµ(x)] = 4Cωa
µbγb. (12)

Comparing Equation (12) with Equation (10) gives C = 1/4 and the following:

Ωµ = (1/4)ωµbcγbγc. (13)

Then, substitute the above result in the spin connection term in Equation (5), and using the
well-known expression ωa

µb = ea
µEσ

b Γν
σµ + ea

ν∂µEν
b for the spin connection [3], Equation (5)

becomes the following:

Eµ
a γaΩµ = (1/2)γb[Eσ

b ∂σlne + ∂σEσ
b ], (14)

where g = det(gµν) is the determinant of the metric tensor and e =
√
(−g) . Substituting

this last expression in Equation (5) gives the following:

Eµ
a γa∂µ(

√
eΦ) = −1/2γb∂σEσ

b Φ. (15)

It is straightforward to verify that the expression above can be derived from the
Lagrangian density, as follows:

L = ΦH(Eµ
a γa∂µ

(√
eΦ
)
+

1
2

γb∂σEσ
b Φ). (16)

The variation with respect to ΦH obviously yields Equation (15), while variation with
respect to Φ gives the Hermitian conjugate equation, i.e., the following:

Eµ
a γa∂µ

(√
eΦ∗

)
= −1

2
γb∂σEσ

b Φ∗. (17)

Equations Equations (15) and (17) replace the Minkowskian particle equations of
Equation (4) and its Hermitian conjugate. These are generic equations that are valid for
any curved spacetime and meet well with the POE. It is easy to see this, using different
wording of the POE; at every point of a spacetime, the metric can be diagonalized as
gij = (−1, 1, 1, 1). Clearly substituting this for any metric, Equations (15) and (17) reduce
rigorously to the analogous Minkowskian equations.

From the Lagrangian Equation (16) and using Noether’s theorem, the conserved
current density is given by the following :

jµ =
δL

δ
(
∂µΦb

) δΦb

δα
− Jµ

0 = ΦH
b Eµ

a γaΦb = ΦHγµΦ. (18)
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Note that j0 = ΦHγ0Φ = Φ∗b Φb is a probability density. The expression above satisfies the
continuity equation, i.e., the following:

∂µ jµ = ∂µ[ΦHγµΦ], (19)

and does not depend on the spin connection. As shown in the Appendix A, a simple
calculation based on Equation (8) explains why the conserved current does not depend on
the spin connection.

4. Factorization of Φ

To make any further progress using Equation (15), a specific choice of a metric tensor
must be made. To analyze axially symmetric spacetimes, we apply a procedure based on
the factorization of the wave function Φ. We assume that the wave function Φ factorizes
as follows:

Φ(t, r, θ, ϕ) = ψ(t, r, θ, ϕ) f (r, θ), (20)

where the function ψ satisfies an equation independent of the spin connection, i.e., the
following:

Eµ
a γa∂µψ(t, r, θ, ϕ) = 0. (21)

In what follows, we refer to this equation as the reduced equation and to its solutions
as the reduced wave function. A similar factorization is applied in Refs. [14,15] to deal
with Dirac’s equation. Note that for the Minkowski, Schwarzschild and FRW spacetimes
equation, Equation (21) involves diagonal metric elements. For the Kerr metric equation,
Equation (21) involves also two non-diagonal metric elements, namely E3

0 and E0
3 . To treat

all cases on an equal basis, we eliminate these non-diagonal elements by requiring a second
factorization as described below. Inserting Equations (20) and (21) in Equation (15), one
finds that the factor f (r, θ) satisfies the following equation:

∂µ ln
(

f (r, θ)
√

e
)
= −1

2
eb

µ∂σEσ
b . (22)

Note that all complexities due to the spin connection are now restricted to the above
expression. Specifically for stationary axially symmetric spacetimes, f (r, θ) does not
depend on time nor on the azimuthal coordinates, and Equation (22) becomes rather simple
as follows:

∂µ ln
(

f (r, θ)
√

e
)
= −1

2
eb

µ∂σEσ
b , b = 1, 2. (23)

For the Minkowski, Schwarzschild, FRW and Kerr metrics (see Table 1),
∂r ln

(
f (r, θ)

√
e
)
= − 1

2 e1
1∂rE1

1 and ∂t ln
(

f (r, θ)
√

e
)
= ∂θ ln

(
f (r, θ)

√
e
)
= ∂ϕ ln

(
f (r, θ)

√
e
)
=

0. Thus, Equation (22) is integrable, giving rise to the simple analytic form of f (r, θ)
listed in Table 1. The idea behind the factorization Equation (20) is to bring the re-
duced equation, Equation (21), as close as possible to the equation in a Minkowski
spacetime. Following the factorization Equation (20), this is well accomplished for the
Schwarzschild and FRW metrics. As indicated above for the Kerr metric the resulting
reduced equation following this first factorization still involves the non-diagonal vierbein
elements E3

0 and E0
3. To eliminate these, we apply two consecutive factorizations. As

a first step, take φ to be the reduced function following first factorization, and solve
for f (r, θ). Using the vierbein field listed in Table 1, one finds that the determinant
of the vierbein e = ρ2 sin θ, ∂t log[h] = − 1

2 Eλ
b ∂λeb

0 = 0, ∂ϕ log[h] = − 1
2 Eλ

b ∂λeb
ϕ = 0,

∂θ log[h] = − 1
2 E2

2∂θe2
2 = 0, and ∂ρ log[h] = ∂ρ log

(
ρ√
∆

)−1/2
, where f (r, θ) = he1/2. This

yields the following:

f (r, θ) = he1/2 =

(√
∆

ρ

)1/2

ρ sin1/2 θ (24)
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Following this step, the equation for φ reads as follows:[
E0

0γ0∂t + E0
3γ3∂t + E1

1γ1∂r + E2
2γ2∂θ + E3

0γ0∂3 + E3
3γ3∂3

]
φ = 0. (25)

In order to eliminate the two terms which involve the non-diagonal vierbein, we
assume additional factorization of φ, φ(t, r, θ, ϕ) = g(θ, ϕ)ψ(t, r, θ, ϕ) and require that ψ
satisfies an equation, which involves diagonal metric elements only, i.e., the following:[

E0
0γ0∂t + E1

1γ1∂r + E2
2γ2∂θ + E3

3γ3∂3

]
ψ = 0. (26)

This coincides with Equation (21) for the other cases. Substituting the above equation
in Equation (25) and taking ψ ∼ exp(−iωt) exp(imϕ) gives the following expression for
g(θ, ϕ):

E1
1γ1∂r(ln g) + E2

2γ2∂θ(ln g) = i
[
ωE0

3γ3 −mE3
0γ0
]
. (27)

To evaluate g(θ, ϕ), we must first eliminate the gamma matrices in the above expression. To
this aim, we square the left and right sides of the above equation and then take their traces.
Using properties of the gamma matrices (see Appendix A) one obtains the following:[

E1
1∂r ln g(θ, ϕ)

]2
+
[

E2
2∂θ(ln g(θ, ϕ))

]2
= −

[(
ωE0

3

)2
+
(

mE3
0

)2
]

. (28)

Finally assuming g(r, θ) = A(r)B(θ) and substituting the inverse vierbein from
Table 1, the expression above is equivalent to a pair of integrable equations as follows:

∂r(ln A(r)) = ima, (29)

and,
∂θ(ln B(θ)) = iωa sin θ. (30)

These give,
g(r, θ) = A(r)B(θ) = exp ia(mr−ω cos θ). (31)

With this accomplished, the wave function Φ(t, r, θ, ϕ) = g(r, θ) f (r, θ)ψ(t, r, θ, ϕ),
where the reduced function ψ satisfies the following equation:[

1√
∆ρ

(
a2 + r2

)
γ0∂0 +

√
∆

ρ
γ1∂1 +

1
ρ

γ2∂2 +
1

ρ sin θ
γ3∂3

]
ψ(t, r, θ, ϕ) = 0. (32)

Note that the factor (1/ρ) in the above equation can be eliminated, and we may conclude
that the reduced function ψ in Kerr spacetime satisfies Equation (21), where only diagonal
metric elements are involved, just as for the other cases. Moreover, the last two terms in
Equation (21), which determine the reduced angular wave function, are common to all of
the Schwarzschild, FRW, Kerr and Minkowski spacetimes. Thus, the reduced angular wave
functions for the Schwarzschild, FRW and Kerr metrics are the same as in the Minkowskian
case, and the impacts of gravity, whatever they may be, are due to E0

0 and E1
1.



Entropy 2021, 23, 1205 7 of 16

Table 1. The Function N(r, θ) for different metrics.

Spacetime Inverse vierbein Eµ
ν N(r, θ) (1)

Minkowski diag
(

1, 1, 1
r , 1

(r sin θ)

)
r sin1/2 θ

FRW (2) diag
(

1, F
a , 1

ar , 1
(ar sin θ)

)
(a3r sin θ)1/2

Schwarzschild (3) diag
(

1√
F

,
√

F, 1
r , 1

(ar sin θ)

)
F1/4r sin1/2 θ

Kerr (4) E0
0 =

(a2+r2)√
∆ρ

, E1
1 =

√
∆

ρ , E2
2 = 1

ρ

E3
3 = 1

ρ sin θ ; E3
0 = a√

∆ρ
, E0

3 = a
ρ sin θ

(√
∆ρ sin θ

)1/2

(1) N(r, θ) is f (r, θ) for spherically symmetric spacetimes and to f (r, θ)g(r, θ) in the case of stationary rotating

Kerr spacetime. (2) F =
√

1− kr2, k = ±1, a universe size, r dimensionless parameter. (3) F =
(

1− 2GM
r

)
, G

gravitation constant, M mass. (4) ∆ = r2 + a2 − 2Mr, ρ2 = r2 + a2 cos2 θ; a = J/Mc, J angular momentum.

4.1. The Reduced Wave Function ψ

It is instructive to consider first Equation (15) in the Minkowskian case, where the
metric, gµν = diag(1,−1,−1,−1) and e =

√
−det g = 1. The procedure to be applied for

other cases is rather similar and, as indicated already, the reduced angular wave function is
the same. With Φ ∼ exp(−iωt) exp(imϕ), Equations (16) and (17) reduce to the following:

ωE0
0Φ = −iγ ·∇Φ = H0Φ, (33)

ωE0
0Φ∗ = iγ ·∇Φ∗ = H0Φ∗. (34)

Here, ∇ is the Del. operator, and H0 = −i γ ·∇ is the Hamiltonian of the unper-
turbed free states. Naturally, these equations do not depend on the spin connection. In
spherical coordinates, we have the following:

∇ = r̂ ∂r + θ̂
1
r

∂θ + φ̂
1

r sin θ
∂ϕ, (35)

and the free Hamiltonian reads as follows:

H0 = −iγ · ∇ = −iγr∂r + γθ 1
r

∂θ + γϕ 1
r sin θ

∂ϕ, (36)

where the matrices γt, γr, γθ ,γϕ are given via the following transformation:
γt

γr

γθ

γϕ

 =


E0

0 0 0 E3
0

0 E1
1 0 0

0 0 E2
2 0

E0
3 0 0 E3

3




γ0

γ1

γ2

γ3

.

Again, the inverse vierbein fields E2
2 = 1/r and E3

3 = 1/r sin θ are common to the
axially symmetric spacetimes considered. This ascertains that the reduced angular wave
function is the same as in the Minkowskian case. This is derived rigorously below. However,
the inverse vierbein fields E0

0 and E1
1 are signatures of a metric giving rise to different

reduced radial wave functions for each case.

4.1.1. The Reduced Angular Wave Function

By definition, the angular momentum operator is defined as L̂ = −ir̂ ×∇. Then,
using Equation (35), one obtains the following:

r̂× L̂ = i
(
θ̂∂θ + φ̂ ∂φ

)
,
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and
γ · r̂× L =

1
r

i
(

γθ∂θ + γφ∂φ

)
= i

1
r

(
E2

2γ2∂θ + E3
3γ3∂φ

)
. (37)

We now use this expression to define an angular operator K. Based on the properties of the
gamma matrices, any three vectors A and B satisfy the following identity (see Appendix A):

(γ · A)(γ · B) = γ0 A · B +
i
2

γ · (A× B). (38)

Then, for A = r̂ and B = L,, one obtains the following:

γ · r̂ × L = −i
1
r
(γ · r̂)(2γ · L). (39)

With this relation, the free particle Hamiltonian reads as follows:

H0 = −iγ ·∇ = −iγ · r̂
[

∂r −
1
r
(2γ · L)

]
. (40)

Finally, we identify the spin S with γ and define an angular operator K as follows:

K = 2 γ · L + s = 2S · L + s = J2 − L2 − S2 + s, (41)

where L, S, and J = L + S are, respectively, the orbital, spin, total angular momenta and s
is the particle spin. Substituting this in Equation (40) yields the following:

H0 = −iγ · r̂[∂r +
s
r
− 1

r
K]. (42)

This expression of the free Hamiltonian suggests that we may construct the solution Φ
by variable separation. Indeed, H0, J2, J3, K and parity P constitute a complete set of
commuting operators (see Appendix A). The angular part of the wave function Φ can be
readily written as a spinor of spherical harmonics, i.e., the following:

Y j
lmj

(Ω) = ∑
ms=−s,s

C
(
l, s, j; mj −ms, ms, mj

)
Yml

l (θ, ϕ)χms
s . (43)

Here, C
(
l, s, j; mj −ms, ms, mj

)
is a Clebsch–Gordan coefficient for combining orbital

angular momentum l and spin s to a total angular momentum j with magnetic quantum
numbers mj −ms, ms, mj, respectively, and Yml

l (θ, ϕ) are the usual spherical harmonics,
which are eigenfunctions of L2, L3,, and χms

s are eigenfunctions of S2 and S3. For massless
particles, ms can have only two values, s and −s. The spherical harmonic spinors are
orthonormal, i.e., as follows:

∫
dΩ
(
Y j′

l′mj′
(Ω)

)H
Y j

lmj
(Ω) = δj′ jδll′δmj′mj . (44)

Furthermore, the function Φ is an eigenfunction of the operators J2 , J3, the angular operator
K and parity P , i.e., the following:

J2Φj
mj ,κ = j(j + 1)Φj

mj ,κj , (45)

J3Φj
mj ,κ = mjΦ

j
mj ,κj , (46)

KΦj
mj ,κj = κjΦ

j
mj ,κj . (47)
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To calculate the eigenvalues values of the angular operator K for j = l ± s, we look
for eigenvalues values of the operator K2 = (2L · S + s)2. From the addition of angular
momenta, one finds the following:

(
κj
)2

=
(

J2 − L2 − S2 + s
)2

= s2(2l + 1)2. (48)

So that for both j = l + s and j = l− s, the eigenvalues of K are κj = ±s(2l + 1). This means
that for each of the cases j = l + s and j = l − s, there exist two solutions R1(r)φ+(θ, ϕ)
and R2(r)φ−(θ, ϕ) corresponding to positive and negative κj, respectively. The eigenvalues
of K span all values −s(2l + 1),−s(2l + 1) + 1, · · ·, s(2l + 1)− 1, s(2l + 1).

4.1.2. The Reduced Radial Wave Equation

We may now turn to consider the radial function. With the free Hamiltonian Equation (42),
we write Equation (21) as follows:

iE0
0ωψ = E1

1γ1 [∂r +
s
r
− 1

r
K]ψ.

Then, substituting γµ = diag(σµ, · · ·, σµ), the above expression yields linear non-autonomous
equations as follows:

iE0
0ωI2ψ = E1

1σ1[∂r +
s
r
− 1

r
K]ψ. (49)

Then, substituting ψ ∼ exp(−iωt) exp(imj ϕ)

(
R1(r)φ+(θ, ϕ)
R2(r)φ−(θ, ϕ)

)
with KΦ = κj

(
R1(r)φ+(θ, ϕ)
−R2(r)φ−(θ, ϕ)

)
leads to the following pair of equations:

iωE0
0R1φ+ = E1

1[∂r +
s + κ

r
]R2φ−, (50)

iωE0
0R2φ− = E1

1[∂r +
s− κ

r
]R1φ+. (51)

We may rewrite these as autonomous equations for the radial functions R1(r) and R2(r),
i.e., the following:

d2R1

dr2 + 2
s
r

dR1

dr
+

[
1
r2 [(s(s− 1)− (κ − 1)κ)] + ω2

]
R1(r)

= ω2

1−
(

E0
0

E1
1

)2
R1 −

d ln
(

E1
1

E0
0

)
dr

s− κ

r
R1 −

d ln
(

E1
1

E0
0

)
dr

dR1

dr
, (52)

and,

d2R2

dr2 + 2
s
r

dR2

dr
+

[
1
r2 [(s(s− 1)− κ(κ + 1))] + ω2

]
R2(r) =

ω2

1−
(

E0
0

E1
1

)2
R2(r)−

d ln
(

E1
1

E0
0

)
dr

s + κ

r
R2 −

d ln
(

E1
1

E0
0

)
dr

dR2

dr
. (53)

In the generic expressions above, the nonhomogeneous terms depend, in a unique
way, on time curvature (E0

0) and space curvature (E1
1), representing the impact of gravity

and the coupling of the gravitational field to all other fields. Of course, the curvature of a
spacetime depends on the metric. The curvature is created by energy and momentum and
must be different in the case of the stationary rotating Kerr spacetime from that of the static
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Schwarzschild spacetime. For example, the quantity
(
E0

0/E1
1
)
= (a2 + r2)/

√
∆ depends on

rotation energy; energy, like matter, contributes to the spacetime curvature. Turning off
this energy by setting the angular momentum to be zero (a = 0) (see Table 1), and taking
rs = 2GM, the nonhomogeneous terms reduce, as expected, to those of the static non-
rotating Schwarzschild spacetime. What is also true is that, with a = 0, the normalization
function N(r, θ) becomes the same. The nonhomogeneous terms tell how gravity affects the
physics of massless particles. Obviously, these terms vanish in the Minkowskian case, and
the radial equations above become homogeneous. It is straightforward to show also that
these terms vanish locally. Again, as suggested by the POE at every point of spacetime, the
metric can be diagonalized as gij = (−1, 1, 1, 1) so that the equations above indeed reduce
locally to the Minkowskian homogeneous equations for all the spacetimes considered.

It is worth noting that by replacing κ by −κ in the equation for R2/R1, we obtain
the equation for R1/R2. It is also worth mentioning that in the Minkowskian case, the
equations above for spin s = 1 particles are the familiar spherical Bessel’s equations, and
their solutions are the spherical Bessel’s functions jκ(r) with κ = 1, 3, 5, · · ·· for R1(r) and
j−k−1(r) with −κ − 1 = −2,−4,−6, · · · for R2(r).

4.2. Quantum Modes of Massless Particles

To conclude this section, let us summarize the main results. We have demonstrated
that the wave function Φ can be factorized into a normalization function N(r,θ) and a
reduced function ψ, which depends on diagonal elements of the metric. In particular,
the elements E2

2 and E3
3 are practically the same as in the Minkowskian case; therefore,

the reduced angular wave functions are spherical harmonic spinors corresponding to
simple quantum modes, which we may specify by the particle orbital angular momen-
tum (l = 0, 1, 2, · · ·)and its z components , (ml = −l,−l + 1 · · · ·, l − 1, l), the spin s and its
z components (s , ms = −s, s), total angular momentum (j = l + s) and its z components(
mj = −j, · · ·, j

)
, and the eigenvalues κj = ±s(2l + 1) of the angular operator K. Quantum

modes of free massless particles of any spin in any of the spacetimes considered share the
above quantum numbers. However, the radial functions are signatures of a metric, and the
radial quantum number of these modes is expected to be different.

5. Quantization

We may now use the quantum modes found in the previous section for canonical
quantization of the wave functions.

5.1. Second Quantization of Φ

The solutions of Equations (33) and (34) correspond, respectively, to forward and
backward helicity. Each of these has two energy solutions, one positive and one negative,
where the negative energy forward helicity solution of Equation (33) is identical to the
positive energy backward solution of Equation (34); likewise, the negative backward
solution of Equation (34) is the same as the positive energy forward helicity solution of
Equation (33). Restricting the energy of massless particles to be positive, we expand the
wave function Φ in terms of positive energy eigenstates. Let u(p, s) exp(−ipx) denote a
positive energy forward helicity state, and let v(p, s) exp(ipx) denote a positive energy
backward helicity state. Inserting these into Equations (33) and (34) gives the following:

(ωpE0
0 − γ · p)u(p) = 0, and (ωpE0

0 + γ · p)v(p) = 0. (54)

Here, ωp = p0 = ±√p · p. The spinors u(p) and v(p) are orthogonal so that the following
holds:

u(p)Hv(p) = vH(p)u(p) = 0. (55)

We normalize them according to the following:

ua(p)u†
a
(

p′
)
= ωp ; va(p)v†

a
(

p′
)
= ωp. (56)
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We may then expand the wave function as follows:

Φ(x) =
∫ d3 p

(2π)3/2

√
1

E0
0ωp

[b(p)u(p) exp(−ipx) + d†(p)v(p) exp(ipx)], (57)

ΦH(x) =
∫ d3 p

(2π)3/2

√
1

E0
0ωp

[
b†(p)u†(p) exp(ipx) + d(p)v†(p) exp(−ipx)

]
, (58)

where b(p) and b†(p) are annihilation and creation operators for a positive energy forward
helicity, and d(p) and d†(p) are annihilation and creation operators for a positive energy
backward helicity. In order to quantize Φ, we impose the following commutators:[

Φ(x), Φ
(
x′
)H
]
= iδ3(x− x′

)
,[

Φ(x), Φ
(
x′
)]

= 0,[
ΦH(x), ΦH(x′)] = 0. (59)

These are equivalent to the following commutators of creation and annihilation operators:[
b(p), b†(p′

)]
=
[
d(p), d†(p′

)]
= δpp′δσσ′ , (60)[

b†(p), b†(p′
)]

=
[
d†(p), d†(p′

)]
=
[
b(p), b

(
p′
)]

=
[
d(p), d

(
p′
)]

= 0, (61)

[
b(p), b†(p′

)]
=
[
d(p), b†(p′

)]
=
[
d†(p), b

(
p′
)]

= 0, (62)

where σ stands for helicity. This can be verified rather easily by inserting Equations (57) and (58)
in Equation (59). Inserting in the double integral obtained, the normalization conditions
Equation (56), the orthogonality conditions Equation (55), the commutators Equations (60)–(62),
and the commutators Equation (59) are recovered.

5.2. Quantization of the Reduced Function ψ

Quantization of the reduced function ψ can be performed following the same proce-
dure as applied above for Φ in the Minkowskian case. In fact, the reduced Equation (21) of
the function ψ and its complex conjugate are quite similar to Equations (33) and (34):

iE0
0∂tψ = −iγ · ∇ψ, (63)

iE0
0∂tψ

∗ = iγ · ∇ψ∗. (64)

Then we may expand ψ as follows:

ψ(x) =
∫ d3 p

(2π)3/2

√
1

E0
0ωp

[b(p)ũ(p) exp(−ipx) + d†(p)ṽ(p) exp(ipx)], (65)

ψH(x) =
∫ d3 p

(2π)3/2

√
1

E0
0ωp

[
b†(p)ũ†(p) exp(ipx) + d(p)ṽ†(p) exp(−ipx)

]
. (66)

With the spinors normalized as follows:

ũa(p)ũ†
a
(

p′
)
= ωp/N(r, θ) ; ṽa(p)ṽ†

a
(

p′
)
= ωp/N(r, θ), (67)
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and the commutator Equations (60)–(62), we ascertain that the reduced function ψ satisfies
the commutators as follows: [

ψ(x), ψ
(
x′
)H
]
= iδ3(x− x′

)
,[

ψ(x), ψ
(
x′
)]

= 0,[
ψH(x), ψH(x′)] = 0. (68)

These are the same as those obtained for the function Φ Equation (59). Here as well, the
role played by the function N(r, θ) is that of a normalizing factor.

5.3. Vacuum Energy

Let us first evaluate the vacuum energy in a Minkowski spacetime. From the La-
grangian Equation (16) and Equations (57) and (58), the Hamiltonian density and Hamilto-
nian are given by the following:

H = ΦHE0
0ωkΦ, (69)

H =
∫

d3xΦHE0
0ωkΦ =

∫ d3 p

(2π)3 ωk

[
b†(p)b

(
p′
)
+ d(p)d†(p)

]
, (70)

where we have used the orthogonality and normalization conditions Equations (55) and (56).
With the vacuum state denoted by |0〉 and using the familiar matrix elements〈

0
∣∣b†(p)b(p′)

∣∣0〉 = 0,
〈
0
∣∣d(p)d†(p)

∣∣0〉 = 1, we obtain the following:

〈0|H|0〉 = V

(2π)3

∫
d3 pωk →∑

k
ωk, (71)

where V denotes the volume of space. This same results are obtained by substitut-
ing Φ(x) = N (x1, x2)ψ(x) in Equation (70) with ψ(x) and ψH(x) taken to be as in
Equations (65) and (66), and using the normalization conditions of Equation (67). The fac-
tors E0

0(x) and NH(x1,x2)N(x1,x2) cancel out in any case so that Equation (71) represents
the vacuum energy for all of the Minkowskian, Schwarzschild, FRW and Kerr metrics.

6. Summary and Discussion

We have considered quantum equations of free massless particles of any spin in a flat
Minkowski spacetime and in curved spacetimes in an attempt to unveil how the space
curvature affects the physics of these particles. Among these particles are the gauge bosons;
the photon and gluons (spin 1) and the graviton (spin 2) are presumably carriers of fun-
damental interactions. A particle state is taken to be a spinor, which satisfies the generic
Equation (4) in Minkowski spacetime and Equation (15) in global curved spacetime. Curva-
tures depend on the metric, and in order to make further progress using Equation (15), we
have limited our discussion to axially symmetric spacetime. Symmetry places restrictions
on the metric and allows one to employ a systematic procedure and draw some general
conclusions for this group of spacetimes. Generally speaking, Equation (15) is replaced by
two mathematically manageable equations, Equation (21) for the reduced function ψ and
Equation (22) for the normalization function N(r, θ). Formally, the equation for ψ involves
diagonal metric elements, leading to the conclusion that up to the normalization function
N(r, θ), the reduced angular wave function is the same as in the Minkowskian case. The
reduced radial equations, however, are found to be nonhomogeneous second order differ-
ential equations with nonhomogeneous terms, which depend on the characteristic time (E0

0)
and space (E1

1) curvatures. The impacts of gravity are restricted to these terms. In keeping
with the POE, though expressed in a unique way, these terms vanish locally, resulting in
the characteristic homogeneous 2nd order differential equations of the Minkowskian case.
Assuming, as in GR, that the metric of a spacetime is the “gravitation potential”, these
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nonhomogeneous terms are specific for a metric and can be different for different metrics.
Yet, in any case for the stationary axially symmetric metrics considered, gravity affects the
radial wave function only and does not affect the angular wave function.

In order to quantize Φ, we used forward and backward helicity positive energy
modes. In terms of these, suitably normalized, we have demonstrated that N(r, θ) plays
the role of a normalization function, which does not affect the quantization of Φ nor
of ψ. This we consider to be further support to the claim that free massless particles of
any spin living on curved axially symmetric spacetimes exhibit simple common features
and can be studied using consistently the procedure we have applied. We believe that
our work can be extended to include other metrics, such as the Reissner–Nordstrom and
Kerr–Newman metrics.

Finally, axially symmetric spacetimes are models of massive objects. We anticipate
that the analyses presented can also be applied for massless particles in the vicinity of black
holes and neutron stars.
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Appendix A

Appendix A.1. Properties of the Gamma Matrices

The Gamma matrices γµ form presentations of bi-quaternions; they factorize the
d’Alembertian operator and have eigenvalues +1, and −1 only. This is a reflection of the
fact that the subsidiary conditions are encoded in the gamma matrices [1]. The gamma
matrices satisfy the following relations:

(γa)† = γa; (γa)2 = γ0 (A1)

{γa, γb} = 2I(0)δab; a, b = 0, 1, 2, 3, (A2)

[γa, γb] = iεabcγc; a, b, c = 0, 1, 2, 3, (A3)

trace(γa) = 0; a = 1, 2, 3. (A4)

The gamma matrices above carry tangent space indices so that they maintain a flat
spacetime form. The spinor representations of the Lorentz generators are commutators of
the gamma matrices, an observation that simplifies the calculation of the affine connection
for the wave function Φ.

Lemma: For any two three vectors A and B,

(γ · A)(γ · B) = A · B +
i
2

γ · A× B. (A5)

Proof is as follows:
(γi Ai)(γ

jBj) = γiγj AiBj

= δij(γ
i)2 AiBj +

i
2

εijkγk AiBj = γ0 AiBi +
i
2

γk(A× B)k, (A6)

where we have used Equations (A1)–(A4).



Entropy 2021, 23, 1205 14 of 16

Appendix A.2. Conserved Current

By factorizing the d’Alembertian operator, we obtain two equations (see Ref. [13] for
more details):

γν(x)(∂ν + Ων)Φ(x) = 0, (A7)

γµ(x)
(

∂µ + Ω∗µ
)

Φ∗(x) = 0, (A8)

where Φ∗ is the complex conjugate of Φ, Ωµ(x), and Ω∗µ(x) are the connection coefficients
for the functions Φ(x) and Φ∗(x). Here, we note that Ω(x) = −Ω∗(x). We use the
equations above to prove our claim for the conserved current. We multiply Equation (A7)
by the Hermitian conjugate ΦH and Equation (A8) by the transposed ΦT of Φ, and sum
both equations to obtain the following:

Eν
a ψH

1 γa∂νψ1 + · ·+Eν
a ψH

(4s)γ
a∂νψ(4s) + Eν

a ψ1γa∂νψH
1 + · ·+Eν

a ψ(4s)γ
a∂νψH

(4s) = 0. (A9)

Now, we can sum pairs of terms, such as the following:

Eµ
a ψH

n γa∂µψn + Eµ
a ψnγa∂µψH

n = ∂a(ψ
H
n γaψn). (A10)

Inserting Equation (A10) in Equation (A9) yields the following:

∂0(ΦHΦ) + ∂k

(
ΦHγkΦ

)
= 0; k = 1, 2, 3. (A11)

This explains intuitively why the conserved current does not depend on the spin connection.
Note that ΦHΦ is positive definite and is interpreted as the probability density.

Appendix A.3. Commuting Variable

In what follows, we show that the total angular momentum J = L + S , J2, J3,
κ = 2γ · L− 1 and parity P form a complete set of commuting observables. To show that,
we recall that the Hamiltonian of the free field and the ith component of the orbital and
spin angular momentum are given by the following:

H0 = −iγl∂l , (A12)

Li = −iεijkxj∂k, (A13)

and,
Si = εijkγj∂k. (A14)

Then, by simple algebraic manipulations, one finds the following:

[Li, H0] = +εijkγj∂k, (A15)

and,
[Si, H0] = −εijkγj∂k. (A16)

Then, from the expressions of Equation (A15) and (A16), the ith component of the total
angular momentum commutes with the Hamiltonian such that the following holds:

[J3, H0] = 0, (A17)[
J2, H0

]
= 0. (A18)

The operator K = 2γ · L− 1 also commutes with Ji since the following holds:

[Li, K] = [Li, 2γ · L] = 2
(

Liγ
jLj − γjLjLi

)
= 2iγjεijkLk, (A19)
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[Si, K] = [γi, 2γ · L] = 2
(

γiγ
jLj − γjLjγi

)
= 2

[
γi, γj

]
Lj = 2iεikjγjLk. (A20)

These two expressions above sum to zero; hence, we have the following:

[Ji, K] = 0, (A21)

Now we show that the parity operator commutes with the Hamiltonian. By definition, we
have the following:

P = βP; β =

(
I2s 0
0 −I2s

)
, (A22)

where P and P are the parity operators acting on the spinors and on coordinates, respec-
tively. Indeed, the following holds:

[P , H0] = [βP,−iγk∂k] = −iβPγk∂k + γk∂kiβP = −iβγkP∂k + iγkβ∂kP

= −iβPγk(−∂kP) + iγkβ∂kP = i
{

β, γk
}

∂kP = 0. (A23)

We have used the fact that P does not depend on the coordinates and, therefore, ∂kP =
0. Furthermore, the parity operator commutes with Ji since [P , Ji] = β[P, Ji]. The coordinate
parity operator P commutes with Ji since the angular momentum is a pseudovector.

[K, H0] = [γiLı̈,−iγk∂k] = −iβPγk∂k + γk∂kiβP = −iβγkP∂k + iγkβ∂kP

[H0, K] =
[
−i γ·r̂

(
∂r +

1
r −

1
r K
)

, K
]

= −i γ·r̂
(

∂r +
1
r −

1
r K
)

K + iK γ·r̂
(

∂r +
1
r −

1
r K
)

=
[
−i γ·r̂

(
∂r +

1
r

)
, K
]
+
[
i 1

r γ·r̂K, K
]

= −i
(

∂r +
1
r

)
[γ·r̂, K] + i 1

r [γ·r̂K, K]

= −i
(

∂r +
1
r

)
[γ·r̂, γ·L] + i 1

r [γ·r̂γ·L, γ·L]

= −i
(

∂r +
1
r

)
(γ·r̂γ·L− γ·Lγ·r̂) + i 1

r (γ·r̂γ·Lγ·L− γ·Lγ·r̂γ·L)

= −i
(

∂r +
1
r

)
(γ·r̂γ·L− γ·Lγ·r̂) + i 1

r (γ·r̂γ·L− γ·Lγ·r̂)γ·L

Now, the anti-commutator in the parenthesis vanishes. Using the identity above, we
have the following:

(γ·r̂γ·L− γ·Lγ·r̂)=
(

r̂·L + i
1
2

γ·r̂× L− L·r̂− i
1
2

γ·L× r̂
)
= 0.

To conclude, H0, J2, J3, K and P form a complete set of commuting operators.
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