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Abstract: This research models and forecasts daily AQI (air quality index) levels in 16 cities/counties
of Taiwan, examines their AQI level forecast performance via a rolling window approach over a
one-year validation period, including multi-level forecast classification, and measures the forecast
accuracy rates. We employ statistical modeling and machine learning with three weather covariates of
daily accumulated precipitation, temperature, and wind direction and also include seasonal dummy
variables. The study utilizes four models to forecast air quality levels: (1) an autoregressive model
with exogenous variables and GARCH (generalized autoregressive conditional heteroskedasticity)
errors; (2) an autoregressive multinomial logistic regression; (3) multi-class classification by support
vector machine (SVM); (4) neural network autoregression with exogenous variable (NNARX). These
models relate to lag-1 AQI values and the previous day’s weather covariates (precipitation and
temperature), while wind direction serves as an hour-lag effect based on the idea of nowcasting. The
results demonstrate that autoregressive multinomial logistic regression and the SVM method are the
best choices for AQI-level predictions regarding the high average and low variation accuracy rates.

Keywords: ARX-GARCH model; autoregressive logistic regression; artificial neural network;
machine learning; support vector machine; multi-class classification; one-step-ahead forecast; training
and validation

1. Introduction

Monitoring air quality is important for human health and the environment. The
well-known air quality index (AQI) presents the status of daily air quality and shows the
degree of air pollution and how certain factors affect people’s health. This index covers five
major air pollutants: (1) ground-level ozone; (2) particle pollution (known as particulate
matter, including PM2.5 and PM10); (3) carbon monoxide; (4) sulfur dioxide; (5) nitrogen
dioxide. The higher the AQI level is, the greater is the degree of air pollution, and the more
serious its impact is on the health of human beings. The U.S. Environmental Protection
Agency (EPA) typically employs an AQI value of 100 as the benchmark for air quality to
help protect people’s health. With reference to U.S. standards, Taiwan’s AQI includes an 8-h
moving average of ozone, an hourly average of ozone, a 12-h weighted average of PM2.5,
a 12-h weighted average of PM10, an 8-h average of carbon monoxide, hourly average of
sulfur dioxide, and hourly average of nitrogen dioxide. With a total of seven indicators,
the most serious index value then denotes the value of AQI. The U.S. EPA classifies AQI
values into six levels, and each level corresponds to different health problems; see Table 1.

Predicting AQI classes plays an important role in issuing health alerts when AQI
levels exceed the specified levels. This study thus aims to build a forecasting system based
on the level of AQI rather than AQI values. Categorical time series can be either nominal or
ordinal. The time series of AQI levels is ordinal in the sense that the class increases as the
AQI interval value increases. Some studies in the literature focus on forecasting AQI values
or individual pollutant concentrations based on neural network, mode decomposition,
and ARIMA (autoregressive integrated moving average) models; e.g., [1–5]. Alternatively,
Liu et al. [6] propose a zero-one-inflated bounded Poisson model for air quality level
data, while Kim [7] employs a generalized linear model for the ozone level. Our study
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mainly predicts multi-level AQI classifications, which help forecast qualitative AQI at
time t based on information up to t− 1. With respect to the prediction, we should not
utilize current information, especially as AQI includes the pollutants SO2, NO2, O3, CO,
PM10, and PM2.5. We instead consider three weather covariates and seasonal variables
that could influence the change in AQI, including daily accumulated precipitation (PRE),
daily average temperature (TEM), and daily wind direction (WD). Henry et al. [8] use
nonparametric regression to determine the relationship between the concentrations of
air pollutants and WD. We utilize an hour-lag effect of WD, which is widely used by
meteorologists for nowcasting—that is, information of the covariate WD is available up to
time (t + m− 1), where m is the hour difference between AQI and WD.

Table 1. AQI’s six levels based on the U.S. EPA, where each level corresponds to different heal-
th problems.

Value Color AQI Levels of Health Concern

0–50 Green Good
51–100 Yellow Satisfactory
101–150 Orange Moderately
151–200 Red Poor
201–300 Purple Very poor
301–500 Maroon Hazardous

As AQI relates to its own historical information [9], we utilize the following statistical
modeling and machine learning approaches with the three weather covariates and seasonal
dummy variables for the predictions. First, we employ an autoregressive model with the
above-mentioned weather covariates (commonly called exogenous variables) and GARCH
(generalized autoregressive conditional heteroskedasticity) errors if heteroscedasticity
exists in the time-series data; see So et al. [10] and Chen et al. [11]. The ARCH and GARCH
models originally appear in Engle [12] and Bollerslev [13] and have been widely used in
modeling the conditional second-moment properties of time-series data. We observe that
the time series of AQI values exhibit conditional heteroskedasticity and autocorrelation
in the squared series, which are said to have ARCH effects. We then predict one-step-
ahead AQI values and convert them into the AQI level based on this proposed model,
which we name the ARX-GARCH model. Here, “X” stands for those covariates and
seasonal variables.

Second, we employ an autoregressive multinomial logistic regression for the AQI
ordinal response variable, for which this model includes the lag-1 AQI value, the weather
covariables, and seasonal variables. This model is an excellent tool for analyzing binary
and ordinal data, allowing us to estimate effects and to make predictions [14]. We call this
model the AR logistic regression for short hereafter. Some popular classifiers to forecast
pollution are neural networks [15] and support vector machines (SVM) [16,17]. SVM,
a type of machine learning technique, is a supervised learning model with related learning
algorithms that analyze data used for binary and multi-level classifications.

Third, we use the SVM method with the same covariates as in the AR logistic regres-
sion for classification and prediction. Liu et al. [17] utilize the current effects of PM2.5,
PM10, SO2, CO, NO2, and O3 as input variables. On the contrary, our study excludes these
current effects for the forecast purpose. We instead incorporate the lag-1 AQI value in the
forecasting models since AQI covers the five major air pollutants, which simultaneously
include many lags of the major pollution concentrations.

Fourth, we employ the neural network autoregression with exogenous variable
(NNARX) model, which is capable of recognizing, classifying, or predicting datasets.
Applications of autoregressive neural network modeling have been successfully predicting
time-series datasets; e.g., Hertz et al. [18] and Hyndman and Athanasopoulos [19].
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This study encounters several missing values in AQI, such as accumulated precipita-
tion, daily average temperature, and wind direction. In order to preserve the characteristics
of the time series, we do not remove any missing values directly for information loss and
instead adopt k-nearest neighbors as proposed by Cover and Hart [20] to fill in the missing
values; see Torgo [21] for the k-Nearest Neighbors (knn) algorithm. Hence, we implement
the knn imputation to fill in the missing value under different k values with different
variables to make the mean absolute error (MAE) and root mean squared error (RMSE) as
small as possible.

The rest of this study runs as follows. Section 2 introduces the models for forecasting
ordinal time series—the AQI levels. Section 3 shows the data description and provides
information about training/validation of the methodology in order to assess the forecast
performance. Section 4 provides the AQI level forecasts and evaluates forecast accuracy.
Finally, Section 5 offers concluding remarks.

2. Models and Methods

To predict the one-step-ahead AQI level, we describe the four proposed models for
the daily prediction as follows. Let Yt be the daily AQI value, Yt−1 is the previous day’s
AQI value, and (X1,t, X2,t, X3,t) are respectively PRE, TEM, and WD. Let Y∗t , t = 1, . . . , n be
the observed AQI level at time t, with the following r possible outcomes:

Y∗t =

{
j if the jth level is observed at time t,
0 otherwise,

for j = 1, . . . , r. The proposed methods consider a seasonal or periodic pattern to improve
the prediction via seasonal dummy variables or a monthly indicator.

Model 1: The ARX model with GARCH errors

Yt = φ0 + φ1Yt−1 + f (X1,t−1, X2,t−1, X3,t+m−1) + SNt + at, (1)

at = σtεt, εt
iid∼ St(ν, r)

σ2
t = α0 + α1a2

t−1 + β1σ2
t−1, (2)

f (.) = γ1X1,t−1 + γ2X2,t−1 + γ3X3,t+m−1, (3)

SNt = βs1Ds1,t + βs2Ds2,t + . . . + βs11Ds11,t,

Dsi,t =

{
1 if t is in month i
0 otherwise,

where at is the error term; εt follows the skewed Student-t distribution by Hansen [22]
since the data are non-normal; and St(ν, r) is a skewed Student-t distribution with shape
parameter ν and skewness parameter r. Here, (1) and (2) are respectively the mean equation
and the volatility equation. The lag m of X3,t+m−1 denotes the time difference in hours
between AQI and WD. It is based on the idea of nowcasting. In order to guarantee
stationarity and positiveness in volatility, we restrict the parameters as:

S1 : |φ1| < 1

S2 : α0 > 0, α1, β1 ≥ 0, α1 + β1 < 1.

As the ARX-GARCH models in (1) are designed for continuous dependent variables, we
obtain the one-day-ahead forecast based on the ARX-GARCH model and then convert the
forecasts into the AQI level as in Table 1.
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Latent variable models with observed ordinal variables are particularly useful for
analyzing the AQI levels. Next, we consider an AR logistic regression for Y∗t .

Model 2: The AR logistic regression

The conditional probability for the AQI level at day t is:

Pr(Y∗t = i|Yt−1, X1,t−1, X2,t−1, X3,t+m−1) =

exp(gi(Yt−1, X1,t−1, X2,t−1, X3,t+m−1, SNt))

1 + ∑r−1
j=1 exp

(
gj(Yt−1, X1,t−1, X2,t−1, X3,t+m−1, SNt)

) , (4)

where gi(.) is a linear function with i = 1, . . . , r− 1. Apart from this model, Weiß [23] and
subsequently Liu et al. [6] propose two new methods for dealing with ordinal time series;
e.g., the rank-count approach for time series modeling.

Model 3: The SVM classification method

SVM classification is an optimization problem, which is a machine learning algorithm
for the dependent variable, isolating the group to which it should belong. If the subset
trained in two dimensions is a linearly separable set, then it means that the whole set itself
is linearly separable. We also can use SVM for classifying a non-linear dataset and conduct
the classification by projecting the dataset into a higher dimension in which it is linearly
separable. We consider multi-dimensions, where the dividing line becomes a separating
hyperplane and separates into more than two different levels. The hard-margin must be
met so that the distance between the separating hyperplane and each group is equal; in
other words, the margins are maximized. We use the SVM method, and the hyperplane
h(X) is:

h(X) = α + φ1Yt−1 + f (X1,t−1, X2,t−1, X3,t+m−1) + β4Mt, (5)

Mt =

{
i if t is in month i
0 otherwise,

where f (.) is the same as in Equation (3). The algorithm creates a line or a hyperplane
that separates the data in the training (or learning) period into classes. Each hyperplane
h(X) that is trained by the learning period divides the validation period into specific levels
and gives a score based on their proximity to the hyperplane. We execute the final step of
classifications by assigning the validation period to the level from which they obtain the
highest score.

Model 4: We consider the NNARX model, feed-forward networks, and two hidden lay-
ers and use the notation NNARX(1,2). This model includes the lag-1 AQI value and
{X1,t−1, X2,t−1, X3,t+m−1} as exogenous variables. The NNARX model with hidden layers
achieves greater forecasting accuracy, but the cost is a large computation time as the number
of hidden layers increases.

3. Data Collection

Particulate pollutants originating from the Asian continent, in particular eastern China,
are often carried to Taiwan along with the monsoons; see Hsu et al. [24]. This means the WD
covariate plays a significant role in the prediction of the AQI level. The other pollutants
in Taiwan mainly come from domestic combustion such as the burning of fossil fuels
(industrial emissions). The remainder comes from traffic emissions and other air pollution
sources. The industrial centers and business parks along the northern and western coasts
of Taiwan are surrounded by high mountains, which lead to poor avenues of dispersement
and can trap pollutants [24].

Chen et al. [25] support the causal relationship between weekly influenza cases and
weekly adjusted accumulative PM2.5 in the central and southern regions of Taiwan for
various age groups. Traffic-related emissions and coal combustion are the sources of toxic
metals in PM10 and PM2.5, respectively, leading to high risks of cancer [24]. Tseng et al. [26]
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provide epidemiological evidence that more than 50% of all patients with lung cancer had
never smoked and present a positive association between lung cancer and PM2.5 exposure
in Taiwan, while Tang et al. [27] demonstrate that air pollution in Taiwan, represented by
PM2.5 or PSI (Pollutant Standards Index), moderately correlates with the development of
atopic dermatitis in adults.

Wide differences in air pollution trends have existed between northern and southern
Taiwan for decades [26]. We thus investigate daily AQI from the monitoring stations of 16
cities/counties in Taiwan from north to south on the country’s west coast, whose names are
listed in Table 2 and their geographical locations appear in Figure 1. Our dataset covers a
total of 1227 observations from 30 November 2016 to 9 April 2020 at each monitoring station
and includes daily data for AQI, PM2.5, PRE, TEM, and WD for the 16 cities/counties
from EPA, Executive Yuan, Taiwan. The training period includes 852 observations (from
30 November 2016 to 31 March 2019), and we use the last 375 days (from 1 April 2019
to 9 April 2020) as the validation period via a rolling window approach. In order words,
we choose a rolling sample size of 852 for parameter estimation (or classification) in the
training period and forecast the one-day-ahead AQI level for the validation period. The
mechanism of the rolling window approach appears in Figure 2. We measure WD in units
from 0◦ to 360◦. When the wind speed is ≤ 0.2 m/s, we record WD as 0◦ and the north
wind as 360◦. As the variable WD (in degrees) itself does not have any physical meaning,
we classify wind directions in sixteen sectors in Table 3, making it a quantitative variable.

Figure 1. Geographical locations of the 16 sites in Taiwan. Taipei: site 1; Taoyuan: site 2; Hsinchu:
site 3; Miaoli: site 4; Taichung: sites 5 and 6; Changhua: site 7; Yunlin: site 8; Chiayi: sites 9 and 10;
Tainan: sites 11 and 12; Kaohsiung: sites 13 and 14; Pingtung: sites 15 and 16.

Some missing values are present in the dataset that are often encountered in practice.
The percentages of missing values for AQI are between 0.97% and 2.09%. A small portion of
missing values also occurs in the weather covariates. When we deal with a tiny proportion
of missing values, we still need to tackle this problem in time series data. We employ the
book-associated R package called “DMwR” in Torgo [21] to impute the missing values.
Due to limited space, we summarize how we handle missing value imputation below.

(1) PRE or TEM with missing values: If PRE (TEM) is missing at day t, then we select the
valid data of the nearest station to impute the missing value.
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(2) AQI with missing values: We use k = 4 in the knn algorithm in terms of the smallest
MAE and RMSE to impute the missing AQI value. We first identify the four days
with PRE, TEM, WD, PM2.5, and seasonal dummy values closest to the day with
missing AQI, and the missing AQI is then substituted by the weighted average of
the AQI values of these four days. The weights decrease as the distance of the case
to its neighbor lengthens. We use a Gaussian kernel function to obtain the weights
from the distances and refer for a detailed description of the distance to Torgo [21] on
pages 61–62.

(3) WD with missing values: We again use k = 4 in the knn algorithm to impute the
missing WD value. We first identify the four days with PRE, TEM, AQI, PM2.5,
and seasonal dummy values closest to the day with missing WD, and the missing
WD is then substituted by the weighted average of the WD values of these four days.

In order to better understand the characteristics of our datasets, Table 2 displays
descriptive statistics of AQI values for each site, which include mean, standard deviation
(std), minimum, maximum, and p-values of the ARCH test. All averages of AQI values
are above 50 except for Hengchun (44.8 at site 16), as Hengchun Peninsula in Pingtung
County is considered to have clean air. Kaohsiung and Pingtung (sites 13, 14, and 15) have
the three worst AQI values among the observed sites in this study. The p-values of the
Kolmogorov–Smirnov test (H0: The series is from a normal distribution) are all less than
0.0001, indicating that the AQI data do not follow a normal distribution.

Figure 2. The rolling window approach

Table 2. Descriptive statistics of daily AQI values.

Site City/County Mean Std Min Max ARCH Test
(p-Value)

1 Shilin, Taipei 54.888 23.799 13 185 <0.0001
2 Taoyuan, Taoyuan 54.925 24.443 15 197 <0.0001
3 Dongqu, Hsinchu 57.873 27.444 12 203 <0.0001
4 Miaoli, Miaoli 61.197 25.893 13 172 <0.0001
5 Xitun, Taichung 67.271 32.275 19 190 <0.0001
6 Fengyuan, Taichung 62.861 29.702 15 207 <0.0001
7 Changhua, Changhua 65.298 31.092 15 190 <0.0001
8 Douliu, Yunlin 80.409 38.347 1 195 <0.0001
9 Xingang, Chiayi 74.014 34.615 6 179 <0.0001
10 West, Chiayi 75.400 36.941 16 179 <0.0001
11 West Central, Tainan 74.512 37.539 17 195 <0.0001
12 Xinying, Tainan 74.445 34.831 15 179 <0.0001
13 Zuoying, Kaohsiung 81.031 42.767 17 210 <0.0001
14 Quian, Kaohsiung 79.332 41.196 17 197 <0.0001
15 Pingtung, Pingtung 81.964 39.995 15 206 <0.0001
16 Hengchun, Pingtung 43.935 21.498 3 182 <0.0001



Entropy 2021, 23, 1167 7 of 13

Table 3. Wind direction and degree.

Category Degree Direction

1 348.75–11.25 N
2 11.25–33.75 NNE
3 33.75–56.25 NE
4 56.25–78.75 ENE
5 78.75–101.25 E
6 101.25–123.75 ESE
7 123.75–146.25 SE
8 146.25–168.75 SSE
9 168.75–191.25 S

10 191.25–213.75 SSW
11 213.75–236.25 SW
12 236.25–258.75 WSW
13 258.75–281.25 W
14 281.25–303.75 WNW
15 303.75–326.25 NW
16 326.25–348.75 NNW

The ARCH test is a Lagrange multiplier test to assess the significance of ARCH effects.
A small p-value indicates rejection of the null hypothesis (H0: There is no ARCH effect) in
favor of the alternative. All p-values of the ARCH test are less than 0.0001, which supports
the existence of ARCH effects. Heteroscedasticity refers to residuals for an AR model that
do not have a constant variance. Therefore, we need to specify the GARCH effect and
non-normal errors instead of regular AR models. Table 4 lists descriptive statistics for two
weather covariates: PRE and TEM. The standard deviation of “PRE” increases toward the
south in general.

Table 4. Descriptive statistics of two daily weather covariates.

Site City/County PRE TEM
Mean Std Max Mean Std Min Max

1 Shilin, Taipei 4.70 14.40 202.0 23.94 5.32 8.10 33.10
2 Taoyuan, Taoyuan 5.02 15.28 175.0 22.25 5.56 6.90 32.40
3 Dongqu, Hsinchu 4.03 14.64 260.0 23.41 5.35 7.60 31.80
4 Miaoli, Miaoli 3.73 12.53 151.0 23.32 5.35 7.50 31.60
5 Xitun, Taichung 4.22 15.23 179.0 23.80 5.03 7.90 31.60
6 Fengyuan, Taichung 5.17 19.28 279.0 23.20 4.84 6.40 30.80
7 Changhua, Changhua 4.54 15.97 164.5 23.38 4.63 7.80 31.20
8 Douliu, Yunlin 4.67 19.41 415.0 23.70 4.64 8.20 31.30
9 Xingang, Chiayi 3.87 16.43 332.5 23.93 4.71 9.00 31.20
10 West, Chiayi 4.85 19.32 417.0 24.35 4.59 9.20 31.70
11 West Central, Tainan 5.00 21.71 373.0 24.97 4.44 9.70 31.60
12 Xinying, Tainan 4.62 20.50 451.5 24.33 4.57 9.00 31.50
13 Zuoying, Kaohsiung 4.62 19.24 283.5 24.97 4.03 10.20 30.90
14 Qiangin, Kaohsiung 5.06 21.02 291.5 25.32 3.85 10.90 30.30
15 Pingtung, Pingtung 6.44 24.92 357.0 25.14 3.57 11.00 31.20
16 Hengchun, Pingtung 5.42 20.18 326.0 25.91 3.12 15.50 31.00

Figure 3 shows the time series plots of daily AQI values (imputation for missing
datapoints) for Shilin, Fengyuan, Zuoying, and Pingtung (sites 1, 6, 13, and 15 given in
Table 2). These four monitoring stations represent the north, center, and south of Taiwan.
Figures 4 and 5 illustrate their related daily PRE and TEM in the same four sites. The
time series plots of AQI present obvious seasonal patterns with a gradual decrease in
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May each year. AQIs are relatively low in June and July and gradually increase again
until October. The pattern denotes that AQI is lower in summer than in other seasons,
and the worst season is winter. We clearly notice that the rainy season is from May to
September, and the highest amount of daily accumulated precipitation appears in July
and August. Other cities/counties also present similar seasonal patterns. We observe
that heavy rain is more likely to occur in the central and southern regions. In addition,
the average temperature also shows a seasonal pattern. There are no sixth-level AQI values
(301–500) in this study. We present the relative frequencies of AQI levels for each month
based on the four monitoring stations noted above in Figure 6. We discover that a larger
proportion of the first level (good) appears during summer. “Moderate” and “poor” air
quality occurs in summer in a small proportion and then at a higher proportion in spring
and winter. We scrutinize larger proportions in levels 2 and 3 (AQI > 100) in Zuoying and
Pingtung, which represent south Taiwan.

Figure 3. Time series plots of daily AQI values for Shilin, Fengyuan, Zuoying, and Pingtung (sites 1,
6, 13, and 15) from 30 November 2016 to 9 April 2020.

Figure 4. Time series plots of daily PRE for Shilin, Fengyuan, Zuoying, and Pingtung (sites 1, 6, 13,
and 15) from 30 November 2016 to 9 April 2020.
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Figure 5. Time series plots of daily TEM for Shilin, Fengyuan, Zuoying, and Pingtung (sites 1, 6, 13,
and 15) from 30 November 2016 to 9 April 2020.

Figure 6. Monthly AQI levels for Shilin, Fengyuan, Zuoying, and Pingtung (sites 1, 6, 13, and 15)
from 30 November 2016 to 9 April 2020.

4. Results

We predict the one-day-ahead AQI level by using a rolling window approach with
a hold-out set: 375 days, which cover just a bit more than one year. We evaluate forecast
performance for air quality levels, which include two levels and four levels based on four
models: (1) the ARX-GARCH model; (2) the AR logistic regression; (3) the SVM method;
(4) the NNARX model.

We add 11 monthly dummy variables as covariates in the ARX-GARCH model and
AR logistic regression since the AQI time series presents a seasonal pattern. We use 1
to 12 values of the month indicator variable in the SVM method and NNARX model,
because this setup improves the accuracy rate in the AQI-level prediction. We estimate the
model parameters and the one-day-ahead forecasts by using the R package “rugarch” [28]
for Model 1 (ARX-GARCH model). For the AR logistic regression and SVM method, we
use the R package “MASS” [29] and the “e1071” package [30], respectively. For the NNARX
model, we employ the R package “neuralnet”.

The categorization used for the two-level forecast is based on the threshold 100 (1st
level: AQI ≤ 100; 2nd level: AQI > 100). Table 5 presents the correct classification rates
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for two-level predictions. The accuracy rates of all sites are greater than 81% for the
SVM method. Most accuracy rates by the AR logistic and NNARX models are over 80%,
except for site 15 at 78.13%, while the NNARX model has accuracy rates of 79.73% and
78.40% for sites 13 and 15, respectively. The ARX-GARCH model does not predict sites 8,
13, 14, and 15 very well.

We refine the second category into three levels: (i) 101–150 slightly polluted; (ii) 151–
200 moderately polluted; (iii) 201–300 heavily polluted. When we turn to multi-level
forecasting, Table 6 illustrates the percentage accuracy, average, standard deviation (std),
and coefficient of variation (CV) of the four models. We show boxplots (a five-number
summary with minimum, 1st quantile, median, 3rd quantile, and maximum) for the two-
level and four-level predictions in Figures 7 and 8. The notation4 stands for the average
of accuracy rates from all 16 sites for each model. We summarize the results as follows.

1. The overall performances of the AR logistic regression, SVM, and NNARX are similar.
Most accuracy rates by the three models are over 80%, except for sites 13 and 15.
The SVM classification method has the highest average accuracy rate (88.53%) and
the lowest standard deviation (7.00%) in the four-level predictions. The SVM method
and AR logistic regression provide the lowest CV values among the four forecasting
techniques. A lower CV is favored because it provides the most optimal forecasting
performance with low variability, but a high average accuracy rate.

2. The prediction performance is relatively low at sites 13 and 15, and so we need to
scrutinize the time series data carefully. We perceive that the major misspecified
levels occur in October. The three classification models (AR logistic regression, SVM,
and NNARX) tend to misspecify the rare level.

3. The lag-1 weather covariates of PRE and TEM with the hour-lag effect of WD
are able to generate a reliable prediction level. We also consider wind speed and
weekly/monthly weighted moving averages of AQI as extra covariates. However,
these covariates do not improve forecast accuracy. Therefore, we do not include their
results in the paper.

4. The ARX-GARCH model is for quantitative forecasting purposes. The classification of
wind directions in the sixteen sectors may not be suitable as an explanatory variable
for this model.

Table 5. Accuracy based on two forecast levels.

Site City/County Accuracy (%)
ARX-GARCH AR Logistic SVM NNARX

1 Shilin, Taipei 95.20 95.20 95.47 95.47
2 Taoyuan, Taoyuan 95.20 95.44 96.53 96.53
3 Dongqu, Hsinchu 93.60 93.16 97.07 93.07
4 Miaoli, Miaoli 96.00 96.71 96.80 97.33
5 Xitun, Taichung 86.13 87.85 90.93 89.07
6 Fengyuan, Taichung 88.53 89.62 88.27 89.07
7 Changhua, Changhua 91.73 91.20 94.67 94.13
8 Douliu, Yunlin 78.13 81.52 84.27 82.93
9 Xingang, Chiayi 83.47 86.58 85.60 84.27
10 West, Chiayi 81.87 85.32 85.60 88.27
11 West Central, Tainan 80.53 83.04 83.20 82.93
12 Xinying, Tainan 84.00 87.85 87.20 86.13
13 Zuoying, Kaohsiung 78.93 82.67 81.60 79.73
14 Qianjin, Kaohsiung 76.80 82.40 83.47 82.13
15 Pingtung, Pingtung 73.07 78.13 82.93 78.40
16 Hengchun, Pingtung 97.60 98.23 97.07 97.07
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Table 6. Accuracy based on four forecast levels.

Site City/County Accuracy (%)
ARX-GARCH AR Logistic SVM NNARX

1 Shilin, Taipei 95.47 95.20 95.47 95.47
2 Taoyuan, Taoyuan 96.80 96.80 96.53 93.03
3 Dongqu, Hsinchu 93.33 93.60 97.07 93.07
4 Miaoli, Miaoli 97.07 97.07 96.80 97.33
5 Xitun, Taichung 86.67 89.07 90.40 88.80
6 Fengyuan, Taichung 88.27 88.80 88.27 88.80
7 Changhua, Changhua 93.87 94.67 94.67 94.13
8 Douliu, Yunlin 76.27 82.13 82.13 81.07
9 Xingang, Chiayi 84.00 85.07 85.60 84.27
10 West, Chiayi 82.93 85.33 85.07 88.00
11 West Central, Tainan 82.13 83.73 82.67 82.67
12 Xinying, Tainan 86.13 87.20 86.67 85.87
13 Zuoying, Kaohsiung 75.73 78.13 76.80 75.47
14 Qianjin, Kaohsiung 75.20 80.53 82.40 80.53
15 Pingtung, Pingtung 70.13 74.40 78.93 74.93
16 Hengchun, Pingtung 97.07 96.80 97.07 96.80

Average (%) 86.32 88.03 88.53 87.52
Std (%) 8.825 7.182 7.000 7.234
CV 0.1022 0.0816 0.0790 0.0826

Figure 7. Forecasting performance for two-level classifications. “4”denotes the average of accuracy
rates from all 16 sites.

Figure 8. Forecasting performance for four-level classifications. “4” denotes the average of accuracy
rates from all 16 sites.
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5. Conclusions

This study predicts one-day-ahead AQI levels for 16 cities/counties in Taiwan based
on training/validation of the methodology set up herein and examines forecast accuracy
by considering the ARX-GARCH, AR logistic regression, SVM, and NNARX models. We
assess the accuracy of these forecasting models by a rolling window approach. These
models relate to lag-1 AQI values and previous day weather covariates (PRE and TEM),
while WD is a time-lag effect based on the idea of nowcasting. The results demonstrate that
AR logistic regression and the SVM method are the best choices for AQI-level predictions
regarding the high average and low variation accuracy rates among the four forecasting
techniques. This information can greatly help the authorities to take proper action for
AQI-level prediction.

There are many other established tools for ordinal time series classification, and it is
worthwhile to predict ordinal time series using two other recently developed methods: the
distance-based approach and the bounded-count method. We leave these new techniques
for forecasting ordinal time series as a future research direction.
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