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Abstract: The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be
completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps
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1. Introduction

Lorenz maps are interval maps which appear in a natural way as Poincaré sections
in the Lorenz attractor. Their construction was independently discovered in works of
Guckenheimer [1], Williams [2] and Afraimovich, Bykov and Shil‘nikov [3]. This is one of
the possible tools that can be used to obtain a better insight into the widely studied Lorenz
model. Families of Lorenz maps are usually derived from the so-called geometric Lorenz
model, where, by definition, the Poincaré section leads to a map f : [0, 1]→ [0, 1] satisfying
the following three conditions:

1. There is a critical point c ∈ (0, 1) such that f is continuous and strictly increasing on
[0, c) and (c, 1];

2. limx→c− f (x) = 1 and limx→c+ f (x) = 0;
3. f is differentiable for all points not belonging to a finite set F ⊆ [0, 1] and infx 6∈F f ′(x) > 1.

Following the standard terminology, we call these maps expanding Lorenz maps due to
uniform expansion provided by condition (3). The definition of the Lorenz map extends
to maps defined on any compact interval [a, b] in an obvious way. Since the first papers,
huge progress has been made towards understanding of the dynamics of Lorenz maps. A
nice summary of different approaches and techniques (e.g., kneading theory of Milnor and
Thurston, Markov partitions, renormalizations, etc.) can be found in the PhD thesis of M.
St. Pierre, see [4] (cf. [5]) or the PhD thesis of B. Winckler, see [6] (cf. [7,8]). The simplest
examples of Lorenz maps are transformations x 7→ βx + α. Even in this simple context,
the dynamics is quite rich, and full characterization of standard notions as transitivity or
mixing is quite challenging, e.g., see Glendinning [9], Glendinning and Sparrow [10] where
a first insight into this topic has been gained and more recently in [11–13]. Beyond the
linear case, a much more complex world of dynamics appears. The variety of examples
increases even more if we drop the expanding assumption. It is possible to renormalize the
dynamics an infinite number of times which leads to many interesting results, including
strange attractors with irregular dynamical behavior (see [7] or [8]).
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For the convenience of the reader, let us recall the definition of renormalization. Let
f : [0, 1]→ [0, 1] be an expanding Lorenz map. If there is a proper subinterval (u, v) 3 c of
(0, 1) and integers l, r > 1 such that the map g : [u, v]→ [u, v] defined by

g(x) =

{
f l(x), if x ∈ [u, c),
f r(x), if x ∈ (c, v],

is itself a Lorenz map, then we say that f is renormalizable or that g is a renormalization of f .
The interval [u, v] is called the renormalization interval.

By expanding Assumption (3), in this paper, we encounter only finitely renormalizable
Lorenz maps, that is, after some number of renormalizations, we obtain a Lorenz map
which does not have renormalization. A nonwandering set of expanding Lorenz maps has
been described in [14] with the following decomposition (see also [10]):

Ω( f ) = Ω0 ∪ . . . ∪Ωn ∪W (1)

where Ωi are invariant sets coming from consecutive nontrivial renormalizations, and
W is the orbit of the interval A corresponding to the terminal renormalization, i.e., a
renormalization which does not have any further renormalization.

A nonwandering set is tightly connected with the notion of ω-limit sets, which are
among the most basic objects studied by the qualitative theory of dynamical systems.
Blokh’s Decomposition Theorem (e.g., see [15]) provides full characterization of possible
ω-limit sets in continuous interval maps, and [16] shows that the space of these sets is
closed, in particular, a maximal ω-limit set always exists. These results do not apply
directly to Lorenz maps (which are not continuous), but we can always present such a
map by standard blow-up techniques, as maps on the Cantor set and view it as topological
dynamical system. Then, knowledge from these two realms (interval dynamics and
symbolic dynamics) can be used for the analysis. A dual concept to ω-limit sets are α-limit
sets. In the case of homeomorphisms, they are simply ω-limit sets of the inverse map. In
the case of non-invertible maps, the definition is not that simple nor obvious. We have at
least three possible approaches. The first approach is to take the set of all accumulation
points of the set of pre-images f−n(x) as an α-limit set, that is, the set

α(x) =
⋂

n≥0

⋃
k≥n

f−k({x}). (2)

This approach is probably the most popular one. It appears in the work of Coven and
Nitecki [17], who showed that for a continuous interval map, a point x is nonwandering
if and only if x ∈ α(x), or, in a more recent paper, Cui and Ding [18] studied α-limit
sets of unimodal interval maps. Another approach connects α-limits sets with single
backward trajectories, e.g., see [19] for results of this approach in interval maps showing
that all α-limits sets defined using backward trajectories are ω-limit sets but not conversely.
Finally, [20] proposes to define the α-limit set as a union of limit sets calculated along all
possible backward trajectories (so-called special α-limit sets). This way, a subset of α(x) is
obtained, since it may happen that not all points in α(x) can be obtained as limits along
the backward trajectory. Recent studies in [21,22] described basic properties of the special
α-limit sets for interval maps. Depending on the approach, different properties can be
guaranteed. For example, it is clear by the definition that α(x) is always a closed and
invariant set (this is not the case of special α-limit sets, which are not necessarily closed as
some examples show). In fact, the above mentioned studies show that accumulation points
of backward trajectories behave similarly to accumulation points for forward trajectories
only to some extent.

The main motivation for the present paper is Lemma 3.1 in [12], which is one of
the main tools in the proofs of results in that paper. It asserts that if f is an expanding
Lorenz map, then α(x) is a closed completely invariant set for every x ∈ [0, 1]. Since, as we



Entropy 2021, 23, 1153 3 of 14

mentioned above, α(x) is always closed and invariant, the missing part is f−1(α(x)) ⊂ α(x).
Let us remark here that when defining α(x) in [12], Ding considers sets { f−k(x)} which
by definition consist of points y such that limz→y+ f k(z) = limz→y− f k(z) = x. In our
construction, we will consider a point x not belonging to the orbit of the critical point, so
{ f−k({x})} = f−k({x}) for every k ≥ 0 in this case.

We show that the above mentioned statement of [12] is not true, by proving the
following theorem:

Theorem 1. There exists an expanding Lorenz map f and x such that α(x) is not backward
invariant, i.e., f−1(α(x)) \ α(x) 6= ∅.

In fact, the set α(x) in Theorem 1 will be one of the sets Ωi in Equation (1). Let us
also emphasize that Theorem 1 (and results of [12] in general, as explained below) have
important consequences from the point of view of studies on structural complexity of
Lorenz maps and their dynamics. Suppose E is a proper completely invariant closed set of
an expanding Lorenz map f , put

e− = sup{x ∈ E, x < c}, e+ = inf{x ∈ E, x > c}

and
l = N((e−, c)), r = N((c, e+))

where N(U) is the smallest integer n ≥ 0 such that c ∈ f n(U). Then, it follows from the
results of [12], Theorem A (cf. [23]) that

f l(e−) = e−, f r(e+) = e+

and the following map

RE f (x) =

{
f l(x), x ∈ [ f r(c+), c)
f r(x), x ∈ (c, f l(c−)]

(3)

is a renormalization of f . So, if α(x) was always backward invariant, it would define a
renormalization when a proper subset of [0, 1]. Unfortunately, as Theorem 1 shows, this
is not always the case, and therefore, backward invariance needs additional checking.
This comes with a surprise, since as we mentioned earlier, Lorenz maps are derived from
the Lorenz model whose discretization is invertible (and smooth); thus, all α-limits sets
are completely invariant. The problems arise when we consider dynamics induced on a
Poincaré section, because the first return map is not defined at some points of the section
which breaks the continuity and compactness. To make this map more accessible, reduction
to the Lorenz map is made, but after this step, additionally, invertibility is lost. On the
other hand, in a variety of α-limit sets backward invariance holds, see Section 7, and so for
these sets (3) can be applied, provided that considered α-limit set is not [0, 1].

Motivated by Theorem 1, we prove an analogous result for unimodal maps, that is,
continuous maps f : [0, 1]→ [0, 1] such that there exists a unique local maximum c ∈ (0, 1),
i.e., f |[0,c) is strictly increasing, f |(c,1] is strictly decreasing, and f (0) = f (1) = 0.

Theorem 2. There exists a continuous unimodal map f on [0, 1] and x such that α(x) is not
backward invariant, i.e., f−1(α(x)) \ α(x) 6= ∅.

This result shows a gap in [18], Lemma 1(4), suggesting additionally that the proofs of
the main results in [18] may be incomplete. In fact, by the same argument, we obtain that
Theorem B(1) in [18] does not hold, see Remark 3.

The analysis of α-limit sets, nonwandering sets, and invariant sets in general, allows
us to compute the (topological) entropy in constructed examples. Therefore, we use these
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examples as a testing ground to apply a few techniques to calculate the entropy of interval
maps in concrete cases.

2. Symbolic Dynamics

There is a standard technique to extend an expanding Lorenz map to a dynamical
system acting on the Cantor set. Following [24], we change [0, 1] into a Cantor set X,
and f into a continuous map f̂ by “doubling” the discontinuity point and its backward
trajectory. Strictly speaking, all elements in (

⋃∞
n=0 f−n({c})) \ {0, 1} are doubled the same

way as it is done in the standard Denjoy extension of rotation on the circle (e.g., see [25],
Example 14.9).We easily see that this new space differs from the original interval [0, 1] by,
at most, countably many points and we do not modify endpoints; hence, clearly, the new
space X is a Cantor set (we will provide an exact formula for the metric on X later). If we
denote by Ie a “hole” inserted in place of a point e, we may define f̂ : X→ X by sending
endpoints of Ie to endpoints of I f (e), provided that the hole I f (e) is defined (see Figure 1).

e f (e)

Ie I f (e)

e− e+ f (e)+f (e)−

f

f̂

Figure 1. Illustration of “holes” Ie and I f (e).

In the case of e = c, we define the image of Ic = [c−, c+] by conditions imposed in the
definition of the Lorenz map, that is, f̂ (c−) = 1 and f̂ (c+) = 0. Finally, if f (0) = c then
we define f̂ (0) = c+, and when f (1) = c we put f̂ (1) = c−. The remaining case f n(0) = c
(resp. f n(1) = c) is dealt analogously, with the only difference that f̂ (0) = a+ where
I f (0) = [a−, a+]. Observe that in this case I f (0) is also the image of a complete hole, because
f (1) > f (0). Reversing the above blow-up procedure, we obtain a map π : X → [0, 1],
which is clearly continuous.

To state a formal definition of the metric on X, we once again follow the standard
approach described in [24]. We start by ordering elements in X referring to natural order in
[0, 1]. If x, y ∈ X are the endpoints of the same hole Ia = [a−, a+], then we define

x < y ⇐⇒ x = a− and y = a+.

For x, y ∈ X which are not bounding a single hole, the following is well defined:

x < y ⇐⇒ π(x) < π(y).

For x, y ∈ X with x < y, we denote

n(x, y) := min

k ∈ N0 | ∃z ∈

 k⋃
j=0

f−j(c)

 \ {0, 1} : x < z+ and z− < y

.

Then, we introduce a metric on X by the formula

d(x, y) :=

{
|π(x)− π(y)|+ 1

N(x,y)+1 , x 6= y

0, x = y
, (4)



Entropy 2021, 23, 1153 5 of 14

where

N(x, y) :=

{
n(x, y); x < y
n(y, x); x > y

.

It is well known that the topology generated by the metric d coincides with the order
topology on X. We have a natural partition of X by sets P0 = [0, c−] and P1 = [c+, 1].
Denote Σ2 = {0, 1}N0 and let η : X 3 x 7→ η(x) ∈ Σ2 be defined by η(x)n = a if f̂ n(x) ∈ Pa.
It is clear that η is a continuous map since P0, P1 are closed and disjoint and f̂ is continuous.
The map η is also injective because if x < y, then by the expanding condition, there is an
iteration k such that the images f̂ k(x), f̂ k(y) belong to different sets Pi (this is also the case
for points in the same hole, because each hole is eventually mapped onto Ic). By definition,
η commutes between f̂ and the shift map σ : Σ2 → Σ2 defined by σ(x)n = xn+1 for all
n = 0, 1, . . .. In other words, (X, f̂ ) and (η(X), σ) are conjugate dynamical systems, that is,
(X, f̂ ) is a subshift up to conjugacy.

The reader is referred to the books [26,27] for basic definitions, facts and constructions
related to symbolic dynamics.

3. Construction of Expanding Lorenz Map f : Proof of Theorem 1

The inspiration for our example comes from [10], Figure 2b. Among other interesting
properties, an expanding Lorenz map whose kneading invariant is

(k+, k−) = (100(011)∞, 011(100)∞). (5)

should have an invariant Cantor set and cannot have a constant slope. The reader not
familiar with kneading sequences for Lorenz maps is referred to [10] and references therein.

One of the main goals of this section is to construct a map f with kneading invariant
of the form (5).

At first, we will find parameters β1, β2, β3 ∈ (1,+∞) and α1, α2 ∈ R such that

−1 < p :=
α2 − α1

β1 − β2
< q :=

1− α2

β2 − β3
< 0

which ensures that the map g : [−1, 1]→ [−1, 1] given by

g(x) =



β1x + α1; x ∈ [−1, p)
β2x + α2; x ∈ [p, q)
β3x + 1; x ∈ [q, 0)
β3x− 1; x ∈ [0,−q]
β2x− α2; x ∈ (−q,−p]
β1x− α1; x ∈ (−p, 1]

, (6)

is continuous. To ensure the appropriate form of k+, we will require additionally that g
satisfies the following conditions:

g(−1) ∈ [p, q),

g2(−1) ∈ [q, 0),

g3(−1) ∈ (−p, 1], (7)

g4(−1) ∈ (−q,−p],

g5(−1) = g2(−1).

Our construction ensures that limx→p− g(x) = limx→p+ g(x) and limx→q− g(x) =
limx→q+ g(x), therefore, g is continuous and strictly increasing on [−1, 0). Note that for
any map g of the form (6), we have the symmetry g(−x) = −g(x) for x ∈ [−1, 1] \ {0},
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which implies that g is also continuous and strictly increasing on (0, 1] and the structure of
k− is as desired. Moreover, limx→0− g(x) = 1 and limx→0+ g(x) = −1.

The conditions (7) together with formula (6) lead to the equality

g2(−1) = α2 + (α1 − β1)β2 =
(

α2 + (α1 − β1)β2

)
·
(

β1β2β3 − 1
)
= g5(−1).

After simplification, we obtain the equation:(
α2 + (α1 − β1)β2

)
·
(

β1β2β3 − 2
)
= 0,

which is satisfied for

β1 =
6
5

, β2 = 2

√
2
3
≈ 1.63299, β3 =

5
2
√

6
≈ 1.02062

and
α1 =

2
245
· (132− 25

√
6) ≈ 0.57765, α2 =

2
49
· (32− 3

√
6) ≈ 1.00618.

Then, p ≈ −0.98969, q ≈ −0.01009 and simple calculations yield that the conditions (7) are
fulfilled.

Next, let us denote f (x) = (h−1 ◦ g ◦ h)(x), where h : [0, 1]→ [−1, 1] is the affine map
defined by h(x) = 2x− 1 and h−1 : [−1, 1]→ [0, 1] is its inverse. Then, f : [0, 1]→ [0, 1] is
an expanding Lorenz map with critical point c = 1

2 . The graph of f is presented in Figure 2.

1

1

0.5

0.50

0.03

0.015

0
0.49 0.505 0.52

Figure 2. Graph of expanding Lorenz map f from Section 3.
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Direct calculations yield that

f (0) =
1

98
· (43− 10

√
6) ≈ 0.18882, f 2(0) =

1
98
· (73− 10

√
6) ≈ 0.49495,

f 3(0) =
1

98
· (73 + 10

√
6) ≈ 0.99484, f 4(0) =

1
98
· (25 + 22

√
6) ≈ 0.80498,

f (1) =
5

98
· (11 + 2

√
6) ≈ 0.81117, f 2(1) =

5
98
· (5 + 2

√
6) ≈ 0.50505,

f 3(1) = − 5
98
· (−5 + 2

√
6) ≈ 0.00515, f 4(1) =

1
98
· (73− 22

√
6) ≈ 0.19501

and f 2(0) = f 5(0), f 2(1) = f 5(1). This means that the kneading invariant of f is indeed
given by Equation (5). Furthermore, observe that f has a 2-periodic orbit O = {z0, z1},
where

z0 :=
1

490
· (509− 146

√
6) ≈ 0.30892 and z1 :=

1
490
· (−19 + 146

√
6) ≈ 0.69107.

Let us denote pi = f i(0) and qi = f i(1), whose ordering in [0, 1] is depicted schematically
in Figure 3. The critical point c is marked as red dot.

p1 p2 p3p4

q1q2q3 q4

z0 z1

Figure 3. Relation between points pi, qi, zi and c for map f from Section 3.

Consider the set

W = [0, q3] ∪ [p1, q4] ∪ [p2, q2] ∪ [p4, q1] ∪ [p3, 1]

and observe that f ([p2, q2]) ⊂ [0, q3] ∪ [p3, 1], therefore, f (W) ⊂W. Since O ∩W = ∅, we
have f−k(z0)∩W = ∅ for every k. This implies that α(z0) ⊂ I0 ∪ I1 ∪ I2 ∪ I3 = [0, 1] \ int W
where I0 = [q3, p1], I1 = [q4, p2], I2 = [q2, p4], I3 = [q1, p3]. First, we are going to show that
α(z0) is a Cantor set.

Observe that f (I0) = I1, f (I1) ⊃ I2 ∪ I3, f (I2) ⊃ I0 ∪ I1 and f (I3) = I2. Consider the
sofic shift Λ over the alphabet {0, 1} whose graph representation is depicted in Figure 4.

I0 I1 I2 I3
0 0

0

1

1

1

Figure 4. Sofic shift generated by sets I0, I1, I2, I3.

Note that the kneading sequence of any point whose trajectory never leaves Q =
I0 ∪ I1 ∪ I2 ∪ I3 is an element of Λ. Furthermore, since c 6∈ Q and f is expanding, each
point represents a unique element of Λ and each element has its representation. Therefore,
we may conjugate the Cantor dynamical system (Λ, σ) with the maximal invariant set
of f fully contained in Q. Furthermore, observe that by the covering relations between
I0, I1, I2, I3, for every word w allowed in the language of Λ, there exists a point z ∈ Q such
that f k(z) = z0 for some k > 0 and kneading sequence of z starts with w. This shows that
α(z0) = Λ. However, then, f−1(α(z0)) \ α(z0) = {0, 1} because p1, q1 ∈ Λ. This concludes
the proof of Theorem 1.
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Remark 1. If we extend α(z0) to a completely invariant set, then we have to pass through c and, as
a result, we obtain [0, 1]. While f is renormalizable, by the results of [23], there is no proper, closed
and completely invariant set that can define this renormalization in terms of Formula (3).

Remark 2. It is clear that the map f is not topologically transitive, since in the case of transitive
maps, the set ∪n≥0 f−n({x}) is dense for every x ∈ [0, 1] (e.g., see [23], Theorem 4.7).On the
other hand, the map f does not have primary (n, k)-cycle (see terminology in [9]). This shows that
characterization of transitivity by renormalizations and primary (n, k)-cycle developed in [9] (see
also [13]) can only work for expanding Lorenz maps with constant slope.

4. Decomposition of Nonwandering Set of f and Entropy

It is clear that the set Λ constructed in previous section satisfies Λ ⊂ Ω( f ). In
fact, Ω0 = Λ in Formula (1). It is a Cantor set, which is possible due to the fact that
f is not of constant slope, neither is conjugate to an expanding Lorenz map of constant
slope x 7→ α + βx (mod 1) for any α, β. Namely, according to [10], Theorem 2 and [10],
Section 6.1.2 (cf. [28]), sets Ωi are always periodic orbits in the case of constant-slope
expanding Lorenz maps.

Let us calculate the entropy of f |Ω0 , which is not hard, since Λ is sofic; so, we may use
the well-known method based on the Frobenius–Perron theorem. If we consider a coincidence
matrix related to the graph in Figure 4, then the leading eigenvalue is λ = 1

2 (1+
√

5) = 2√
5−1

.
Therefore,

htop( f |Ω0) = htop(Λ) = log λ ≈ 0.69424

where log here and later is always logarithm with base 2.
Let us also note that Λ is, in fact, a shift of finite type defined by the set of forbidden

words F = {000, 111}. Since the associated shift of finite type is irreducible, the dynamics
on Ω0 is transitive, and thus, we have an ergodic measure µ with entropy λ and support
equal to Ω0. According to [14], entropy on sets Ωi decreases with i, when nonzero, so
htop( f ) = log λ. Let us check that it is indeed the case here. We know that f has a terminal
renormalization F = ( f 3, f 3) on A = [p2, q2]. We already know that f 3(p2) = p2 and
f 3(q2) = q2, so, up to linear change of slope, F represents a doubling map on the circle;
hence, its entropy is htop(F) = log 2 = 1. However, htop( f |W) = 1

3 htop(F) = log 3
√

2 =
1/3 < log λ.

In fact, the above observed property of strong inequalities of entropies is a consequence
of the general result that unimodal maps and symmetric Lorenz maps have a unique
measure of maximal entropy (e.g., see [29,30], respectively; cf. [31], Corollary 3.7).

There is yet another method of calculating entropy of an expanding, finitely renor-
malizable Lorenz map, provided we know its kneading invariant (see [32–34], cf. [14]).
Define power the series k+(t, t) := ∑∞

i=0 aiti, where ai = 1 if the i-th symbol of the kneading
invariant k+ is 1 and ai = −1 in the opposite case (k−(t, t) is defined the same way, using
k−). For the map f , using Equation (5) defining its kneading invariant, we obtain

k+(t, t) = 1− t− t2 − t3 + t4 + t5 − t6 + t7 + t8 − . . .

= 1− t− t2 + t3(−1 + t + t2 − t3 + t4 + t5 − . . .)

= 1− t− t2 + t3(k+(t, t)− 2 + 2t + 2t2),

so

k+(t, t) =
1− t− t2 − 2t3 + 2t4 + 2t5

1− t3

and by symmetry of the kneading invariant, k−(t, t) = −k+(t, t). Therefore, we obtain

Pf (t, t) := k+(t, t)− k−(t, t) = 2k+(t, t) = 2 · 1− t− t2 − 2t3 + 2t4 + 2t5

1− t3 .
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Easy calculations yield that Pf (t, t) has two roots

t0 =
1

3
√

2
≈ 0.79370 and t1 =

1
2
· (
√

5− 1) ≈ 0.61803

in the interval (0, 1). By the results of [14], these roots correspond to entropies on the sets
Ωi for i where the entropy is positive. This method is not perfect because some of the zeros
may not represent entropies. In the considered example, we have a 1-1 correspondence.
The main difficulty with the described method that comes in practical applications is that
we need a formal argument revealing what form the kneading invariant really has. Its
numerical approximation may be not sufficient.

5. Unimodal Example: Proof of Theorem 2

Let us consider a map g : [−0.5, 1.2]→ [−0.5, 1.2] given by (see Figure 5):

g(x) =



1.68x + 0.34; x ∈ [−0.5, 0)
1.2x + 0.34; x ∈ [0, 0.1)
23
12 x + 161

600 ; x ∈ [0.1, 0.34)
4
3 x + 7

15 ; x ∈ [0.34, 0.4)
− 4

3 x + 23
15 ; x ∈ [0.4, 0.46)

− 41
23 x + 1.74; x ∈ [0.46, 0.92)
−1.25x + 1.25; x ∈ [0.92, 1)
−2.5x + 2.5; x ∈ [1, 1.2]

. (8)

1.2

1.2−0.5 0 0.1 0.34 0.4 0.46 0.92 1

0

0.1

0.34

0.46

0.92
1

Figure 5. Graph of map g defined by Equation (8).

The initial map g is defined on interval [−0.5, 1.2] because we want to arrange on
[0, 1] specific dynamical behavior, which makes its fynamics easier to study. Let f (x) =
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(h−1 ◦ g ◦ h)(x), where h : [0, 1]→ [−0.5, 1.2] is the map defined by h(x) = 1.7x− 0.5 and
h−1 : [−0.5, 1.2] → [0, 1] is its inverse. Then, f : [0, 1] → [0, 1] is a unimodal map with
the turning point c = h−1(0.4) ≈ 0.52941. Moreover, observe that f has 2-periodic orbit
O = {x0, x1}, where

x0 ≈ 0.46215 and x1 ≈ 0.77402.

The graph of f is presented in Figure 6. The points x0 and x1 are marked as orange dots.

1

10

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

x0 x1

c

Figure 6. Graph of unimodal map f from Section 5.

From the formulas defining map g, it is easy to see that the set Q = [0, 0.1]∪ [0.34, 0.46]
∪ [0.92, 1] is invariant for g and intervals I0 = [0.1, 0.34] and I1 = [0.46, 0.92] satisfy
g(I0) = I1, g(I1) ⊃ I0 ∪ I1. Therefore, repeating the argument similar to the one in
Section 3, we obtain that I0, I1 contains a strongly invariant set Λ consisting exactly of
points that never leave I0, I1, g|Λ is transitive and conjugated to the shift of finite type
Λ ⊂ {0, 1}N defined by the forbidden word 00. However, the periodic point 0.1 of period 3
must then be an element of Λ; thus, it corresponds to periodic point (011)∞. Clearly, the
turning point is eventually periodic finishing in this periodic orbit. Denote Λ̂ = h−1(Λ),
then, clearly f−n(O) does not contain endpoints of the set h−1(I0 ∪ I1) since it cannot
contain other periodic orbit. In particular, α(x0) = Λ̂ but c 6∈ α(x0). On the other hand,
h−1(1) ∈ α(x0) and so c ∈ f−1(α(x0)). This proves Theorem 2.

Let us finish this section by calculating the entropy of f which is the same as calculating
the entropy of g. As we proved a moment ago, Λ contains all the recurrent points of g in
I0 ∪ I1 and its entropy is equal to the entropy of the subshift obtained by the forbidden
word 00. Then, the associated 2× 2 coincidence matrix has the leading eigenvalue λ =
1
2 · (1 +

√
5) ≈ 1.61803.

Next, observe that on the set Q we have a natural Markov partition [0, 0.1], [0.34, 0.4],
[0.4, 0.46], [0.92, 1] and the associated Markov graph has the form:



Entropy 2021, 23, 1153 11 of 14

[0, 0.1] → [0.34, 0.4], [0.4, 0.46];

[0.34, 0.4], [0.4, 0.46] → [0.92, 1];

[0.92, 1] → [0, 0.1].

This proves that g3 keeps [0, 0.1] invariant and is conjugated on this set with the
standard tent map (unimodal map of constant slope 2). In particular, g|Q has entropy 1

3 , so
recalling calculations in Section 4, we see that 1/3 < log λ. However, outside of the interval
[0, 1], the function g has a unique fixed point (an endpoint) and the second endpoint is
mapped onto it. All other points are eventually mapped into [0, 1] which is g-invariant.
This shows that

htop( f ) = htop(g) ≈ log(1.61803) ≈ 0.69424.

Remark 3. Observe that the argument from the proof of Theorem 2 can be repeated with any
periodic point in Λ̂ whose period is not 3 in place of orbit O. Note that f has the unique fixed point
p ∈ (0, 1). Clearly, p ∈ Λ̂ since 1∞ is the unique fixed point in the associated subshift. Therefore,
we have p ∈ α(p) = α(x0) and also f−1(α(p)) \ α(p) 6= ∅. On the other hand, it is not hard to
see that α(p) = ∪n≥0 f−n({p}). This contradicts [18], Theorem B(1), because for the unique fixed
point p of f , the set D := ∪n≥0 f−n({p}) is not backward invariant, contrary to the statement
in [18].

6. Continuous Piecewise Affine Maps

The aim of this section is to show that the construction in Section 3 cannot necessarily
be extended to similar results for continuous maps. Strictly speaking, we will show that
if we “fill” holes when extending the Lorenz map (i.e., extend Cantor set X to its convex
hull), then the considered α-limit set will no longer satisfy f−1(α(z0)) \ α(z0) 6= ∅.

To do so, we will analyze the properties of a piecewise affine map obtained by “filling”
the holes in the Cantor set X induced by the Lorenz map from Section 3. Let us start by
embedding X as an invariant set for a map g acting on the interval I which is the convex
hull of the Cantor set X. We simply put g|X = f̂ and require g(Ie) = I f (e) by defining
an affine map between images of endpoints, provided that two intervals Ie, I f (e) are well
defined. Finally, we define g(Ic) = I by sending endpoints of Ic onto endpoints of I and
defining g as an affine map between them. This way, we obtain a piecewise affine map
with three pieces of monotonicity (see Figure 7).

Let x be the point in X ⊂ I induced by the point z0 for map f from Section 3. Note that
by the definition α f̂ (x) ⊂ αg(x). We do not have equality of α-limit sets, however, because
the image of Ic by g is covering whole I. There is a point z ∈ Ic such that g(z) = y for any
y ∈ [0, 1] and so each hole Ie will contain pre-images of every point from g−k(x). Before
we reveal what α(g(x)) exactly is, let us calculate the entropy of g and find support of the
measure of maximal entropy, since these two problems are connected.

Clearly, htop(g) ≥ htop( f ) since we may view f̂ as a subsystem of g. However, the
extension leading to g includes many new recurrent points originating from Ic. This set
leads to numerous horseshoes defined by the sets Iq for q ∈ ∪k f−k(c). In fact, we have a
kind of countable horseshoe compared to f̂ (see Figure 7).

In the general case, to compute the entropy of map after blowup, we can use theory
of Vere–Jones for countable Markov chains (e.g., see [35]), however revealing the direct
structure of such a chain (infinite directed graph) is not easy. Fortunately, we have a nice
Markov partition for the map g, see Figure 8, which is an immediate consequence of the
structure in the map f (see Figure 3). Namely, points pi, qi do not enter the orbit of c and
so were not blown up to construct f̂ . The only “new” point in Figure 3 are points c−, c+
resulting from the interval Ic.
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0

1

10.5

0.5

Figure 7. Graph of “blow up” of expanding Lorenz map leading to map g from Section 6. Parts of
the graph over a few larger “filled holes” are marked in black.

c− c+p1 p2 p3p4

q1q2q3 q4

Figure 8. Relation between points pi, qi, and c−, c+ for map g.

We obtain the following Markov diagram for g, where vertices are elements of parti-
tion, and symbols→ schematically show vertices connected by arrows.

[0, q3] → [p1, q4];

[q3, p1] → [q4, p2];

[p1, q4] → [p2, c−], [c−, c+], [c+, q2];

[q4, p2] → [q2, p4], [p4, q1], [q1, p3];

[p2, c−] → [p3, 1];

[c−, c+] → [0, q3], [q3, p1], [p1, q4], [q4, p2], [p2, c−], [c−, c+],

[c+, q2], [q2, p4], [p4, q1], [q1, p3], [p3, 1];

[c+, q2] → [0, q3];

[q2, p4] → [q3, p1], [p1, q4], [q4, p2];

[p4, q1] → [p2, c−], [c−, c+], [c+, q2];

[q1, p3] → [q2, p4];

[p3, 1] → [p4, q1].

Again, calculating the leading eigenvalue λ of the associated matrix, we obtain that

htop(g) = log λ ≈ log(2.84005) ≈ 1.50592.
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By the variational principle, it means that our blow up procedure gave raise to a new
ergodic measure ν, with entropy higher than previously observed in f in the measure of
maximal entropy µ. Since ν is ergodic, it assigns full measure to the “holes” introduced
along the backward trajectory of c (if a point enters X, it cannot leave it). Note, however,
that g is topologically mixing as piecewise affine Markov map and X is nowhere dense.
However, recent results show that for any x in the mixing interval map, αg(x) contains all
ω-limits sets of g (with only possible exception of α-limit sets of endpoints), e.g., see [36],
Theorem 3.6. Therefore, αg(x) = [0, 1]. This, among other things, means that the process of
“filling holes” extended the considered α-limit set to a backward invariant set (which is no
longer a proper subset).

7. When α-Limit Sets Are Invariant

We finish the paper with two simple observations ensuring when α(x) is backward
invariant. This may be of independent interest, in particular as a tool in the construction of
renormalization by Equation (3). By convention, we assume that f (c) = 0.

Proposition 1. Let f be an expanding Lorenz map and let x be such that α(x)∩{ f (0), f (1)} = ∅.
Then f−1(α(x)) ⊂ α(x).

Proof. Fix any y ∈ f−1(α(x)) and note that by forward invariance of α(x), we have
c 6∈ α(x) since, by assumption, y 6∈ {0, 1}. Then, there is an open interval U = (a, b) such
that y ∈ U and f |U is continuous and injective. If we denote z = f (y) and V = f (U), then
V is an open interval and z ∈ α(x). By definition, there is a sequence zn ∈

⋃
k≥n f−k({x})

such that limn zn = z and, clearly, zn ∈ V for all n sufficiently large. However, for each n,
there is a unique yn ∈ U such that f (yn) = zn. It is obvious that yn ∈

⋃
k≥n+1 f−k({x}) and

passing to a convergent subsequence when necessary, we also must have limn yn = y by
continuity and the fact that y is the unique point in U such that f (y) = z. Indeed, y ∈ α(x),
completing the proof.

As we mentioned earlier, when an expanding Lorenz map f is topologically transitive,
then ∪n≥0 f−n({x}) is dense for every x ∈ [0, 1] (e.g., see [23], Theorem 4.7) and as a result
α(x) = [0, 1]. This immediately leads to the following.

Remark 4. It may happen that 0, 1 ∈ α(x) but α(x) remains backward invariant. This shows that
the condition in Proposition 1 is only a sufficient condition.

Proposition 2. Let f be a unimodal interval map with the maximum at c and let x be such that
f (c) 6∈ α(x). Then f−1(α(x)) ⊂ α(x).

Proof. It is enough to see that if y ∈ f−1(α(x)), then since y 6= c, there is an open
neighborhood y ∈ U such that f |U is injective and f (U) is an open set. It is mainly
because f is monotone on U, 0 is a fixed point, and f (1) = 0. Then, the rest of the proof
follows the same lines as the proof of Proposition 1.
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