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Abstract: There are numerous priority deriving methods (PDMs) for pairwise-comparison-based
(PCB) problems. They are often examined within the Analytic Hierarchy Process (AHP), which
applies the Principal Right Eigenvalue Method (PREV) in the process of prioritizing alternatives.
It is known that when decision makers (DMs) are consistent with their preferences when making
evaluations concerning various decision options, all available PDMs result in the same priority vector
(PV). However, when the evaluations of DMs are inconsistent and their preferences concerning
alternative solutions to a particular problem are not transitive (cardinally), the outcomes are often
different. This research study examines selected PDMs in relation to their ranking credibility, which is
assessed by relevant statistical measures. These measures determine the approximation quality of the
selected PDMs. The examined estimates refer to the inconsistency of various Pairwise Comparison
Matrices (PCMs)—i.e., W = (wij), wij > 0, where i, j = 1, . . . , n—which are obtained during the
pairwise comparison simulation process examined with the application of Wolfram’s Mathematica
Software. Thus, theoretical considerations are accompanied by Monte Carlo simulations that apply
various scenarios for the PCM perturbation process and are designed for hypothetical three-level
AHP frameworks. The examination results show the similarities and discrepancies among the
examined PDMs from the perspective of their quality, which enriches the state of knowledge about
the examined PCB prioritization methodology and provides further prospective opportunities.

Keywords: pairwise comparisons; ranking; prioritization; priorities deriving methods; AHP; Monte
Carlo simulations

1. Introduction

The method of creating a ranking based on pairwise comparisons of alternatives
was already known in the Middle Ages. The first work on this subject was probably that
by Ramon Lull [1], who described election processes based on comparisons of mutual
alternatives. Over time, other research on the pairwise comparisons method appeared; e.g.,
studies on electoral systems, such as the Condorcet method and the Copeland method,
and many others on social choice and welfare systems [2]. In time, alternatives began
to be compared quantitatively, which was initially connected with the need to compare
psychophysical stimuli [3,4]. This path was later developed [5] and used in various forms
for different objectives, including economics [6], consumer research, psychometrics, health
care and others. Thanks to Saaty and his seminal paper [7] in which he defined the
Analytic Hierarchy Process (AHP), comparing alternatives in a pairwise mode began to be
considered basically as a multi-criteria decision-making method. The undisputable success
of the AHP is probably due to the fact that Saaty proposed a complete solution including
a ranking calculation algorithm, an inconsistency index as a method of determining data
quality and a hierarchical model allowing decision makers (DMs) to handle multiple
criteria [8–11]. Overtime, numerous studies have presented scientific evidence of the
fundamental flows of the AHP; see, e.g., [12–15].

However, different research studies concerning the pairwise comparison method have
resulted in many priority deriving methods (PDMs) which, for brevity, are not discussed
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in this article in detail; however, the interested reader may want to find references in
which these methods are scrutinized (e.g., [16–48]). In addition, various inconsistency
approaches for human judgments were devised, which also are not discussed in this paper
in detail as they are not within the scope of this research. It seems probable that the two
most popular PDMs for PCB ranking problems are the Principal Right Eigenvalue Method
(PREV), proposed by Saaty [12,49,50] and the Logarithmic Least Squared Method (LLSM),
also known as Geometric Mean Method (GMM), devised by Crawford and Williams [21,22].
A further well-known PDM is the Simple Normalized Column Sum Procedure (SNCS),
proposed by Zahedi [47] and promoted, e.g., by Choo and Wedley [19] and Saaty [51].
Indeed, an underestimated and overlooked method in the literature is the last PDM selected
for this research due to its features; i.e., the Logarithmic Squared Deviations Minimization
Method (LSDM), elaborated and evaluated by Kazibudzki [30,52].

It is easy to verify that in the case of consistent human judgments that provide
cardinally transitive Pairwise Comparison Matrices (PCM), all PDMs lead to the same
solution. However, when inconsistent PCMs must be taken into account, the resulting
rankings differ from each other. This research is part of the discussion of the properties of
various PDMs applied for pairwise-comparison-based (PCB) problems, which are often
examined with the application of the AHP [53]. Despite the large number of publications
on the topic, this issue is considered inspiring and challenging as it seems that pairwise
comparisons could lead to credible measures of DM preferences. Thus, deriving true
priority vectors (PVs) from intuitive pairwise comparisons of decision makers (DMs) is
also a crucial issue for the multiple criteria decision-making (MCDM) concept based on
the AHP. Noticeably, the standard AHP applications commonly utilize PREV because it
was derived mathematically by the creator of the AHP, who considered it the only correct
solution for PCB problems [42,54–56].

The objective of this scientific research is to examine the similarities and discrepancies
of a few selected PDMs in order to determine their suitability for PCB problems in relation
to their ranking credibility. Thus, it was decided to apply Monte Carlo simulations (MCS)
for this purpose. However, rather than simulating and analyzing results for a single PCM,
as has been done thus far by many other authors, it was decided to design simulation
scenarios and analyze their outcomes from the simple multi-criteria decision perspective,
examined via the most common AHP framework, which thus far has been undertaken
by only a few authors; e.g., [30,57]. As such, it is assumed that the three-level AHP
model—alternatives, criteria and goal—is considered, which is assumed to deal with
the hypothetical decision problems. Then, the simulation results for selected PDMs are
compared. The examination results present the effect of various scenarios within the
simulation process and reflect human judgment errors during pairwise comparisons. Thus,
selected PDMs are examined from the perspective of their ranking credibility, which is
evaluated with the application of a few available statistical measures; e.g., the Mean
Spearman Rank Correlation Coefficient (MSRC), Mean Pearson Correlation Coefficient
(MPCC) and Mean Average Absolute Deviation (MAAD). These measures determine the
differences in the quality of PV estimation, understood as a true ranking preservation
capability of the selected PDM, and are selected intentionally while considering that other
non-statistical compatibility indices exist in the literature: e.g., the Garuti index [58] or
Saaty compatibility index [59]. Certainly, different MCDM methods may yield different
results when applied to the same problem [60], and that is why a single method application,
such as AHP, can also lead to different priorities. This phenomenon has been already
studied previously, mainly by focusing on the ranks that different priorities imply [61].
This research paper aims to extend the focus of this study from the ordinal to a cardinal
focus, where differences in the ranks are considered. That is why emphasis is placed on the
rank preservation phenomenon instead of the closeness of obtained priority vectors (PVs)
as it has applicability during compatibility analysis.

Given the reality of our physical world, no study is perfect. In order to compare the
characteristics of the estimates obtained in the simulation process for the selected PDM,
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various scenarios were simulated in relation to different sources of PCM inconsistency.
Fundamentally, PCM inconsistency commonly results from errors caused by the nature of
human judgments and errors due to the technical realization of the pairwise comparison
procedure; i.e., rounding errors and errors resulting from the forced reciprocity requirement
commonly imposed in PCB ranking problems. All the above errors can be simulated, but
the nature of human judgments can be represented only as the realization of some random
process in accordance with the assumed probability distribution of the perturbation factor;
e.g., uniform, gamma, truncated normal and log-normal. As this is only a stochastic process
generated by a computer, it constitutes a certain limitation of the presented research.

The research paper is structured as follows: firstly, preliminaries about
pairwisecomparison-based problems are presented (Section 2); then, the examination
methodology is introduced and exemplified (Section 3) in two subsections: Section 3.1
is devoted to the concept design with preliminary results, and Section 3.2 introduces the
target examination scenario and presents further examples of examination results. The
results of the complete examination and a discussion are presented in Section 4, leading to
our research conclusions (Section 5); finally, we end the paper with final remarks.

2. Preliminaries about PCB Ranking Problems

The conventional PDM in the AHP is founded on the mathematical structure of
consistent PCMs and the related capability of PREV to produce actual or approximate
weights.

Oscar Perron proved that if W = (wij), wij > 0, where i, j = 1, . . . , n, then W has a
simple positive eigenvalue λmax called the principal eigenvalue of W, and λmax|λk| for
the remaining eigenvalues of W. Moreover, the principal right eigenvector w = [w1, . . . ,
wn]T, which is a solution of Ww = λmaxw, has wi > 0, i = 1, . . . , n. If the relative weights of
a set of activities are known, they can be expressed as PCMs.

If we know W(w) but do not know w, we can use Perron’s theorem to solve this
problem for w. The solution leads to n unique values for lambda, with a bounded vector w
for each of the n values. The PCM matrix in the AHP reflects the relative weights of the
actions considered (criteria, scenarios, players, alternatives, etc.), so the matrix W(w) has
a particular shape. Each subsequent row of this matrix is a constant multiple of the first
row. In this case, the matrix W(w) has only one non-zero eigenvalue, and since the sum of
the eigenvalues of a positive matrix is equal to the sum of its diagonal elements, the single
non-zero eigenvalue in this case is equal to the size of the matrix and can be denoted as
lambda(max) = n. The norm of the vector w can be written as ‖w‖ = eTw, where e = [1, 1,...,
1]T and w can be normalized by dividing by its norm. For the sake of clarity, w is further
specified in its normalized form.

Taking the above into consideration, the conventional concept of a PDM in the AHP
can be presented as follows:

w1/w1 w1/w2 w1/w3 . . . w1/wn
w2/w1 w2/w2 w2/w3 . . . w2/wn
w3/w1 w3/w2 w3/w3 . . . w3/wn

...
...

...
...

wn/w1 wn/w2 wn/w3 . . . wn/wn

×


w1
w2
w3
...

wn

 = n ·


w1
w2
w3
...

wn

 (1)

Thus, the following definitions (D) can be also presented:

D[1]: If the matrix W(w) elements satisfy the prerequisite wij = 1/wji for all i, j = 1, . . . , n,
then the matrix W(w) is called reciprocal.
D[2]: If the following assumptions are true: (a) if for any i = 1, . . . , n, an element wij is not
less than an element wik, then wij ≥ wik for i = 1, . . . , n, and (b) if for any i = 1, . . . , n, an
element wji is not less than an element wki, then wji ≥ wki for i = 1, . . . , n, and the matrix
W(w) is called ordinal transitive,
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D[3]: If the elements of a matrix W(w) satisfy the condition wikwkj = wij for all i, j, k = 1, . . . ,
n, and the matrix is reciprocal, then it is called consistent or cardinal transitive.

Certainly, when the AHP is utilized, a W(w) which would reflect the true weights
given by the actual PV is unknown.

Since the human mind is not an accurate measuring device, it does not give accu-
rate results in tasks such as the following: “compare—using a given ratio scale—your
preferences for alternative 1 and alternative 2”. Thus, W(w) is not known, but only its
estimate X(x) containing intuitive judgments that are more or less close to W(w) depending
on the DM’s individual taste, specific knowledge, experience, ability and even momentary
mood or frame of mind. In such cases, the consistency property does not apply, and the
conventional notion of the PDM in the AHP is no longer applicable. However, it has been
shown that for any PCM, small perturbations in the items entail similar perturbations in
the eigenvalues, so Perron’s theorem can be used to estimate the true PV. Then, instead of
matrix equation (1), the solution of matrix equation (2) gives us w as the right principal
eigenvector (PREV) associated with λmax.

x1/x1 x1/x2 x1/x3 . . . x1/xn
x2/x1 x2/x2 x2/x3 . . . x2/xn
x3/x1 x3/x2 x3/x3 . . . x3/xn

...
...

...
...

xn/x1 xn/x2 xn/x3 . . . xn/xn

×


w1
w2
w3
...

wn

 = λmax


w1
w2
w3
...

wn

 (2)

In practice, the solution of PREV is obtained by raising the matrix X(x) to a sufficiently
large power, then summing the rows of X(x) and normalizing the resulting vector to obtain
a vector w, which can be expressed by the following formula:

w = lim
k→∞

(
Xk(x)× e

eT × Xk(x)× e

)
(3)

where e = [1, 1, . . . , 1]T.
Noticeably, the relation between elements of X(x) and W(w) can be expressed in the

form of the following formula:
xij = eijwij (4)

where eij is a disturbance coefficient oscillating close to unity; e.g., eij∈[0.5, 1.5]. It is
important to emphasize that in the statistical approach, eij reflects the realization of a
random variable with a provided probability distribution (PD) that can be modeled and
that reflects imperfect human pairwise comparisons. In the literature, the following types
of PDs are often considered for different implementation purposes: gamma, log-normal,
truncated-normal or uniform [36,47]. However, in addition to these most popular types of
PDs, one can also find applications of Cauchy, Laplace, triangular or beta PDs [24] and
Fisher–Snedecor PDs, which were recently introduced by Kazibudzki [30]. Usually, the
maximal spread for eij ∈ [0.01, 1.99], which may be perceived as strange as this interval is
highly asymmetric. However, it is perfectly reasonable to have asymmetric intervals for
perturbation factors as DM judgments are reflected with the application of a particular
numerical scale whose numbers are usually not higher than nine (Saaty’s scale). So,
multiplying five by more than two, for example, is simply pointless, as the result must still
be rounded to the nearest value of the scale; e.g., Saaty’s scale, whose maximal value equals
nine. On the other hand, multiplying 9 by 0.01 gives 0.09, which can be naturally rounded
to 0.1(1) and may reflect a reversal phenomenon of preferences, for example. However, the
symmetric interval for a perturbation factor with a seminal proposed PD and its application
outcome is also presented in this research in Section 4.

In general, the discrepancy of the perturbed PCM reflects the results of errors caused
by the nature of human judgment and errors due to the technical implementation of the
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pairwise matching procedure. The latter are mainly due to rounding errors and errors
resulting from forced reciprocity requirements. Rounding errors are related to the numerical
ratio scale, the values of which must be used by future DMs to express their judgments in a
certain way [25,62–64]. In common AHP applications, the Saaty numerical scale, consisting
of integers from 1 to 9 and their inverse values, is by far the most popular. However,
other scales are also known [25,65–70], such as the geometric scale, for which the linguistic
variables of the Saaty scale have different numerical values; the most common, and thus
the approach used in this study, is 2n/2, where n includes integers from minus 8 to 8, but an
arbitrarily defined numerical scale including integers from 1 to n and their inverse values
is also possible.

The basic concept of the AHP certainly attracts attention and as such is being devel-
oped; see, e.g., [37,71–76]. At the same time, it is argued that as long as inconsistency
in pairwise comparisons is allowed, PREV is the fundamental theoretical concept for
ranking PCB problems and no other PDM matches it. At the same time, a number of
other PDMs have been proposed over the past three decades, starting with the most pop-
ular LLSM [21,22] and other methods based on optimization models with constraints
(see [28,52,62,77] ), including the least-squares method [36,47] and various versions of goal
programming methods (see [18,19,27,78–80]), as well as methods based on some statisti-
cal concepts (see [12,16,34,46,61,81,82]), methods based on fuzzy preference descriptions
(see [48,72,83]) and heuristic algorithms (see [33,35,84,85]).

It has been argued that the primary AHP–PDM—i.e., the PREV method—is neces-
sary and sufficient for unambiguous ranking with the ratio scale inherent in inconsistent
pairwise comparisons [42,50,54,55,86,87]. However, this approach has also been heavily
criticized; see, for example, [13,30,63,80,88–92]. Therefore, there are optional PDMs that
differ from the basic PDM concept. Many of these are based on optimization and finding
the vector w as a solution to the minimization problem given by the formula

min D(X(x), W(w)) (5)

with some accompanying constraints such as positive coefficients and the normalization
condition. Since the distance function D measures the interval between the matrices X(x)
and W(w), different ways of defining this lead to different PDM estimation results. Chu
et al. in [19] describe and compare 18 PDMs, although some authors suggest that only 15
are distinctive. Undoubtedly, several other PDMs have appeared in the literature since
Chu et al. [19] published their study; see, for example, [29,32–34,93–95]. Obviously, if the
PCM is consistent, then all known PDMs match, although they do not guarantee that
the resulting PV is error-free; see, e.g., [12,45,70,96]. However, in real situations, as noted
earlier, human judgments inevitably lead to inconsistent PDMs, since inconsistency is a
natural consequence of the dynamics of the human mind as well as a consequence of query
methodology, incorrect inputs of judgment values and scaling procedures (i.e., rounding
errors).

In this research study, apart from PREV, three optional PDMs are examined. They are
defined by the formulae presented in Table 1.

Table 1. Formulae for the examined PDM.

PDM Name PDM Formula

Logarithmic Least Squares Method—LLSM wi(LLSM) =

(
n
∏
j=1

aij

)1/n

/
n
∑

i=1

(
n
∏
j=1

aij

)1/n

Simple Normalized Column Sum—SNCS wi(SNCS) =
1
n

n
∑

j=1

(
aij/

n
∑

k=1
akj

)
Logarithmic Squared Deviations Minimization Method—LSDM w(LSDM) = min

n
∑

i=1
ln2

(
n
∑

j=1

(
aijwj/nwi

))
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3. Examination Methodology
3.1. Concept Design with Preliminary Results

The first step in PCB problems using the AHP is to create a hierarchy by breaking
the specific problem into its major components. The basic AHP scenario includes a goal
(an expression of the overall objective), criteria (factors to be considered in arriving at the
final choice) and alternatives (feasible alternatives to achieve the final objective). Thus,
the most basic AHP decision model consists of an objective–criteria–alternatives sequence.
Therefore, this study adopts a basic three-level hierarchy including three criteria and three
alternatives within each criterion.

The intent of this research is to examine the performance of PREV against the back-
ground of the performance of other selected PDMs available for PCB problems elaborated
within the AHP. In order to achieve this objective, Monte Carlo simulations (MCS) were
applied, but not as commonly performed; i.e., dedicated to a single PCM. This research
involves an MCS scenario that encompasses the entire goal–criteria–alternatives sequence
of the AHP, which is supposed to reflect the hypothetical PCB decisional problem (see the
examples presented hereafter (Examples 1A and 1B)).

Firstly, the examination framework is presented in its simplified version as a method-
ological example. Thus, only technical distortions are used resulting from rounding errors
during the application of Saaty’s scale and standard requirements of the AHP; i.e., forced
reciprocity is demonstrated in the following hypothetical AHP model with three levels (a
goal, four criteria and four alternatives). This model assumes that relative ratios of some
physical attributes of certain objects are predetermined, and thus HGPVC, HC1

C2 PVA and
HC3

C4 PVA are known. On the basis of the provided PV elements, the respective PCMs are
reconstructed as shown in Equation (1).

Example 1A:

HGPVC, and its related PCM denoting the weights quotients of HGPVC, reflecting the
pairwise comparison results of criteria with respect to the goal:

C1 C2 C3 C4
C1
C2
C3
C4


1 1.4 3.5 1.16667

0.714286 1 2.5 0.833333
0.285714 0.4 1 0.333333
0.857143 1.2 3 1


HGPVC

0.35
0.25
0.10
0.30

 (6)

HC1
C2 PVA, and its related PCM denoting the weights quotients of HC1

C2 PVA, reflecting the
pairwise comparison results of alternatives with respect to criteria C1–C2:

A1 A2 A3 A4
A1
A2
A3
A4


1 1.4 2.33333 1.4

0.714286 1 1.66667 1
0.428571 0.6 1 0.6
0.714286 1 1.66667 1


HC1

C2PVA
0.35
0.25
0.15
0.25

 (7)

HC3
C4 PVA, and its related PCM denoting the weights quotients of HC3

C4 PVA, reflecting the
pairwise comparison results of alternatives with respect to criteria C3–C4:

A1 A2 A3 A4
A1
A2
A3
A4


1 0.666667 0.285714 0.25

1.5 1 0.428571 0.375
3.5 2.33333 1 0.875
4 2.66667 1.14286 1


HC3

C4PVA
0.10
0.15
0.35
0.40

 (8)

where HGPVA, HC1
C2PVA and HC3

C4PVA denote partial hypothetical PVs in the model.
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After standard AHP synthesis, the hypothetical total PV (HTPV) is obtained and
given as HTPV = [0.25, 0.21, 0.23, 0.31]T. Next, following the simplified version of the MCS
scenario in this example, each PCM in the presented framework is perturbed. For simplicity
of illustration, only two kinds of prospective PCM distortions are applied: rounding errors
(each element of the particular PCM is rounded to Saaty’s scale) and reciprocity imposition
errors (the PCM is transformed to be reciprocal in the way that only elements above its
diagonal are taken into consideration, and elements below its diagonal are replaced by the
inverses of their counterparts from above its diagonal). Next, on the basis of each PCM
being perturbed in the above way, respective partial PVs (PPVPREV) are obtained with the
application of the selected PDM—i.e., PREV. Finally, the total computed PV (TCPVPREV)
for the exemplary model of the AHP is obtained (see Example 1B).

Example 1B:

PCM with criteria weights designated with respect to the goal and PPVGOAL
PREV , com-

puted on the basis of this PCM with the application of PREV:

C1 C2 C3 C4
C1
C2
C3
C4


1 1 3 1
1 1 2 1

1/3 1/2 1 1/3
1 1 3 1


PPVGOAL

PREV
0.304999
0.276859
0.113143
0.304999

 (9)

PCM with weights of alternatives designated with respect to criteria C1–C2 and PPVC1C2
PREV ,

computed on the basis of this PCM with the application of PREV:

A1 A2 A3 A4
A1
A2
A3
A4


1 1 2 1
1 1 2 1

1/2 1/2 1 1/2
1 1 2 1


PPVC1C2

PREV
0.285714
0.285714
0.142857
0.285714

 (10)

PCM with weights of alternatives designated with respect to criteria C3–C4 and PPVC3C4
PREV ,

computed on the basis of this PCM with the application of PREV:

A1 A2 A3 A4
A1
A2
A3
A4


1 1/2 1/4 1/4
2 1 1/2 1/3
4 2 1 1
4 3 1 1


PPVC3C4

PREV
0.0887547
0.1611320
0.3550190
0.3950950

 (11)

After standard AHP synthesis, the following result is obtained: TCPVPREV = [0.2034,
0.2336, 0.2316, 0.3315]T, which is different from HTPV = [0.25, 0.21, 0.23, 0.31]T. The
comparison of HTPV with its estimate TCPVPREV enables selected statistical measures
to be used—i.e., Spearman Ranks Correlation Coefficient (SRCC), Pearson Correlation
Coefficient (PCC) and Mean Absolute Deviation (MAD)—which reflect the approximation
quality of PREV. Mean values of the above measures were examined during the MCS in
this research; the formulae for these are provided in Table 2.

For the above illustrative values of HTPV and TCPVPREV, the presented measures
are as follows: SRCC = 0.2, PCC = 0.8142, MAD = 0.023325. Noticeably, the comparison
of the approximation quality of any PDM available for PCB ranking problems is possible
in this way. Thus, it is also possible to examine the selected PDM for the AHP. The MCS
designed for this purpose—i.e., processing the algorithm which exactly emulated the above
explained steps 10,000 times—provided the scores shown in Tables 3 and 4.
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Table 2. Formulae for the performance measures.

Performance Measures Names Performance Measures Formulae

Mean Spearman Ranks Correlation Coefficient MSRC = 1
N

N
∑

t=1

(
1− 6

n
∑

i=1
d2

i /n
(
n2 − 1

))
t

Mean Pearson Correlation Coefficient
MPCC = 1

N

N
∑

t=1


n
∑

i=1
(wi−w)(vi−v)√

n
∑

i=1
(wi−w)2 n

∑
i=1

(vi−v)2


t

Mean Average Absolute Deviation MAAD = 1
N

N
∑

t=1

(
1
n

n
∑

i=1
|wi − vi|

)
t

di—difference between the two ranks of the considered PVs’ respective elements, n—the number of examined elements within a single
experiment, N—the number of experiment iterations; wi, vi—i-th elements of the respective PVs that are compared.

Table 3. Approximation quality of four PDMs for 10,000 iterations of the AHP random framework #

with the application of rounding errors and reciprocity imposition errors.

PDM Name MSRC MPCC MAAD

LLSM 0.962429 0.997569 0.01083350
PREV 0.962881 0.998005 0.00994892
SNCS 0.961548 0.997740 0.01095650
LSDM 0.963619 0.997964 0.01008080

# a random framework represents a uniformly drawn number of criteria (nk) and number of alternatives (na) in
the single AHP model; in this scenario, nk , na ∈ {5, 6, 7, 8, 9}.

Table 4. Approximation quality of four PDMs for 10,000 iterations of the AHP random framework #,
i.e., nk, na ∈ {5, 6 . . . , 15}, with the application of rounding errors and reciprocity imposition errors.

PDM Name MSRC MPCC MAAD

LLSM 0.972270 0.996995 0.00806526
PREV 0.972379 0.997704 0.00724835
SNCS 0.971815 0.997441 0.00788974
LSDM 0.972510 0.997620 0.00736441

# a random framework represents a uniformly drawn number of criteria (nk) and number of alternatives (na) in
the single AHP model.

Considering the results presented in Tables 3 and 4, it should be noticed that from
the perspective of rank, the preservation capability of PREV is slightly lower than that
of LSDM. It also can be noticed that LSDM performs slightly worse than PREV from the
perspective of MPCC and MAAD values. The performance of other examined PDMs is
slightly worse in both scenarios and from the perspective of all performance measures
taken into consideration during this study.

3.2. Research Target Scenario Analysis with Further Results

Hereafter, the examination scenario is exemplified in its target version. Thus, not
only are technical distortions resulting from rounding errors during the application of
Saaty’s scale and standard requirements of the AHP will be used—i.e., forced reciprocity is
demonstrated—but also human judgment errors are considered in the hypothetical AHP
model with three levels (goal, four criteria and four alternatives) earlier depicted as in
Example 1A. Hence, it is still assumed that relative ratios of some physical attributes of
certain objects are predetermined; thus, HGPVC, HC1

C2 PVA and HC3
C4 PVA are known, and

their respective PCMs are computed as in Equation (1). For the reader’s convenience, the
model is duplicated herein and renamed as Example 2A for reference hereafter.

Example 2A:

For the assumed HGPVC and its related PCMs representing the weights quotients
of HGPVC, reflecting the pairwise comparison results of criteria with respect to the goal,



Entropy 2021, 23, 1150 9 of 29

see Equation (6). For the assumed HC1
C2 PVA and its related PCMs denoting the weights

quotients of HC1
C2 PVA, reflecting the pairwise comparison results of alternatives with respect

to criteria C1–C2, see Equation (7). For the assumed HC3
C4 PVA and its related PCM denoting

the weights quotients of HC3
C4 PVA, reflecting the pairwise comparison results of alternatives

with respect to criteria C3–C4, see Equation (8).
Next, following the target version of the MCS scenario in this example, each PCM in

the presented framework of Example 2A is perturbed. This time, three kinds of prospective
PCM distortions are applied: human judgment errors reflected by the applied perturbation
factor eij = 0.5, rounding errors (each element of the particular PCM is rounded to Saaty’s
scale) and reciprocity imposition errors (the PCM is transformed to be reciprocal in a
way that means only elements from above its diagonal are taken into consideration, and
elements below its diagonal are replaced by inverses of their counterparts from above
its diagonal). On the basis of each PCM being perturbed in the above way, respective
partial PVs (PPVPREV) are obtained with application of the selected PDM; i.e., PREV. Finally,
the total computed PV (TCPVPREV) for the exemplary model of the AHP is obtained; see
Examples 2B–2D.

Example 2B:

Pairwise comparison results of criteria with respect to the goal after the implementa-
tion of the perturbation factor eij = 0.5:

C1 C2 C3 C4
C1
C2
C3
C4


1 0.7 1.75 0.5833

0.3571 1 1.25 0.4167
0.1429 0.2 1 0.1667
0.4286 0.6 1.5 1

 (12)

Pairwise comparison results of alternatives with respect to criteria C1–C2 after the
implementation of the perturbation factor eij = 0.5:

A1 A2 A3 A4
A1
A2
A3
A4


1 0.7 1.1667 0.7

0.3571 1 0.8333 0.5
0.2143 0.3 1 0.3
0.3571 0.5 0.8333 1

 (13)

Pairwise comparison results of alternatives with respect to criteria C3–C4 after the
implementation of the perturbation factor eij = 0.5:

A1 A2 A3 A4
A1
A2
A3
A4


1 0.3333 0.1429 0.125

0.75 1 0.2143 0.1875
1.75 1.1667 1 0.4375

2 1.3333 0.5714 1

 (14)

Example 2C:

Pairwise comparison results of criteria with respect to the goal after the implementa-
tion of the perturbation factor eij = 0.5 and rounding errors (each element of the particular
PCM is rounded to Saaty’s scale):

C1 C2 C3 C4
C1
C2
C3
C4


1 0.5 2 0.5

0.3333 1 1 0.5
0.1429 0.2 1 0.1667

0.5 0.5 2 1

 (15)
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Pairwise comparison results of alternatives with respect to criteria C1–C2 after the
implementation of the perturbation factor eij = 0.5 and rounding errors (each element of
the particular PCM is rounded to Saaty’s scale):

A1 A2 A3 A4
A1
A2
A3
A4


1 0.5 1 0.5

0.3333 1 1 0.5
0.2 0.3333 1 0.3333

0.3333 0.5 1 1

 (16)

Pairwise comparison results of alternatives with respect to criteria C3–C4 after the
implementation of the perturbation factor eij = 0.5 and rounding errors (each element of
the particular PCM is rounded to Saaty’s scale):

A1 A2 A3 A4
A1
A2
A3
A4


1 0.3333 0.1429 0.125
1 1 0.2 0.2
2 1 1 0.5
2 1 0.5 1

 (17)

Example 2D:

Pairwise comparison results of criteria with respect to the goal after the implemen-
tation of the perturbation factor eij = 0.5, rounding errors (each element of the particular
PCM is rounded to Saaty’s scale) and forced reciprocity errors (the PCM is transformed to
be reciprocal in such a way that only elements from above its diagonal are taken into con-
sideration, and elements below its diagonal are replaced by inverses of their counterparts
from above its diagonal), with PPVGOAL

PREV computed on the basis of the obtained PCM with
the application of PREV:

C1 C2 C3 C4
C1
C2
C3
C4


1 0.5 2 0.5
2 1 1 0.5

0.5 1 1 0.1667
2 2 6 1


PPVGOAL

PREV
0.18215
0.22278
0.12115
0.47392

 (18)

Pairwise comparison results of alternatives with respect to criteria C1–C2 after the
implementation of the perturbation factor eij = 0.5, rounding errors (each element of the
particular PCM is rounded to Saaty’s scale) and forced reciprocity errors (the PCM is
transformed to be reciprocal in such a way that only elements from above its diagonal
are taken into consideration, and elements below its diagonal are replaced by inverses of
their counterparts from above its diagonal), with PPVC1C2

PREV computed on the basis of the
obtained PCM with the application of PREV:

A1 A2 A3 A4
A1
A2
A3
A4


1 0.5 1 0.5
2 1 1 0.5
1 1 1 0.3333
2 2 3 1


PPVC1C2

PREV
0.16406
0.23278
0.17510
0.42806

 (19)

Pairwise comparison results of alternatives with respect to criteria C3–C4 after the
implementation of the perturbation factor eij = 0.5, rounding errors (each element of the
particular PCM is rounded to Saaty’s scale) and forced reciprocity errors (the PCM is
transformed to be reciprocal in such a way that only elements from above its diagonal
are taken into consideration, and elements below its diagonal are replaced by inverses of
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their counterparts from above its diagonal), with PPVC3C4
PREV computed on the basis of the

obtained PCM with the application of PREV:

A1 A2 A3 A4
A1
A2
A3
A4


1 0.3333 0.1429 0.125
3 1 0.2 0.2
7 5 1 0.5
8 5 2 1


PPVC3C4

PREV
0.04698
0.10012
0.34774
0.50517

 (20)

After standard AHP synthesis, the following result is obtained: TCPVPREV = [0.09439,
0.15383, 0.27783, 0.47394]T, which again is different from HTPV = [0.25, 0.21, 0.23, 0.31]T.
Comparing HTPV with the estimated TCPVPREV, the performance measures mentioned
before—i.e., SRCC, PCC and MAD—which reflect the approximation quality of PREV
can be established again. For the above exemplary values of HTPV and TCPVPREV,
these measures are different than before and are as follows: SRCC = 0.4, PCC = 0.76944,
MAD = 0.10589. Surprisingly, SRCC in this case is twice as high as in the first example,
although this time, more PCM distortions were applied.

4. Results of Complete Examination with Discussion

Noticeably, the comparison of the approximation quality of any PDM available for
PCB ranking problems is possible as presented in Section 3. It is thus possible to examine a
few selected PDMs for the AHP. Thus, the MCS designed for this purpose—i.e., processing
the algorithm emulating steps from Examples 2A–2D 25,000 times (250 distinctive AHP
frameworks perturbed 100 times each)—provided the correlation scores presented in
Tables A1–A4. However, in Tables 5–8, discrepancies among correlation scores obtained by
the examined PDMs are presented in relation to the selected referential values, which in
these cases constitute the correlation scores obtained by PREV.

Table 5. Absolute discrepancies of the performance of arbitrarily selected PDMs and PREV for 25,000 cases of various
uniformly drawn and uniformly perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM SNCS LSDM

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

R
ef

er
en

ti
al

va
lu

e
lo

ca
te

d
in

Ta
bl

e
A

1.

0.000160 0.000280 0.000080

0.000180 0.000246 0.000017

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000211 0.000787 0.000091

0.000608 0.000138 0.000073

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.014305 0.009523 0.004557

0.006454 0.007787 0.001434

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.027007 0.014009 0.006119

0.016304 0.011317 0.002445

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.001754 0.000463 0.000003

0.000263 0.000281 0.000036

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000880 0.001085 0.000014

0.000380 0.000190 0.000048

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.011820 0.012460 0.003883

0.010472 0.011425 0.002947

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.048165 0.026215 0.010913

0.033336 0.023230 0.007889
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Table 5. Cont.

Simulation Parameters ($) STAT PREV LLSM SNCS LSDM

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.000345 0.000160 0.000088

0.000021 0.000002 0.000001

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000317 0.000028 0.000061

0.000043 0.000037 0.000010

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.015625 0.009485 0.004011

0.011447 0.011942 0.003528

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.048393 0.029171 0.011378

0.034861 0.026269 0.008804
(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, uniformly drawn
perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario assumed
100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale was a simple ordinal
scale from 1 to 50.

Table 6. Absolute discrepancies of the performance of arbitrarily selected PDMs and PREV for 25,000 cases of various
uniformly drawn and log-normally perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM SNCS LSDM

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

R
ef

er
en

ti
al

va
lu

e
lo

ca
te

d
in

Ta
bl

e
A

2.

0.000209 0.000214 0.000103

0.000497 0.000565 0.000080

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.001472 0.001332 0.000119

0.000827 0.000330 0.000130

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.003203 0.000480 0.002054

0.002449 0.001016 0.001510

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.003215 0.001696 0.001995

0.002923 0.001597 0.002058

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.001266 0.001071 0.000189

0.000069 0.000121 0.000009

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000476 0.000335 0.000105

0.000428 0.000267 0.000050

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.005631 0.001977 0.002068

0.002043 0.001931 0.001307

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.009619 0.005352 0.004868

0.005899 0.001343 0.003321

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.000523 0.000129 0.000075

0.000036 0.000170 0.000002

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.001390 0.000342 0.000209

0.000013 0.000082 0.000007

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.003425 0.000914 0.002662

0.002411 0.001400 0.001723

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.003060 0.000279 0.003384

0.004000 0.001726 0.002667
(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, log-normally drawn
perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario assumed
100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale was a simple ordinal
scale from 1 to 50.
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Table 7. Absolute discrepancies in the performance of arbitrarily selected PDMs and PREV for 25,000 cases of various
uniformly drawn and truncated-normally perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM SNCS LSDM

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

R
ef

er
en

ti
al

va
lu

e
lo

ca
te

d
in

Ta
bl

e
A

3.

0.002020 0.004480 0.000311

0.000368 0.000523 0.000051

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000415 0.000820 0.000037

0.000494 0.000219 0.000052

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.003180 0.002840 0.000317

0.000239 0.000165 0.000034

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.005738 0.002650 0.000702

0.000411 0.000384 0.000004

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.000222 0.001437 0.000029

0.000242 0.000518 0.000032

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000762 0.000912 0.000038

0.000292 0.000126 0.000022

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.002917 0.001189 0.000346

0.001056 0.000693 0.000191

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.008026 0.004473 0.000812

0.001274 0.000787 0.000164

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.001392 0.000851 0.000132

0.000064 0.000059 0.000004

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000032 0.000095 0.000007

0.000047 0.000033 0.000011

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.004248 0.001957 0.000957

0.001598 0.001334 0.000270

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.009329 0.004291 0.001371

0.001861 0.001278 0.000227
(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, truncated-normally
drawn perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario
assumed 100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale was a simple
ordinal scale from 1 to 50.

Table 8. Absolute discrepancies in the performance of arbitrarily selected PDMs and PREV for 25,000 cases of various
uniformly drawn and gamma perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM SNCS LSDM

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.001517 0.000143 0.000011

0.000384 0.000380 0.000050

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000330 0.001173 0.000027

0.000599 0.000243 0.000092

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.015957 0.013069 0.003780

0.009327 0.014993 0.002470

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.027611 0.021041 0.004950

0.024458 0.025688 0.001128
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Table 8. Cont.

Simulation Parameters ($) STAT PREV LLSM SNCS LSDM

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

R
ef

er
en

ti
al

va
lu

e
lo

ca
te

d
in

Ta
bl

e
A

4.

0.000600 0.000137 0.000294

0.000242 0.000263 0.000028

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000543 0.000326 0.000154

0.000322 0.000251 0.000046

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.019162 0.023100 0.007222

0.019843 0.030935 0.006085

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.048069 0.034347 0.013898

0.057891 0.047235 0.012189

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.000123 0.001300 0.000066

0.000043 0.000029 0.000006

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.000518 0.000340 0.000061

0.000011 0.000108 0.000007

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.033649 0.037263 0.015775

0.035832 0.051840 0.014031

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.079560 0.062324 0.032245

0.124541 0.108218 0.041822
(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, gamma drawn
perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario assumed
100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale was a simple ordinal
scale from 1 to 50.

The tables should be read from left to right and row by row from the top to the
bottom. In every first three columns on the left side of the tables, simulation parameters
taken into consideration are provided; i.e., the applied preference scale, the interval for
the perturbation factor, and sets for alternatives and criteria applied during MCS. Then,
differences between performance statistics are given for each simulation scenario.

It should be emphasized here that many PDMs have been proposed thus far, and
their effectiveness has been evaluated by various means. Various research and different
measures of the effectiveness of PDMs lead to different conclusions [97,98]. For example,
Choo et al. [99] in their research recommend LLSM as the best PDM with a simple formula
for computing PVs, equipped with many desirable properties discovered by Fichtner [100],
and the method is very popular as the best alternative for PREV. On the other hand, some
support for SNCS also exists—e.g., [36,47,101]—and LSDM is also considered as an efficient
PDM; see, e.g., [30]. Basically, it is agreed that many research results, including those of
this work, do not provide support for the recommendation by Saaty and Vargas [42] and
Saaty and Hu [55] that PREV reputedly is the only PDM which should be used when
pairwise comparisons are not entirely consistent. It is also agreed, as stated by Golany and
Kress [102], that the selection of a PDM for PCB problems should be dictated by the desired
measure of the PDM’s effectiveness, as different error measures support mathematically
different PDMs. Hence, as suggested by Bajwa et al. [101], the defining question is not
which PDM is superior, but which application results are expected and/or what level of
effectiveness or performance criteria are more valued. It is also believed that this research
supports the conclusion stated by Saaty and Hu [55] that there is a difference between
metric topology and order topology, where in the former the central concern is closeness
and in the latter both closeness and order preservation features are equally important. It
can be agreed after all these years of research that none of the examined PDMs have been
found to be universally superior to all others in all aspects. However, to the best of our
knowledge, for the first time, a statistical foundation has been created to evaluate scenarios
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when PDMs coincide and when their discrepancies are statistically significant. Hence,
the possibility was created for a DM to assess the risk of accepting an ineffective PDM or
rejecting an effective PDM—the standard problem known to every statistician and very
important to each DM during the statistical evaluation of decisional options; i.e., statistical
alternative hypothesis testing.

For this research, four distinctive PDM have been selected on the basis of different
criteria. PREV is studied because it was conceived with the AHP. LLSM is considered
because it has a simplified form and is usually promoted as the best alternative for PREV.
SNCS is taken into consideration here for its simplicity and good effectiveness as shown in,
e.g., [19,47]. LSDM is examined because it combines spectral theory with an optimization-
based approach to PCB problems.

As stated earlier, all the above PDMs have been more or less intensively studied and
have shown their effectiveness, efficiency and desired analytical properties [34,103]. They
have been evaluated from the perspective of various measures of effectiveness; e.g., Mean
Square Error (MSE), Mean Absolute Deviation (MAD), Mean Central Conformity (MCC),
Mean Rank Violation (MRV) (see, e.g., [19,36,47,102]), the Coefficient of Multiple Determina-
tion (CMD = R2), which is widely applied in regression analysis (see, e.g., [104]), the Garuti
Compatibility Index (GCI) and the Saaty Compatibility Index (SCI) (see, e.g., [58,105,106]).
However, in this research, focus was given to statistical measures of examined phenom-
ena and their statistical significance; thus, emphasis was placed on the introduced PDM
approximation quality measures; i.e., mostly MSRC, but also MPCC and MAAD. Thus,
the discrepancies in the correlation scores presented in Tables 5–8 are analyzed from the
perspective of the PDM rank preservation capability designated by MSRC and the general
correlation significance determined by MPCC.

As can be seen, all PDMs perform steadily under the four MCS scenarios presented in
Tables 5–8. It should be noted that PREV does not always outperform the other PDMs in
this study; in many cases, it is actually the other way round. The selected PDMs for the
examination perform better from the perspective of the approximation quality represented
by MSRC. In relation to this phenomenon, it occurs that LSDM dominates over PREV most
often in comparison with the other PDMs and from the perspective of all applied MCS
scenarios (see the numerical lower subscript of the particular PDM for information on how
many times the indexed PDM prevails PREV). This is an important piece of information
as the approximation quality of the DM preference intensities of any PDM seems a very
crucial issue in PCB problems.

Fortunately, the information provided in Tables 5–8 can be analyzed from the statis-
tical perspective because the significance of the difference between any two correlation
coefficients (CC), denoted as CC[1] and CC[2], can be tested using “t” statistics defined by
the following formula:

t = R
√
(n− 2)/(1− R2) (21)

where R is the difference between particular CC.
These statistics have a distribution of t–student with n-2 degrees of freedom df, where

n equals the size of the sample. Thus, the following hypothesizes can be tested:

H0 : |CC[1]−CC[2]| = 0 versus H1 : |CC[1]−CC[2]| > 0,

and conversely,

H0 : |CC[1]−CC[2]| > 0 versus H1 : |CC[1]−CC[2]| ≈ 0.

Hence, the following conclusions can be drawn from data provided in Tables 5–8. If
the performance of a particular PDM differs from the performance of PREV by less than
0.00160 (t = 0.252972417), then it can be assumed with an 80% confidence level (t = 0.253)
that its performance discrepancy in relation to the performance of PREV is negligible.
For an 85% confidence level (t = 0.1895), this discrepancy should be smaller than 0.00118
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(t = 0.186567049), and for a 90% confidence level (t = 0.126), it should be smaller than
0.00076 (t = 0.120161779).

On the other hand, if the performance of the particular PDM differs from the perfor-
mance of PREV by more than 0.00815 (t = 1.288619398), then it can be assumed with an 80%
confidence level (t = 1.282) that its performance discrepancy in relation to the performance
of PREV is significant, and this discrepancy should not be neglected. For an 85% confidence
level (t = 1.452) this discrepancy should be greater than 0.00920 (t = 1.454651099), and for a
90% confidence level (t = 1.645), it should be greater than 0.01050 (t = 1.660220885).

To be able to more completely examine this issue, the MAAD scores for four studied
scenarios are presented in Table A5, and discrepancies among the MAAD scores of three
PDMs in relation to PREV for four studied scenarios are presented in Table 9.

Table 9. Performance discrepancies of three arbitrarily selected PDMs in relation to PREV for 25,000 cases of different
uniformly drawn and variously perturbed AHP frameworks (%).

Simulation Parameters ($) PDM MAAD[1] MAAD[2] MAAD[3] MAAD[4]

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

0.000584 0.000545 0.000719 0.000493

0.001399 0.001240 0.001820 0.001487

0.000077 0.000094 0.000115 0.000086

nk,na∈{8,9 . . . ,12}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

0.000703 0.000721 0.000744 0.000536

0.000503 0.000765 0.000551 0.000630

0.000109 0.000140 0.000097 0.000094

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

−0.001188 −0.000620 0.000245 −0.001762

0.001184 0.002267 0.001847 0.000834

−0.000255 −0.000285 0.000051 −0.000517

nk,na∈{8,9 . . . ,12}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

−0.001394 −0.000319 0.000197 −0.001295

−0.000133 0.000684 0.000572 −0.001061

−0.000177 −0.000169 0.000072 −0.000101

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

0.000791 0.000366 0.000531 0.000297

0.001600 0.001125 0.001102 0.001088

0.000145 0.000064 0.000075 0.000041

nk,na∈{8,9 . . . ,12}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

0.000546 0.000615 0.000637 0.000473

0.000450 0.000700 0.000404 0.000556

0.000079 0.000097 0.000074 0.000078

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

−0.001980 −0.000334 −0.000017 −0.002306

0.000588 0.002569 0.001050 −0.000887

−0.000514 −0.000213 0.000008 −0.000792

nk,na∈{8,9 . . . ,12}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

−0.002642 −0.000409 0.000015 −0.002901

−0.001178 0.000663 0.000431 −0.002264

−0.000529 −0.000229 0.000037 −0.000691
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Table 9. Cont.

Simulation Parameters ($) PDM MAAD[1] MAAD[2] MAAD[3] MAAD[4]

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

0.000001 0.000009 0.000079 −0.000058

0.000259 0.000550 0.000325 0.000351

0.000004 0.000000 0.000018 −0.000006

nk,na∈{8,9 . . . ,12}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

0.000075 0.000063 0.000089 0.000012

0.000192 0.000347 0.000159 0.000301

0.000020 0.000025 0.000029 0.000016

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

−0.002301 −0.000441 −0.000387 −0.004033

−0.000195 0.002836 0.000351 −0.003573

−0.000586 −0.000246 −0.000044 −0.001506

nk,na∈{8,9 . . . ,12}

PREV Referential value located in Table A5.

LLSM

SNCS

LSDM

−0.003147 −0.000283 −0.000486 −0.005799

−0.001707 0.000858 0.000061 −0.005315

−0.000677 −0.000199 −0.000044 −0.002030
(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, uniform MAAD[1],
log-normal MAAD[2], truncated-normal MAAD[3], or gamma MAAD[4], with drawn perturbation factors from the indicated interval and
rounding errors connected with the assigned preference scale. A negative value of the particular MAAD for PDM indicates that it is smaller
than the MAAD of PREV. ($) PDM stands for “priorities deriving method”.

It can be noticed that all examined PDMs perform quite similarly from the perspective
of their approximation quality evaluated by their MAAD. Nevertheless, considering MAAD
as the performance criterion, LSDM outperforms PREV 21 times, LLSM is better than PREV
22 times and SNCS outperforms PREV 9 times. In conclusion, as PREV is quite frequently
criticized in the literature, this outcome should not be surprising.

Taking into account the above examination results, it was decided to analyze one more
scenario with MCS. Generally, the algorithm applied for MCS this time is an expanded
version of the approach previously applied and presented in earlier examples provided in
this research in Section 4. The algorithm can be specified as follows:

Step 1. Generate a random PV;—i.e., k = [k1,..., kn]T of size [n x 1]—for the criteria and the
associated original unbiased PCM(k) = K(k).
Step 2. Randomly generate exactly n PVs—i.e., an = [an,1,..., an,m] of size [m x 1]—for the
alternatives under each criterion and the associated original unbiased PCMs(a) = An(a).
Step 3. Compute the joint priority vector w of size [m x 1] by the following procedure:

wx = k1a1, x + k2a2, x +...+ knan, x (22)

Step 4. Randomly select a number e from the given interval [α,β] based on the given PD.
Step 5. Use step 5A and step 5B separately: Step 5A is a case of applying forced reciprocity to the
PCM: Replace all elements aij for i < j of all An(a) with eaij and all elements kij for i < j of K(k) with
ekij. Step 5B is the case of the acceptance of nonreciprocal PCM: Replace all elements aij for i 6= j of
all An(a) with eaij and all elements kij for i 6= j of K(k) with ekij.
Step 6. Use steps 6A and 6B separately: Step 6A—if Step 5A is satisfied, Round all values of
elements aij for i < j of all An(a) and all values of elements kij for i < j of K(k) to the nearest values
of the scale under consideration, then replace all elements aij for i > j of all An(a) by 1/aij and all
elements kij for i > j of K(k) by 1/kij. Step 6B—after completing step 5B, Round all values of elements
aij for i 6= j of all An(a) and all values of elements kij for i 6= j of K(k) to the nearest values of the
scale under consideration.
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Step 7. Given all perturbed An(a), denoted as An(a)*, and perturbed K(k), denoted as K(k)*, compute
their corresponding PVs an* and k* using the given PDM; i.e., PREV, SNCS, LLSM, and LSDM.
Step 8. Calculate the TPV w*(PDM) of size [m x 1] by the following procedure:

w*x = k*
1a*

1, x + k*
2a*

2, x + . . . + k*
n a*

n, x (23)

Step 9. Calculate the SRCC for all w*(PDM) and w, as well as any specified quality characteristics
of the approximation;—e.g., MAD, PCC, or other relative deviations—e.g., mean relative errors,
denoted as

MREγ,χ(w ∗ (PDM), w) =
1
m

m

∑
i=1

|wi − wi ∗ (PDM)|
wi

(24)

or average relative ratios, the value of which is given in [30] , denoted as

MRRγ,χ(w ∗ (PDM), w) =
1
m

m

∑
i=1

wi ∗ (PDM)

wi
(25)

Step 10. Repeat steps 4 to 9 χ times, with the sample size denoted asχ.
Step 11. Repeat steps 1 to 9 χ times, with the number of AHP models considered denoted asχ.
Step 12. Return the arithmetic averages of all approximation quality functions computed during all
executions in Steps 10 and 11.

This time, the MCS scenario used was developed with new assumptions in mind.
Therefore, not only the results obtained with a reciprocal PCM (RPCM) but also the results
obtained with a non-reciprocal PCM (APCM) were considered. Although the AHP does
not allow APCM in its structure, it seems reasonable to analyze its application to PCB
problems; see, for example, [37,40,71]. It was also decided to introduce new intervals for
perturbation factors in MCS and to apply their new PDs. Obviously, this time, the expected
value of eij was also close to unity; i.e., the value of EV(e) ≈ 1. Although this requirement is
relatively easy to fulfill based on an asymmetric interval for eij (relative to its effect on a
particular PCM element), it is quite difficult to realize this assumption with a symmetric
interval for eij. However, this goal was achieved in this seminal study. It is reasonable
to apply symmetric intervals to MCS for eij as well, as they more realistically reflect real
human performance in pairwise comparisons without strong outliers. Thus, experiments
were conducted with different types of PDs, and it was found that the Fisher–Snedecor
PD has a property that may be useful for the intended purpose. Namely, for n1 = 14
and n2 = 40 degrees of freedom for 1000 randomly generated numbers based on this PD,
their mean is 1.03617, meaning that it is very close to one, and these numbers range from
0.174526 to 5.57826. Under these assumptions, e∈[0.174526, 5.57826] therefore holds, giving
a completely symmetric PD for eij; i.e., EV(e) ≈ 1. The results for the selected PDMs and
their assumed performance quality measures—i.e., mean relative error (MSRC), mean
relative error (MARE), and mean relative ratio (MARR)—derived from the MCS scenario
described earlier are shown in Table 10.

As can be seen again, PREV is not the dominant PDM in terms of all simulation
scenarios in the established framework (it ranks second overall ex aequo with LLSM). Of
course, the obvious differences in the quality of the PV approximation depending on the
chosen PDMs are evident for non-reciprocal PDMs. LSDM and LLSM outperform the
other chosen PDMs, especially with respect to rank correlations, which are crucial for the
phenomenon of rank preservation.

The issue of the rank reversal phenomenon (conservation of preference power) was
introduced by Bana e Costa and Vansnick [13]. They gave the following definition: for all
alternatives A1, A2, A3 and A4 such that A1 dominates A2 and A3 dominates A4 and the
degree of dominance of A1 over A2 is greater than the degree of dominance of A3 over
A4, not only w1 > w2 and w3 > w4, but also w1/w2 > w3/w4 is true for the obtained PV.
Therefore, the following scenario considered by Bana e Costa and Vansnick is revisited.
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Table 10. The average performance of the five selected named PDMs for various uniform constructions of 100,000 AHP
models—1000 hypothetical decision problems perturbed 100 times each (*).

Scenario Details PDM MARE Ranks MSRC Ranks MARR Ranks ∑Ranks.

G
eo

m
et

ri
c

Sc
al

e

n,
m
∈{

3,
4

..
.,

7}

R
PC

M
LLSM 0.123288 3 0.916281 1 1.04646 2 6
PREV 0.123030 1 0.915056 4 1.04546 1 6
LSDM 0.123044 2 0.915489 2 1.04699 3 7
SNCS 0.132926 4 0.915228 3 1.05865 4 11

A
PC

M

LLSM 0.100511 1 0.930242 3 1.02953 3 7
PREV 0.101523 3 0.930164 4 1.02938 2 9
LSDM 0.100658 2 0.930965 2 1.02926 1 5
SNCS 0.108689 4 0.931026 1 1.04315 4 9

n,
m
∈{

8,
9

..
.,

12
}

R
PC

M

LLSM 0.079748 3 0.931396 1 1.03319 3 7
PREV 0.079110 1 0.928266 4 1.03116 1 6
LSDM 0.079321 2 0.928817 2 1.03173 2 6
SNCS 0.086223 4 0.928799 3 1.03935 4 11

A
PC

M

LLSM 0.063936 3 0.943393 2 1.02252 3 8
PREV 0.062735 2 0.942399 4 1.02070 1 7
LSDM 0.061757 1 0.944593 1 1.02109 2 4
SNCS 0.068981 4 0.942764 3 1.02879 4 11

Sa
at

y’
s

sc
al

e

n,
m
∈{

3,
4

..
.,

7}

R
PC

M

LLSM 0.143650 3 0.911381 1 1.06578 3 7
PREV 0.142967 1 0.911151 3 1.06498 1 5
LSDM 0.143069 2 0.911347 2 1.06520 2 6
SNCS 0.155694 4 0.910735 4 1.07850 4 12

A
PC

M

LLSM 0.116095 1 0.927455 1 1.04681 2 4
PREV 0.116994 3 0.926955 4 1.04705 3 10
LSDM 0.116337 2 0.927129 3 1.04657 1 6
SNCS 0.127154 4 0.927397 2 1.06051 4 10

n,
m
∈{

8,
9

..
.,

12
}

R
PC

M

LLSM 0.100279 3 0.917231 1 1.04856 3 7
PREV 0.098084 1 0.915833 3 1.04630 1 5
LSDM 0.098648 2 0.916245 2 1.04695 2 6
SNCS 0.106674 4 0.915633 4 1.05424 4 12

A
PC

M

LLSM 0.078464 3 0.938192 2 1.03563 3 8
PREV 0.077002 2 0.937837 3 1.03422 1 6
LSDM 0.076762 1 0.939669 1 1.03469 2 4
SNCS 0.084307 4 0.937796 4 1.04125 4 12

Total Ranks Sum LLSM 54 PREV 54 LSDM 44 SNCS 89

Score 2 2 1 3

Note: (*) AHP models constructed randomly (uniformly) for a given set of criteria and alternatives. The scenario assumes both factors: a
disturbance factor obtained with the F-Snedecor probability for n1 = 14 and n2 = 40 degrees of freedom and round-off errors associated
with a given scale (geometric or Saaty’s). Includes calculation of performance measures for reciprocal PCM (RPCM) or non-reciprocal PCM
(APCM).

When the PCM is given as
1 2 3 5 9

1/2 1 2 4 9
1/3 1/2 1 2 8
1/5 1/4 1/2 1 7
1/9 1/9 1/8 1/7 1


according to the common linguistic interpretation of the AHP, A1 is strongly dominant over
A4 (A1/A4 = 5) and A4 is very strongly dominant over A5 (A4/A5 = 7). This implies that
A1/A4 < A4/A5.

However, the PV obtained from PREV gives [0.4262, 0.2809, 0.1652, 0.1008, 0.0269]T

and gives A1/A4 = 4.218 > A4/A5 = 3.741, which violates the condition of order preserva-
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tion (COP). On the other hand, the PV obtained, e.g., by LSDM gives [0.434659, 0.282449,
0.163602, 0.097671, 0,021620]T and results in ratios if A1/A4 = 4.450245 < A4/A5 = 4.517668,
which, unlike PREV, satisfy the COP!

This phenomenon of LSDM is especially interesting because of the perfect rank corre-
lations for PVs derived by LSDM and PREV from randomly generated (uniform probability
distribution) transitive and reciprocal inconsistent PCMs (TRPCM) (see Table 11).

Table 11. Results of comparative studies concerning LSDM and PREV for 1000 RTPCMs.

($) STAT
Number of alternatives (n)

3 4 5 6 7

MPCC 1 0.999999 0.999997 0.999993 0.999991
MSRC 1 1 1 1 1

($) STAT
Number of alternatives (n)

8 9 10 11 12

MPCC 0.999989 0.999991 0.999987 0.999997 0.999988
MSRC 1 1 1 1 1

($) STAT stands for “statistics”.

In order to compare the results obtained using LSDM with those obtained using
PREV and to see if they are the same or if there is a possibility to reverse the order
between their PV elements, 1000 TRPCMs were generated using MCS. For each randomly
generated TRPCM, PVs were determined: PVLSDM and PVPREV were calculated using
LSDM and PREV, respectively. In addition, the PCCs between the PV elements and the
SRCCs between their priorities were calculated. The numbers of alternatives n considered
were chosen as follows: 3, 4, 5, 6, 7, 8, 9, 10 and 12. The number of criteria was set to one.
A standard numerical AHP scale was used to express the judgment; i.e., integers 1–9 and
their inversions.

Table 11 shows the mean correlation coefficients between PV elements and the pri-
ority ranks obtained during MCS with respect to the number of alternatives taken into
consideration.

Considering the results presented in Table 11, three facts can be noted: firstly, for n = 3,
both methods perfectly coincide; secondly, MSRC values for n > 3 equal 1,meaning that
there is no rank reversal phenomenon between the LSDM and PREV for 1000 randomly
generated TRPCMs; lastly, MPCC values for n > 3 between PVs derived by the LSDM and
PREV for 1000 TRPCMs practically coincide with unity—i.e., MPCC ≈ 1—which indicates
the almost perfect coincidence of both PDMs.

5. Conclusions

Discrepancies and similarities among examined PDMs have been examined in this
research paper from various perspectives, also including the statistical approach. For
this purpose, selected statistical measures of the effectiveness of PDMs (approximation
quality) have been applied in this research; i.e., MSRC, MPCC, MARE, MAAD and MARR.
Information concerning the statistical significance of discrepancies and similarities among
examined PDMs is clearly presented. In this way, to the best of our knowledge, for the first
time, a statistical foundation has been created to identify situations in which PDMs coincide
and their discrepancies can be considered as negligible, and when their discrepancies are
statistically significant and they should not be neglected. Hence, the possibility was created
for a DM to assess the risk of accepting an ineffective PDM or rejecting an effective PDM—
the standard problem known to every statistician and which is very important to each DM
during the statistical evaluation of decisional options; i.e., statistical alternative hypothesis
testing. The ranking of the PDMs evaluated in the manuscript based on novel scenarios
of Monte Carlo simulations was also presented in this research paper. Furthermore, a
certain interesting advantage of LSDM which other evaluated PDMs do not have—i.e., the
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condition of order preservation satisfaction—is also presented in the article. These research
accomplishments will certainly provide fundamental support for any DM during their
decisions regarding which PDM to choose in various circumstances.

Given the reality of our physical world, no study is perfect. In order to compare the
characteristics of the estimates obtained in the simulation process for the selected PDM,
different situations related to various sources of the PCM inconsistency were simulated.
Fundamentally, PCM inconsistency commonly results from errors caused by the nature of
human judgments and errors due to the technical realization of the pairwise comparison
procedure; i.e., rounding errors and errors resulting from the forced reciprocity requirement
commonly imposed in PCB ranking problems. All the above errors can be simulated, but
the nature of human judgments is represented here as the realization of a stochastic process
in accordance with the assumed probability distribution of the perturbation factor; e.g.,
uniform, gamma, truncated normal and log-normal. As this is only a process generated by
a computer, it represents a certain limitation of the presented research. Thus, there is a space
for further research in this area with the application of different MCS scenarios, various
other measures of PDM effectiveness (performance quality) and a case-based methodology.
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Appendix A

Table A1. Performance evaluations of four arbitrarily selected distinctive priority deriving methods for 25,000 cases of
various uniformly drawn and uniformly perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM[8] SNCS[8] LSDM[9]

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.954114
0.996283

0.953954
0.996103

0.954394
0.996037

0.954034
0.996266

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.960275
0.997085

0.960486
0.996477

0.959488
0.996947

0.960366
0.997012

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.818026
0.919355

0.832331
0.925809

0.827549
0.927142

0.822583
0.920789

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.808539
0.914050

0.835546
0.930354

0.822548
0.925367

0.814658
0.916495

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.972260
0.998200

0.970506
0.997937

0.971797
0.997919

0.972263
0.998164

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.975308
0.998289

0.974428
0.997909

0.974223
0.998099

0.975294
0.998241

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.829677
0.926624

0.841497
0.937096

0.842137
0.938049

0.833560
0.929571

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.758181
0.896157

0.806346
0.929493

0.784396
0.919387

0.769094
0.904046
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Table A1. Cont.

Simulation Parameters ($) STAT PREV LLSM[8] SNCS[8] LSDM[9]

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.961512
0.997214

0.961167
0.997235

0.961672
0.997212

0.961424
0.997215

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.968680
0.998276

0.968997
0.998233

0.968652
0.998239

0.968741
0.998266

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.803089
0.917198

0.818714
0.928645

0.812574
0.929140

0.807100
0.920726

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.751877
0.897493

0.800270
0.932354

0.781048
0.923762

0.763255
0.906297

(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, uniformly drawn
perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario assumed
100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale is a simple ordinal scale
from 1 to 50.

Table A2. Performance evaluations of four arbitrarily selected distinctive priority deriving methods for 25,000 cases of
various uniformly drawn and log-normally perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM[10] SNCS[10] LSDM[11]

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.953746
0.991004

0.953537
0.990507

0.953960
0.990439

0.953849
0.990924

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.942781
0.994939

0.941309
0.994112

0.941449
0.994609

0.942662
0.994809

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.809600
0.895606

0.812803
0.898055

0.810080
0.896622

0.811654
0.897116

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.736278
0.884172

0.739493
0.887095

0.737974
0.882575

0.738273
0.886230

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.949380
0.995827

0.950646
0.995758

0.950451
0.995706

0.949569
0.995818

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.965776
0.996819

0.966252
0.996391

0.965441
0.996552

0.965881
0.996769

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.809509
0.899603

0.815140
0.901646

0.811486
0.901534

0.811577
0.900910

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.762026
0.898035

0.771645
0.903934

0.767378
0.896692

0.766894
0.901356

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.954331
0.994703

0.954854
0.994667

0.954460
0.994533

0.954406
0.994705

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.942954
0.996367

0.944344
0.996354

0.943296
0.996285

0.943163
0.996360

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.799409
0.889681

0.802834
0.892092

0.800323
0.888281

0.802071
0.891404

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.763264
0.898773

0.766324
0.902773

0.763543
0.897047

0.766648
0.901440

(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, log-normally drawn
perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario assumed
100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale is a simple ordinal scale
from 1 to 50.
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Table A3. Performance evaluations of four arbitrarily selected distinctive priorities deriving methods for 25,000 cases of
various uniformly drawn and truncated-normally perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM[9] SNCS[6] LSDM[10]

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.952060
0.997388

0.950040
0.997020

0.947580
0.996865

0.951749
0.997337

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.974105
0.997360

0.973690
0.996866

0.973285
0.997141

0.974142
0.997308

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.918383
0.988553

0.921563
0.988792

0.921223
0.988718

0.918700
0.988587

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.914576
0.989527

0.920314
0.989938

0.917226
0.989911

0.915278
0.989531

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.971405
0.998091

0.971627
0.997849

0.969968
0.997573

0.971434
0.998059

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.981538
0.999183

0.980776
0.998891

0.980626
0.999057

0.981576
0.999161

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.950677
0.987563

0.953594
0.988619

0.951866
0.988256

0.951023
0.987754

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.925444
0.989946

0.933470
0.991220

0.929917
0.990733

0.926256
0.990110

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.977257
0.998227

0.978649
0.998163

0.976406
0.998168

0.977389
0.998223

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.975885
0.998537

0.975917
0.998490

0.975790
0.998504

0.975878
0.998526

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.914943
0.981219

0.919191
0.982817

0.916900
0.982553

0.915900
0.981489

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.915798
0.989423

0.925127
0.991284

0.920089
0.990701

0.917169
0.989650

(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, truncated-normally
drawn perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario
assumed 100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale is a simple
ordinal scale from 1 to 50.

Table A4. Performance evaluations of four arbitrarily selected distinctive priority deriving methods for 25,000 cases of
various uniformly drawn and gamma perturbed AHP frameworks (%).

Simulation Parameters ($) STAT PREV LLSM[10] SNCS[10] LSDM[10]

Sa
at

y’
s

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.948900
0.991729

0.947383
0.991345

0.949043
0.991349

0.948911
0.991679

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.940537
0.994642

0.940207
0.994043

0.939364
0.994399

0.940564
0.994550

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.700517
0.792365

0.716474
0.801692

0.713586
0.807358

0.704297
0.794835

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.628579
0.741102

0.656190
0.765560

0.649620
0.766790

0.633529
0.739974
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Table A4. Cont.

Simulation Parameters ($) STAT PREV LLSM[10] SNCS[10] LSDM[10]

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.958689
0.995120

0.959289
0.994878

0.958826
0.994857

0.958983
0.995092

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.960721
0.996408

0.961264
0.996086

0.960395
0.996157

0.960567
0.996362

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.710669
0.777665

0.729831
0.797508

0.733769
0.808600

0.717891
0.783750

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.633144
0.705974

0.681213
0.763865

0.667491
0.753209

0.647042
0.718163

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.938357
0.992896

0.938480
0.992939

0.939657
0.992925

0.938291
0.992902

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.949155
0.995949

0.949673
0.995938

0.949495
0.995841

0.949216
0.995942

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7} MSRC
MPCC

0.652014
0.716426

0.685663
0.752258

0.689277
0.768266

0.667789
0.730457

nk,na∈{8,9 . . . ,12} MSRC
MPCC

0.517215
0.596455

0.596775
0.720996

0.579539
0.704673

0.549460
0.638277

(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, gamma drawn
perturbation factors from the indicated interval and rounding errors connected with the assigned preference scale. The scenario assumed
100 perturbations of 250 distinctive AHP frameworks. ($) STAT stands for “statistics”. The selected exemplary scale is a simple ordinal scale
from 1 to 50.

Table A5. Performance evaluations of four arbitrarily selected distinctive priority deriving methods for 25,000 cases of
different uniformly drawn and variously perturbed AHP frameworks (%).

Simulation Parameters ($) PDM MAAD[1] MAAD[2] MAAD[3] MAAD[4]

Sa
at

y’
s

Sc
al

e e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7}

PREV 0.0152166 0.0170793 0.0157268 0.0183054

LLSM
SNCS
LSDM

0.0158009
0.0166151
0.0152939

0.0176242
0.0183194
0.0171737

0.0164453
0.0175465
0.0158418

0.0187979
0.0197925
0.0183912

nk,na∈{8,9 . . . ,12}

PREV 0.0067629 0.0089824 0.0064799 0.0080005

LLSM
SNCS
LSDM

0.0074658
0.0072654
0.0068723

0.0097037
0.0097470
0.0091221

0.0072243
0.0070307
0.0065773

0.0085362
0.0086307
0.0080944

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7}

PREV 0.0423500 0.0538714 0.0241595 0.0752394

LLSM
SNCS
LSDM

0.0411620
0.0435337
0.0420947

0.0532517
0.0561386
0.0535864

0.0244044
0.0260062
0.0242102

0.0734771
0.0760735
0.0747223

nk,na∈{8,9 . . . ,12}

PREV 0.0201425 0.0242049 0.0102224 0.0322768

LLSM
SNCS
LSDM

0.0187484
0.0200100
0.0199658

0.0238864
0.0248888
0.0240361

0.0104191
0.0107942
0.0102943

0.0309819
0.0312162
0.0321762
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Table A5. Cont.

Simulation Parameters ($) PDM MAAD[1] MAAD[2] MAAD[3] MAAD[4]

G
eo

m
et

ri
c

Sc
al

e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7}

PREV 0.0125662 0.0156983 0.0091365 0.0161565

LLSM
SNCS
LSDM

0.0133571
0.0141659
0.0127110

0.0160638
0.0168236
0.0157627

0.0096679
0.0102382
0.0092115

0.0164534
0.0172445
0.0161972

nk,na∈{8,9 . . . ,12}

PREV 0.0046742 0.0061551 0.0040777 0.0057862

LLSM
SNCS
LSDM

0.0052204
0.0051243
0.0047530

0.0067697
0.0068553
0.0062525

0.0047142
0.0044819
0.0041514

0.0062594
0.0063425
0.0058646

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7}

PREV 0.0431238 0.0519107 0.0175077 0.0697836

LLSM
SNCS
LSDM

0.0411438
0.0437114
0.0426094

0.0515763
0.0544794
0.0516975

0.0174912
0.0185578
0.0175154

0.0674779
0.0688967
0.0689917

nk,na∈{8,9 . . . ,12}

PREV 0.0195622 0.0209548 0.0079203 0.0318991

LLSM
SNCS
LSDM

0.0169201
0.0183839
0.0190334

0.0205455
0.0216180
0.0207261

0.0079355
0.0083508
0.0079570

0.0289979
0.0296353
0.0312078

Se
le

ct
ed

Ex
em

pl
ar

y
Sc

al
e

e ij
∈[

0.
75

,1
.2

5]

nk,na∈{3,4 . . . ,7}

PREV 0.0085652 0.0126110 0.0073027 0.0124882

LLSM
SNCS
LSDM

0.0085662
0.0088237
0.0085692

0.0126199
0.0131611
0.0126112

0.0073812
0.0076280
0.0073205

0.0124307
0.0128388
0.0124823

nk,na∈{8,9 . . . ,12}

PREV 0.0035946 0.0050721 0.0030662 0.0050876

LLSM
SNCS
LSDM

0.0036694
0.0037865
0.0036145

0.0051352
0.0054186
0.0050970

0.0031548
0.0032253
0.0030948

0.0051000
0.0053887
0.0051038

e ij
∈[

0.
05

,1
.9

5]

nk,na∈{3,4 . . . ,7}

PREV 0.0441969 0.0525553 0.0187025 0.0810866

LLSM
SNCS
LSDM

0.0418959
0.0440019
0.0436105

0.0521145
0.0553910
0.0523095

0.0183152
0.0190532
0.0186587

0.0770536
0.0775137
0.0795806

nk,na∈{8,9 . . . ,12}

PREV 0.0192493 0.0227827 0.0074784 0.0370230

LLSM
SNCS
LSDM

0.0161027
0.0175419
0.0185725

0.0224996
0.0236406
0.0225833

0.0069925
0.0075397
0.0074343

0.0312237
0.0317082
0.0349929

(%) All simulation scenarios imposed reciprocity conditions for every examined PCM within each AHP framework, uniform MAAD[1],
log-normal MAAD[2], truncated-normal MAAD[3], or gamma MAAD[4], drawn perturbation factors from the indicated interval and
rounding errors connected with the assigned preference scale. ($) PDM stands for “priorities deriving method”.
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