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Abstract: The health status of the momentum wheel is vital for a satellite. Recently, research on
anomaly detection for satellites has become more and more extensive. Previous research mostly
required simulation models for key components. However, the physical models are difficult to
construct, and the simulation data does not match the telemetry data in engineering applications.
To overcome the above problem, this paper proposes a new anomaly detection framework based
on real telemetry data. First, the time-domain and frequency-domain features of the preprocessed
telemetry signal are calculated, and the effective features are selected through evaluation. Second,
a new Huffman-multi-scale entropy (HMSE) system is proposed, which can effectively improve
the discrimination between different data types. Third, this paper adopts a multi-class SVM model
based on the directed acyclic graph (DAG) principle and proposes an improved adaptive particle
swarm optimization (APSO) method to train the SVM model. The proposed method is applied to
anomaly detection for satellite momentum wheel voltage telemetry data. The recognition accuracy
and detection rate of the method proposed in this paper can reach 99.60% and 99.87%. Compared
with other methods, the proposed method can effectively improve the recognition accuracy and
detection rate, and it can also effectively reduce the false alarm rate and the missed alarm rate.

Keywords: satellite momentum wheel; anomaly detection; Huffman-multi-scale entropy (HMSE);
support vector machine (SVM); adaptive particle swarm optimization (APSO)

1. Introduction

As important spacecraft, study of the reliability of artificial satellites is a hot topic at
present. Generally, an artificial satellite consists of a structural system, temperature control
system, attitude control system, measurement and control system, and power supply
system. The mission of the attitude control system is to help the satellite achieve attitude
stability or attitude maneuver, to further guarantee the normal operation of the satellite
platform and the normal work of the payload.

Satellites have high requirements for attitude accuracy, which makes the task of
attitude control systems very heavy. Health state and reliability are the basic guarantee for
the normal operation of satellites [1]. Therefore, research on the theory and technology of
automatic fault diagnosis and anomaly detection of satellite attitude control systems will
further ensure the safe and reliable operation of on-orbit aircraft, reducing the possibility
of space accidents.

In recent years, many scholars have conducted research on fault diagnosis technology
or health management technology. These research contents can be roughly divided into
three main aspects. First, when there is a specific research object, a feasible solution is
to construct a simulation model of the object by analyzing the working mechanism and
failure mode of the object. The data generated based on the simulation data is used as the
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theoretical prediction value, and then the judgment criterion is designed to complete the
detection task. Luo et al. propose an improved phenomenological model based on meshing
vibration to generate fault simulation data [2]. Li et al. established an INS/ADS fault
detection model based on kinematic equations, and combined an unscented Kalman filter
(UKF) with Runge-Kutta to deal with the non-linear and discretization problem [3]. Second,
some research aims at extracting the fault features by constructing more effective signal
processing methods, such as the feature extraction method based on entropy value [4,5],
the feature extraction method based on spectral kurtosis time (Spectral Kurtosis, SK) [6], or
the Frequency domain feature extraction method [7]. To fully excavate the features of the
momentum wheel telemetry signal, this paper uses a combination of time domain features,
frequency domain features and complexity features for feature extraction. Considering
that, compared with permutation, dispersion, hierarchy, etc., sample entropy has better
consistency for different parameters, this paper chooses a complex quantification method
based on sample entropy. Third, for the fault recognition process, various pattern recog-
nition methods are used to learn the mapping relationship between features and failure
modes, so as to realize automatic fault recognition [8].

Due to the extremely complex structure and working principle of the spacecraft
itself, and the strong coupling between the sub-systems, it is very difficult to construct an
accurate simulation model of the spacecraft or its components [9,10]. As the spacecraft
is affected by the special space environment during its orbiting operation, it is extremely
prone to unpredictable failures, for example, the circuit signal disturbance caused by
electromagnetic background [11], the sudden change of attitude caused by the impact
of space debris [12], etc. In addition, during the process of the spacecraft downloading
telemetry data to the ground-based measurement and control station, data jumps and even
partial loss can occur [13]. Therefore, the data generated by the simulation model is often
difficult to simulate the actual telemetry data of the spacecraft, and it becomes very difficult
to use the spacecraft anomaly detection method based on the physical simulation model in
practical applications.

The fault diagnosis method based on the data mode does not impose necessary
restrictions on the prior knowledge of the object or system (including mathematical models
and expert experience, etc.), such as artificial neural network (ANN), support vector
machine (SVM), Bayesian network (BN) and other health assessment methods.

ANN is a method that is widely used in fault identification problems. Multilayer
Perceptron (MLP) is the most typical type of feedforward neural network model, which
usually uses a BP algorithm to learn the parameters of the model. Kumar et al. proposed a
method based on principal component analysis (PCA) and MLP to detect and classify the
three-phase current signals online [14]. In addition, probabilistic neural network (PNN) [15],
RBF neural network [16], extension neural network (ENN) [17] and recurrent neural
network (RNN) [18–20] have also been applied to fault detection and diagnosis problems.

For high-dimensional identification problems in fault diagnosis, the SVM method
based on the principle of structural risk minimization has been widely used in recent
years [21–23]. Compared with the ANN method based on the principle of empirical risk
minimization, the learning goal of the SVM is to learn the optimal classification hyperplane
in the feature space. The ANN has the ability to deal with pattern recognition problems,
but the sample size is large, and it takes a long time to adjust the network structure pa-
rameters. Bayesian decision-making has significant execution ability under the premise of
considering prior probability, but good accuracy is based on a prior model with appropriate
assumptions. Compared with the above methods, the SVM only needs a small number of
samples for training and has better generalization ability. Therefore, this paper chooses
SVM as the means of pattern recognition. In the field of fault diagnosis, research on the
SVM method mainly focuses on two aspects of obtaining more accurate recognition accu-
racy, i.e., by optimizing the hyperparameters of the model and constructing a new kernel
function. For specific recognition tasks, to optimize the hyperparameters of the model to
obtain better recognition performance, many optimization methods are applied [24–26].
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Liu et al. proposed a novel small sample data missing filling method based on support
vector regression (SVR) and genetic algorithm (GA) to improve the equipment health
diagnosis effect [25]. Particle swarm optimization (PSO) is a hyperparameter optimization
algorithm which is used by Cuong-Le et al. for damage identifications [26]. In terms
of constructing a new kernel function, Wang et al. proposed a kernel function selection
mechanism under sparse representation and the superiority of the selection mechanism
was performed in simulations and engineering experiments involving high-speed bearing
fault diagnosis [27]. Although both GA and PSO can solve high-dimensional complex
optimization problems well, in the iterative process of PSO, the particles can retain the
memory of the good solution, but the GA cannot, so PSO can often converge to a better
solution more quickly. Based on the above analysis, this paper uses PSO to optimize the
multi-class SVM.

From the above analysis, it can be seen that the following problems still exist in the
direct application of existing anomaly detection or fault diagnosis methods to the anomaly
detection problem of the satellite momentum wheel.

(1) Due to the complex structure and control law of the satellite momentum wheel itself,
it is very difficult to construct an accurate simulation model, so model-based anomaly
detection methods often fail to achieve satellite momentum wheel anomaly detection.

(2) Satellite telemetry data often contains outliers (due to the data with very large de-
viations introduced by the telemetry process). These data alone cannot characterize
the health of the spacecraft, but they can easily be detected as abnormal values by
existing methods. At the same time, some segments of the telemetry data are lost
in the process of downloading the data from the satellite to the ground. Therefore,
reasonable preprocessing of telemetry data is required.

(3) The sampling frequency of telemetry data collected by on-orbit satellite is often
less than 1Hz, and the data itself has a long change period, so traditional anomaly
detection methods based on time-frequency domain analysis are difficult to work
with telemetry data.

Therefore, in response to the above problems, this article proposes a new method
based on multi-type features fusion and improved SVM to handle the problem of anomaly
detection for the satellite. The main contributions of the proposed framework can be
summarized as follows:

(1) We design a new anomaly detection framework for satellites, which includes a teleme-
try data preprocessing part, a telemetry data multi-type feature extraction part, and a
data-driven anomaly detection part.

(2) We propose a new method to construct the fusion-feature sequence HMSE-T/F. The
HMSE-T/F is based on the Huffman-multi-scale entropy and the selected time/
frequency-domain feature. The Huffman-multi-scale entropy is a new method based
on the Huffman coding principle and sample entropy.

(3) We build a multi-class SVM model based on the directed acyclic graph (DAG) princi-
ple. We propose an improved adaptive particle swarm optimization (APSO) to train
the multi-class SVM model. Compared with other methods, the proposed method
has an excellent ability in anomaly detection.

The rest of this paper is organized as follows. Section 2 presents the scheme of the
proposed anomaly detection framework. The construction method of multi-type feature
sequence HMSE-T/F is provided in Section 3. In Section 4, the anomaly detection method
based on multi-class SVM model and the improved adaptive particle swarm optimization
(APSO) are stated. In Section 5, the performance of the proposed method is evaluated
from different aspects. Finally, in Section 6, a comprehensive summary of this paper and
prospects for future work are given.
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2. The Scheme of the Proposed Anomaly Detection Framework
2.1. Description of Difficulties in Spacecraft Anomaly Detection

In fact, since satellites are at normal working conditions at most of the time during
their orbits, the proportion of normal data in the telemetry data collected on the ground
is very high. For most detection methods that rely on plenty of training data, satellite
telemetry data can provide very few abnormal or fault samples, and there are very few
effective samples that can be used for classification model training. Therefore, some
adaptive improvements are needed when using the classification model to detect anomalies
in spacecraft.

Figure 1a shows the momentum wheel voltage change of a certain type of satellite
within 10 days, and its sampling frequency is 0.125 Hz. Figure 1b shows a sudden voltage
change in a certain type of satellite. Figure 1c is the frequency spectrum of the telemetry
signal in Figure 1a,d is the partially enlarged view of Figure 1c. According to Figure 1a–d,
apart from the feature of less abnormal data, satellite telemetry data also exhibits the
characteristics of extremely low sampling frequency, slow data change over a long period
of time, and many sudden abnormalities. Therefore, anomaly detection methods that
rely on time domain and frequency domain feature extraction often find it difficult to
distinguish the health status of their telemetry data.
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2.2. The Proposed Anomaly Detection Framework

To effectively solve the problem of satellite momentum wheel anomaly detection,
a new anomaly detection framework based on multi-type feature extraction and fusion
is proposed in this paper. The overall procedure of the proposed anomaly detection
framework is shown in Figure 2. Specifically, the descriptions of each Step are detailed
as follows.



Entropy 2021, 23, 1062 5 of 28
Entropy 2021, 23, x FOR PEER REVIEW 5 of 30 
 

 

Downstream satellite 
telemetry data 

Terminal analysis 

Step1：Telemetry data collection Step2：Data preprocessing 

Remove outliers 

Fill in missing data 

Step3：Features extraction 

… 
Time-domain Features

Frequency-domain Features

… 

Feature 
evaluation 

Select valid 
features 

Huffamn-multi-scale entropy 

… 

Feature vector 

Time/Frequency 
features Complexity features 

Multi-class 
SVM model* 

Step4：Obtaining anomaly detection model  

… 
Input:Feature vector 

Improved PSO algorithm

anomaly detection 
model 

Test data

Diagnosis results

… 

1 n-1 n

… 

SVM
n-1,1 … SVM

n-1,n-1

SVM
1,1

… 

* n-class SVM model with DAG method 

 
Figure 2. The overall procedure of the proposed anomaly detection framework. 

Step 1: Telemetry data collection. 
When the satellite is in orbit, to obtain its internal operating status and further pro-

vide real-time data for the remote-control object, the sensors in the satellite telemetry sys-
tem need to measure the operating status of each key component and convert it into elec-
trical signals. After the signals of each channel are combined according to a certain system, 
they are transmitted to the ground telemetry equipment (including receiver, antenna and 
splitter demodulator) using radio communication technology, and the ground terminal 
equipment restores and stores the original parameter information of each channel through 
signal demodulation technology. 

Step 2: Data preprocessing. 
The collection process of telemetry data is interfered with by sensors, converters, and 

wireless transmission. The data obtained by the ground receiving end often produces ab-
normal jump points. These kind of data points that deviate from the change law of the 
measured signal are usually called abnormal outliers. The abnormal outliers of the telem-
etry data will provide wrong information and affect the processing and analysis results of 
the telemetry signal. Outlier elimination is an important part of telemetry data prepro-
cessing. By eliminating random measurement values with large errors, the authenticity of 
telemetry data can be guaranteed to a certain extent, and the reliability of data analysis 
can be improved. Commonly used methods to eliminate outliers include visual inspec-
tion, mean square method, point discrimination, Letts criterion, etc. Different outlier elim-
ination methods should be used for different types of telemetry data. Considering that 
this article mainly analyzes the telemetry data of the satellite momentum wheel, the out-
lier elimination method based on the Letts criterion is adopted. 

The premise of the Letts criterion is that the distribution of the measured data is close 
to the normal distribution. Based on this assumption, the given confidence probability is 
99.7% as the standard, and the standard deviation of three times the measured quantity is 
used as the basis. Any measurement value exceeding this limit is judged for wild value. 
For a given sequence of telemetry measurement values. For a given telemetry sequence 

{ } , 1, ,ix i N= = x , the specific process of the method is as follows. 

Figure 2. The overall procedure of the proposed anomaly detection framework.

Step 1: Telemetry data collection.
When the satellite is in orbit, to obtain its internal operating status and further provide

real-time data for the remote-control object, the sensors in the satellite telemetry system
need to measure the operating status of each key component and convert it into electrical
signals. After the signals of each channel are combined according to a certain system,
they are transmitted to the ground telemetry equipment (including receiver, antenna and
splitter demodulator) using radio communication technology, and the ground terminal
equipment restores and stores the original parameter information of each channel through
signal demodulation technology.

Step 2: Data preprocessing.
The collection process of telemetry data is interfered with by sensors, converters, and

wireless transmission. The data obtained by the ground receiving end often produces
abnormal jump points. These kind of data points that deviate from the change law of
the measured signal are usually called abnormal outliers. The abnormal outliers of the
telemetry data will provide wrong information and affect the processing and analysis
results of the telemetry signal. Outlier elimination is an important part of telemetry data
preprocessing. By eliminating random measurement values with large errors, the authen-
ticity of telemetry data can be guaranteed to a certain extent, and the reliability of data
analysis can be improved. Commonly used methods to eliminate outliers include visual
inspection, mean square method, point discrimination, Letts criterion, etc. Different outlier
elimination methods should be used for different types of telemetry data. Considering that
this article mainly analyzes the telemetry data of the satellite momentum wheel, the outlier
elimination method based on the Letts criterion is adopted.

The premise of the Letts criterion is that the distribution of the measured data is close
to the normal distribution. Based on this assumption, the given confidence probability is
99.7% as the standard, and the standard deviation of three times the measured quantity is
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used as the basis. Any measurement value exceeding this limit is judged for wild value.
For a given sequence of telemetry measurement values. For a given telemetry sequence
x = {xi}, i = 1, · · · , N, the specific process of the method is as follows.

(1) Calculate the mean of the series:

x =
N

∑
i=1

xi (1)

(2) Calculate the standard deviation of the series:

σ =
1
N

√√√√ N

∑
i=1

(xi − x) (2)

(3) Eliminate outliers:{
|xi − x| ≤ 3σ, not outliers, keep
|xi − x| > 3σ, outliers, delete

(3)

In addition to the problem of outliers, the process of satellite telemetry data transmis-
sion to the ground is affected by the ionosphere, and data may be missing during the signal
decoding process. A telemetry sequence that has many data problems should be discarded
and not used as training data, but the missing value at a certain point in the sequence can
be handled by the filling method. From the distribution of the missing values, they can
be divided into missing completely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). MCAR means that the law of missing values in the data
is completely random and does not affect the unbiasedness of the overall sample. MAR
means that the mechanism of missing data is not completely random. The missing data of
this type depends on other variables. Such missing values are relatively rare in telemetry
data. MNAR means that the missing data is related to the value of the variable itself.

The missing values in satellite telemetry data are generally MCAR, so this paper uses
an interpolation method based on two short sequences before and after the missing point
to fill in the missing values. Given the data sequence to be filled is y = {yi}, i = 1, · · · , M,
The missing value to be filled is y∗. The auxiliary variable used to construct the regression
equation is x = {xi}, j = 1, · · · , M. The auxiliary variable value corresponding to the
missing value of the variable to be filled is x∗, and x∗ is a known variable. Use x, y to
construct the regression equation:

yi = f ∗(xi) (4)

where f ∗ needs to choose different regression models according to different telemetry data.
Then the missing value is y∗ = f (x∗).

Step 3: Features extraction.
Considering the difficulty of using satellite telemetry data for anomaly detection

as mentioned above, this paper adopts a time-frequency domain feature extraction and
selection method based on feature quality evaluation. At the same time, a complexity
feature extraction method based on Hoffman multi-scale entropy is proposed, which
enriches signal feature types and provides effective feature learning samples for training
satellite telemetry data anomaly detection models. The specific method of feature extraction
is described in detail in Section 3.

Step 4: Obtaining the anomaly detection model.
This paper takes support vector machine (SVM) as the basic unit and uses a directed

acyclic graph (DAG) principle to construct a satellite momentum wheel anomaly detection
model based on the support vector machine. This model can effectively solve the multi-
classification problem when some categories are difficult to distinguish. In addition, to
improve the classification accuracy of the anomaly detection model, an improved particle
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swarm optimization (PSO) algorithm is proposed to train SVMs. The specific method of
Obtaining anomaly detection model is described in detail in Section 4.

3. Multi-Type Feature Sequence HMSE-T/F Construction Method
3.1. Time/Frequency Domain Feature Extraction and Selection
3.1.1. Time/Frequency-Domain Feature

The time domain signal is a time series in which time is the independent variable
to describe the change of a certain physical quantity, and it is the most basic and most
intuitive form of expression of the signal. The time domain signal reflects the corresponding
relationship between real physical information and time. The processing of filtering,
amplifying, statistical feature calculation, and correlation analysis of signals in the time
domain is collectively referred to as time domain analysis.

When a device fails, its spectrum distribution may change. Like the statistical analysis
of time-domain signals, this type of change can be described by statistical analysis of the
signal’s frequency spectrum.

Given a period of time domain signal x(t), the frequency spectrum of this signal is
y(k), k = 1, · · · , k, fk is the k-th line of the spectrum. Then the time-domain statistical
characteristics and frequency-domain statistical features of x(t) are shown in Table 1 [28].

Table 1. The time/frequency-domain statistical features of x(t).

No. Time-Domain No. Frequency-Domain

1 peak : Xp = max{x(n)} 14 F1 = 1
K

K
∑

k=1
y(k)

2 peak-to-peak : Xpp = max{x(n)} −min{x(n)} 15 F2 = 1
K−1

K
∑

k=1
(y(k)− F1)

2

3 mean : µ = 1
N

N
∑

n=1
x(n) 16 F3 = 1

K(
√

F2)
3

K
∑

k=1
(y(k)− F1)

3

4 absolute mean : Xam = 1
N

N−1
∑

n=1
|xi| 17 F4 = 1

K(F2)
2

K
∑

k=1
(y(k)− F1)

4

5 root amplitude : Xra =

(
1
N

N
∑

n=1

√
|x(n)|

)2
18

F5 =

K
∑

k=1
y(k) fk

K
∑

k=1
y(k)

6 standard deviation : σ =

√
1

N−1

N
∑

n=1
[x(n)− µ]2 19

F6 =

√
K
∑

k=1
y(k)( fk−F5)

2

K

7 root mean square : Xrms =

√
1
N

N
∑

n=0
x2(n) 20

F7 =

√√√√√ K
∑

k=1
fk

2y(k)

K
∑

k=1
y(k)

8 skewness : Xske =

(
1
N

N
∑

n=1
(x(n)− µ)3

)
/σ3 21

F8 =

√√√√√ K
∑

k=1
fk

4y(k)

K
∑

k=1
fk

2y(k)

9 kurtosis : Xkur =

(
1
N

N
∑

n=1
(x(n)− µ)4

)
/σ4 22

F9 =

K
∑

k=1
fk

2y(k)√
K
∑

k=1
y(k)

K
∑

k=1
fk

4y(k)

10 peak index : Xpi = Xp/Xrms 23 F10 = F6
F5

11 impulse factor : Ximp = Xp/Xam 24 F11 = ∑K
k=1 ( fk−F5)

3y(k)
K(F6)

3

12 margin index : Xmi = Xp/Xra 25 F12 = ∑K
k=1 ( fk−F5)

4y(k)
K(F6)

4

13 waveform index : Xwi = Xrms/Xam

3.1.2. Feature Evaluation and Selection

In this paper, two commonly used feature evaluation methods, Laplacian Score
(LS) [29] and Relief-F Score (RFS) [30], are used to evaluate the effectiveness of the time-
domain and frequency-domain features of the satellite momentum wheel telemetry signal.



Entropy 2021, 23, 1062 8 of 28

Feature selection is based on two different feature evaluation results, and the feature with
the higher evaluation score is taken as the effective feature in the time/frequency domain.

(1) Laplacian Score (LS).
In practical problems, data of the same type are generally close to each other. Under

this premise, the importance of describing features can be transformed into evaluating
the local retention of features. The Laplace score is based on this idea. Let the data set be
X ∈ Rm×n, Lr is the LS of the r-th feature, fri is the the r-th feature of the i-th sample. Lr
can be calculated as follows.

Step 1: Construct a neighbor graph G containing n nodes, the i-th node corresponds
to the i-th sample xi, if xi and xj are close to each other, that is, xi is within the k-neighbor
range of xj, then an edge is constructed between nodes xi and xj. When the data labels are
known, edges can be constructed directly between samples of the same type.

Step 2: If nodes xi and xj are connected, put Sij = e
‖xi−xj‖

2

t , where t is a suitable
constant. Otherwise, put Sij = 0. The weight matrix S of the graph models the local
structure of the data space.

Step 3: For the r-th feature, the fr and D can be defined as fr = [ fr1, fr2, · · · , frm]
T,

D= diag(S1). The matrix L = D− S is often called graph Laplacian. Let

f̃r = fr −
fT
r D1

1TD1
1 (5)

where 1 = [1, · · · , 1]T.
Step 4: Compute the LS of the r-th feature as follows:

Lr =
f̃
T
r L̃fr

f̃
T
r Df̃r

(6)

(2) Relief-F Score (RFS).
The Relief-F Score method is a multi-class variant of the Relief method. The Relief

method designs a correlation statistic to measure the importance of features. The statistic is
a vector, each component of which corresponds to an initial feature, and the importance
of the feature subset is determined by the sum of the relevant statistic components corre-
sponding to each feature in the subset. For each xi in the data set X ∈ Rm×n, first find its
nearest neighbor xi,nh in the same sample of xi, which is called guessing nearest neighbor,
and then find its nearest neighbor xi,nm from different type samples of xi, which is called
guessing wrong neighbor. The component of the correlation statistic corresponding to the
feature is:

δ(r) = ∑
i

(
−di f f

(
x(r)i , x(r)i,nh

)2
+ di f f

(
x(r)i , x(r)i,nm

)2
)

(7)

where x(r)i is the value of the r-th feature of xi. For xa and xb, di f f
(

x(r)a , x(r)b

)
depends on the

type of the r-th feature. If the r-th feature r is discrete, when x(r)a = x(r)b , di f f
(

x(r)a , x(r)b

)
= 0,

otherwise di f f
(

x(r)a , x(r)b

)
= 1. If the r-th feature r is continuous, then di f f

(
x(r)a , x(r)b

)
=∣∣∣x(r)a − x(r)b

∣∣∣.
Relief is designed for two classification problems, while Relief-F can handle multiple

classification problems. For the sample xi, if it belongs to the k-th class, the Relief-F method
first finds its nearest neighbor xi,nh in the k-th class sample, and then finds a nearest
neighbor xi,l,nm, l 6= k of xi in each class except the k-th class as a guessing wrong neighbor,
so the correlation statistic corresponding to the component of the r-th feature is

δ(r) = ∑
i
−di f f

(
x(r)i , x(r)i,nh

)2
+ ∑

l 6=k

(
pl × di f f

(
x(r)i , x(r)i,nm

)2
)

(8)
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where pl is the proportion of the l-th class sample in the data set X.

3.2. Complexity Features Based on Huffman-Multi-Scale Entropy (HMSE)

Sample entropy (SampEn) is a new time series complexity characterization parameter
proposed by Richman et al. in 2004 [31]. The sample entropy is improved on the basis
of approximate entropy, both of which measure the complexity of the time series and the
probability of a new pattern generated by the sequence when the dimensionality changes.
The greater the probability of generating a new pattern, the more complex the sequence
and the higher the entropy value. Compared with other nonlinear dynamic methods such
as Lyapunov exponent, information entropy, and correlation dimension, sample entropy
has the advantages of short data, strong anti-noise and anti-interference ability, and good
consistency within a large range of parameters. Therefore, it has attracted the attention of
many scholars and has been frequently used in the field of mechanical signal analysis and
fault diagnosis in recent years.

3.2.1. Traditional Multi-Scale Sample Entropy (MSE)

Suppose a time series of length N is X = {x1, x2, · · · , xN−1, xN}, and the calculation
method of sample entropy is as follows:

Step 1: Construct the time series X into an m-dimensional vector:

X(i) = {xi, xi+1 · · · , xi+m−1}, i = 1, 2, · · · , N −m + 1 (9)

Step 2: Define the distance between X(i) and X(j) as d[X(i), X(j)], (i 6= j), which is
the largest difference between the two corresponding elements:

d[X(i), X(j)] = max
k∈(0,m−1)

∣∣∣∣x(i + k)− x(j + k)
∣∣∣∣, (i 6= j) (10)

Step 3: Given a threshold r > 0, count the number of d[X(i), X(j)] < r and calculate
the ratio to the total number of vectors N −m:

Bm
i (r) =

1
N −m

num{d[X(i), X(j)] < r} (11)

Step 4: Average all the results obtained by Equation (12):

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (12)

Step 5: Then m = m + 1, repeat Step1–Step4.
Step 6: Then theoretically the sample entropy of this sequence is:

SampEn(m, r) = lim
N→∞

{
− ln(

Bm+1(r)
Bm(r)

)

}
(13)

However, N cannot be infinite in fact, but a finite value. The estimated value of sample
entropy is:

SampEn(m, r, N) = − ln(
Bm+1(r)

Bm(r)
) (14)

The sample entropy does not include the comparison of its own data segments, which
not only improves the calculation accuracy and saves the calculation time, but also makes
the calculation of the sample entropy independent of the data length. In addition, the
sample entropy has better consistency. In other words, if one sequence has a higher SampEn
than another sequence, then when the parameters m and r are changed, the sequence still
has a relatively high SampEn value. However, the disadvantage of sample entropy is that
it does not consider the different time scales that may exist in the time series.
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To calculate the complexity of the signal at different time scales, Costa et al. proposed
multi-scale entropy [32], which aims to extend the sample entropy to multiple time scales
to provide additional observation perspectives when the time scale is uncertain. Like
other entropy measurement methods, the goal of multi-scale entropy is to evaluate the
complexity of time series. One of the main reasons for using multi-scale entropy is that the
relevant time scale in the time series is not known. For example, when analyzing a speech
signal, it is more effective to count the complexity of the signal under the word time scale
than the complexity of the entire speech segment. However, the actual situation is that we
often cannot know how many words a certain speech segment contains, or know what time
scale should be used to obtain more useful information from the original signal. Therefore,
analyzing the problem through multiple time scales will obtain more effective information.

The basic principle of multi-scale entropy (MSE) includes coarse-graining or down-
sampling the time series, so that the time series can be analyzed at increasingly coarse time
resolutions. Given a time series X = {x1, x2, · · · , xN−1, xN} of length N, set the coarse-
grained scale to s, then the original time series can be split into i consecutive segments
without overlap, where i = f loor(N/s), f loor(∗) means taking the largest integer smaller
than *. The original sequence can be transformed into a new sequence by calculating the
average value of each fragment by Equation (15). Then the MSE of the original sequence
can be obtained by solving the sample entropy of the new sequence Y = {y1, y2, · · · , yi}
obtained under different s. The process of coarse-graining the time series is shown in
Figure 3.

yi =

s
∑

k=1
x(i−1)s+k

s
(15)
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3.2.2. The Huffman-Multi-Scale Entropy (HMSE)

According to the process of the calculation of multi-scale sample entropy, the core of
this method is to coarse-grain the original time series on different time scales by averaging.
Figure 4a shows a satellite momentum wheel voltage telemetry signal with the length of
10,000. This signal is coarse-granulated and averaged on time scales s = 10, s = 50, and
s = 100 respectively. The results are shown in Figure 4b–d. As can be seen from Figure 4,
the waveform of the new signal obtained by averaging the original signal at different time
scales is almost the same.

It can be seen from Figure 4 that the state of the signal changes at about the 4000th
sample point in the original signal. However, the use of different coarse-grained scales
cannot reflect the difference in signal changes. Therefore, this paper proposes a new
improved multi-scale entropy calculation method based on the Huffman mean model. The
main innovation of this method is that when the original data is coarse-grained on different
time scales, the average value is not taken, but the Huffman average value is taken. This
section will introduce the Huffman mean model and the improved multi-scale entropy
calculation method based on the Huffman mean model in detail.

(1) Huffman Coding.
In 1952, Huffman proposed an optimum method of coding an ensemble of messages

consisting of a finite number of members [33]. A minimum-redundancy code is one con-
structed in such a way that the average number of coding digits per message is minimized.
The process of Huffman coding is as follows.
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Step 1: Given a sequence containing n kinds of symbols. Suppose the set of sym-
bol types is S0 =

{
s0

1, s0
2, · · · , s0

i , · · · s0
n
}

, i = 1, 2, · · · , n. The probability of each symbol

appearing is P0 =
{

p0
1, p0

2, · · · , p0
i , · · · p0

n
}

, i = 1, 2, · · · , n, and
n
∑

i=1
p0

i = 1.

Step 2: Set the iteration parameter to t, the maximum value of t is n− 1 and the initial
value of t is 0. The symbol sequence and the corresponding probability at the beginning
of the k-th iteration are Sk−1 and Pk−1. The symbol sequence and the corresponding
probability at the end of the k-th iteration are Sk and Pk.
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Figure 4. The average value of voltage telemetry under different scales: (a) original signal, (b) scale =
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Step 3: When t = k, arrange the symbol Sk−1 in ascending order of probability Pk−1

as Sk−1 =
{

sk−1
1 , sk−1

2 , · · · , sk−1
i , · · · sk−1

n−k+1

}
. Then the probability Pk−1 is also rearranged

accordingly as Pk−1 =
{

pk−1
1 , pk−1

2 , · · · , pk−1
i , · · · pk−1

n−k+1

}
.

Step 4: Take the two symbols sk−1
1 and sk−1

2 with the least probability in the symbols
sequence. Encode the symbol sk−1

2 with higher probability into “1” and the symbol sk−1
1

with lower probability as “0”. Add the probabilities pk−1
1 and pk−1

2 of the sk−1
1 and sk−1

2 as
the probability p∗ of the new symbol s∗.

Step 5: Delete sk−1
1 and sk−1

2 from Sk−1, and add s∗ into Sk−1. Then the Sk−1 turns into
Sk, and the size of Sk is n− k. Delete pk−1

1 and pk−1
2 from Pk−1, and add p∗ into Pk−1. Then

the Pk−1 turns into Pk, and the size of Pk is also n− k.
Step 6: Repeat the Step 3 to Step 5 until t = n− 1. Then the symbols sequence will be

Sn−1 =
{

sn−1
1

}
and the probability will be Pn−1 =

{
pn−1

1

}
, pn−1

1 = 1.
It can be seen from the above coding process that the symbol with the lower probability

in the original signal has the longer Huffman code length. Conversely, the symbol with the
higher probability has the shorter Huffman code length. The complexity of the probability
distribution of the signal can be described by solving the Huffman average code length of
the original signal. Based on the above-mentioned Huffman coding process, the method to
further calculate the average Huffman coding length is as follows.

Backtrack from the symbol sn−1
1 with the probability of pn−1

1 = 1 to each source
symbol and record 0/1 in the backtracking path. The Huffman code of s0

i is ci. The
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average Huffman coding length L∗ can be calculated according to the length of ci and the
corresponding probability p0

i as Equation (16). L(ci) is the length of ci.

L∗ =
n

∑
i=1

p0
i ∗ L(ci) (16)

For a set of source symbols S0 = {s1, s2, s3, s4, s5, s6} with probability P0 = {0.35,0.28,
0.14,0.13,0.07,0.03} , the process of Huffman coding is shown in Table 2. The average
Huffman coding length of S0 can be calculated as 2.33 as follows.

L∗(S0) = (0.35 + 0.28 + 0.14) ∗ 2 + 0.13 ∗ 3 + (0.07 + 0.03) ∗ 4 = 2.33

Table 2. An example of the Huffman coding process.

S0 P0 Huffman Coding ci L(ci)

s1 0.35
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(2) Huffman Mean Model.
The basic principle of Huffman coding and the calculation method for solving the

average Huffman coding length were introduced above. In this paper, a new Huffman
mean model based on the Huffman coding is proposed for the problem of satellite anomaly
detection. For a sequence T = {t1, t2, · · · , ti, · · · , tn}, the expression of the Huffman mean
model is shown in Equation (17).

HM(T) =


T′ = T/sum(T)
C = Hu f f man_coding(T′)
` = L(C)
Hu f f man_mean = sum(T ∗ (`/sum(`)))

(17)

where HM(T) is the Huffman mean value of T, T′ = T/sum(T) means to convert the origi-
nal time series into a probability series, C = Hu f f man_coding(T′) represents the Huffman
coding result of the probability sequence T′, C = {c1, c2, · · · , ci, · · · , cn}, i = 1, 2, · · · , n,
ci is the Huffman code corresponding to ti in the original sequence, ` = L(C) means
to calculate the length of each ci, Hu f f man_mean = sum(T ∗ (`/sum(`))) represents the
Huffman mean value of the sequence T considering the length weight of the Huffman code.

(3) The Improved Method of Huffman-multi-scale Entropy.
The Figure 5 shows the calculation process of Huffman-multi-scale entropy. The

inputs of both two methods are original signal X = {x1, x2, · · · , xN−1, xN}, the scale se-
quence Scale =

{
s1, s2, · · · , sp

}
and the parameter set θ = {m, r}, usually 0.1std(X) < r <

0.2std(X). Compared with the classic MSE, the Huffman-multi-scale entropy method pro-
posed in this paper adopts the coarse-grained method based on the Huffman mean model.
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Figure 5. The process of the improved method of Huffman-multi-scale Entropy.

Figure 6 shows the same satellite momentum wheel voltage telemetry signal with the
length of 10,000. This signal is coarse-granulated and calculated by Huffman mean model
on time scales s = 10, s = 50, and s = 100, respectively. Obviously, the coarse-grained
method based on the Huffman mean model can enhance the difference of signal changes at
different time scales.
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4. Anomaly Detection Method Based on Multi-Class SVM
4.1. Multi-Class SVM

A support vector machine (SVM) is widely used in classification problems. The basic
idea is to find a hyperplane so that all sample points in the positive and negative categories
are farthest from the plane, and points that are far enough from the plane can basically
be correctly classified. Therefore, if the points closer to the hyperplane are as far away as
possible from the hyperplane, a better classification effect can be achieved.

This article uses the most interval classifier to achieve two-class SVM, and then uses
the directed acyclic graph (DAG) method to achieve the multi-class SVM based on two-
class SVM.

Set the dataset as {(xi, yi)|i = 1, 2, · · · , N}, xi ∈ Rn, y ∈ {−1,+1}, the hyperplane is
wTx + b = 0, Then the distance from the support vector to the hyperplane is wTx + b = y,
which can be written as ∣∣y(wTx + b)

∣∣
||w||2

=
1
||w||2

(18)

The SVM model keeps all the points on both sides of the support vector of their respec-
tive categories, while keeping away from this hyperplane. It can be seen from Equation (18)
that when ||w||2 is the smallest, the interval is the largest. Introduce the penalty parameter
λ for misclassification and the relaxation factor ξ that allows misclassification, and the
objective function can be

min 1
2 ||w||22 + λ

N
∑

i=1
ξi

s.t. yi(wTx + b) ≥ 1− ξi, i = 1, 2, · · · , N
ξi ≥ 0, i = 1, 2, · · · , N

(19)
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According to Lagrange’s duality, the optimization objective can be converted into an
equivalent dual problem. The Equation (19) can be transformed into:

min
α

1
2

N
∑

i,j=1
yiyjαiαjK〈xi, x〉 −

N
∑

j=1
αj

s.t. yi(wTx + b) ≥ 1− ξi, i = 1, 2, · · · , N

ξi ≥ 0, i = 1, 2, · · · , N

(20)

where K〈xi, x〉 is the kernel function. The radial basis function is used as the kernel function

in this paper, K〈xi, x〉 = exp
{
− ||xi−x||2

2σ2

}
, σ is the kernel function parameter. Then the

decision function is

f (x) = wTx + b = sgn[
N

∑
i=1

yiαiK〈xi, x〉+ b], 0 < αi < λ (21)

Among the multi-class SVM methods, one is the direct solution method, but this
method has high time complexity and is difficult to implement. It is not suitable for a
large amount of data. The other one is to combine multiple two-class SVM models into a
multi-class SVM model. In this paper, a directed acyclic graph method is used to construct
a multi-class SVM.

The DAG method uses the “competition” rule. For n types, the height of the decision
tree is n− 1. Put the classes that are easy to distinguish on the upper layer, and the classes
that are difficult to distinguish on the lower layer. The schematic diagram of DAG method
for five-class SVM is shown in Figure 7.
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4.2. Improved Adaptive Particle Swarm Optimization (APSO)

Kennedy and Eberhart first proposed particle swarm optimization (PSO) in 1995 [34].
PSO is an algorithm for finding the optimal solution inspired by the foraging behavior of
bird groups. In the PSO algorithm, each particle represents a feasible solution of a function
to be optimized, and the movement of the particle is restricted by two aspects: speed
and position. The speed constrains the distance of particle movement, while the position
constrains the direction of particle movement. Each particle’s movement is given a fitness
function to evaluate the particle’s location. Under the control of constraint conditions and
evaluation function, the particles search for a better area in the process of moving. After
many iterations, they gather near the optimal solution. The particle velocity and position
update formula are as follows:

vk+1
id = ωvk

id + c1r1(pid − xk
id) + c2r2(pgd − xk

id) (22)

xk+1
id = xk

id + vk+1
id (23)
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where vk
id is the current velocity of the d-th component in the i-th particle, vk+1

id is the next
velocity of the d-th component in the i-th particle, ω is the inertia weight, ω ≥ 0, c1 and c2
are the acceleration constant of the particle, r1 and r2 are random numbers between 0 and
1, r1, r2 = random(0, 1), pid represents the best position of the d-th component of the i-th
particle, pgd represents the best position of the d-th component of all particles, xk

id is the
current position of the d-th component in the i-th particle, and xk+1

id is the next position of
the d-th component in the i-th particle.

PSO has the advantages of fewer parameters and fast convergence, but it also has
shortcomings such as premature convergence and falling into local optimum. It can be
seen from Equations (22) and (23) that the inertia weight ω determines the relationship
between the next flight distance and the current flight distance, which further affects the
position after the flight. The larger the ω, the stronger the particle’s flying ability in the
solution space, which is conducive to searching in the global scope. The smaller the ω,
the smaller the flight length, and the stronger the search ability of the particles in a local
area, which is conducive to the convergence of the algorithm. However, if the value of ω is
too large, it will easily cause the algorithm to skip the optimal solution or oscillate near
the optimal solution, which will lead to the premature convergence; if ω is too small, the
algorithm will easily fall into a local optimum.

The inertia weight ω should be a larger value at the beginning of the iteration to
ensure a strong global search ability and the ability to jump out of the local optimum.
However, in the later stage of the algorithm iteration, smaller ω should be used to ensure
strong local search capabilities, which is conducive to the convergence of the algorithm.

In response to the above problem, this paper proposes a strategy for adaptively
changing the ω according to the number of iterations and the current fitness value. The
formula is as follows:

ωk+1
id =


ω0 − e−k/K ∗ f k

max− f k
id

f k
max− f k

avg
, f k

id ≤ f k
avg

ω0 + e−k/K ∗ f k
id− f k

min
f k
avg− f k

min
, f k

id > f k
avg

(24)

where k is the current number of iterations, k + 1 is the next number of iterations, K is the
maximum number of iterations, ωk+1

id is the inertia weight for the next iteration for the d-th
component of the i-th particle, ω0 is the initial value of ω, ω0 = 0.5 in this paper, f k

id is the
fitness value of the d-th component of the i-th particle obtained in the k-th iteration, f k

max is
the maximum fitness value in the k-th iteration, f k

min is the minimum fitness value in the
k-th iteration, f k

avg is the average fitness value in the k-th iteration.
At the beginning of the iteration, the weight of the particle changes greatly, and as the

number of iterations of the particle increases, the weight change decreases. At the same
time, the weight change is determined by the fitness function. When the particle fitness
is less than or equal to the average fitness, that is, when the accuracy of the classification
model is greater than or equal to the average accuracy, the inertia weight decreases; when
the particle fitness is greater than the average fitness, the accuracy of the classification
model is lower than the average accuracy, and the inertia weight increases.

The increase or decrease of the inertia weight is determined by the number of iterations.
At the beginning of the iteration, the increase or decrease of the weight is large, which is
convenient for searching in the global and optimal solution neighborhood. At the later
stage of the iteration, the increase or decrease of the weight is small. The increase of the
weight can avoid falling into the local optimal solution for random search, and the decrease
of the weight facilitates the local fine search.

4.3. The Algorithm of the Proposed APSO-SVM

In this paper, the improved Adaptive Particle Swarm Optimization (APSO) is used to
optimize the penalty factor λ and the kernel function parameter σ in the SVM. The specific
steps of APSO-SVM are as follows.
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Step 1: Input the dataset with labels.
Step 2: Divide the dataset into training set and test set, then normalize both two sets.
Step 3: Population initialization. Set the number of particles in the initial population

as n. Set the range of penalty factor λ to [λmin, λmax]. Set the range of kernel function
parameter σ to [σmin, σmax]. Initialize the parameter set θ = {ω0, c1, c2, K}. Initialize the
position x0

i , the speed v0
i , the optimal position pid of i-th particle and the global optimal

position pgd. Set fitness error ε.
Step 4: Calculate the corresponding inertia weight ωk+1

id according to Equation (24) in
the adaptive adjustment strategy. Update the velocity vk+1

id and position xk+1
id of the particles

according to Equations (22) and (23). Determine whether λ and σ are in [λmin, λmax] and
[σmin, σmax] respectively. If λ < λmin, set λ = λmin. If λ > λmax, set λ = λmax. If σ < σmin,
set σ = σmin. If σ > σmax, set σ = σmax.

Step 5: If fi > f (pi) or | fi − f (pi)|≤ ε, λ(xi) < λ(pi) , update pi. If fi > f (pg) or∣∣ fi − f (pg)
∣∣≤ ε, λ(xi) < λ(pg) , update pg. The expression of f (∗) is shown in Equa-

tion (21).
Step 6: If k < K, repeat the step 4 to step 6. If k ≥ K, end the APSO.
Step 7: Use the optimal solution (λ∗, σ∗) to create the SVMs model and use this model

for classification.
The flow chart of APSO-SVM is shown in Figure 8.
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5. Case Study of Anomaly Detection
5.1. Data Description

The data set used in this article is from a satellite’s telemetry voltage value of its
momentum wheel. In this data set, five types of sample with different health status are
screened out. Stable Change (large) indicates that the momentum wheel voltage value
continuously and steadily changes with a large change amplitude. Stable Change (small)
indicates that the momentum wheel voltage value continuously and steadily changes with
a small change amplitude. Large to Small indicates that the amplitude of the momentum
wheel voltage change smoothly transitions from large to small. The above three types
of sample all represent that the momentum wheel is in a normal state. Irregular Change
indicates that the voltage of the momentum wheel changes irregularly. Sudden Change
indicates that the voltage of the momentum wheel has a sudden change, such as the
voltage suddenly jumping to 0. Irregular Change and Sudden Change represent that the
momentum wheel is in an abnormal state. The time-domain waveforms of different types
of data are shown in the Figure 9.
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Figure 9. The waveform of five different types of voltage telemetry data for the momentum wheel: 
(a) comparison of 5 types of data in time-domain, (b) the waveform of Stable Change (large), (c) the 
waveform of Stable Change (small), (d) the waveform of Large to Small, (e) the waveform of Irreg-
ular Change, (f) the waveform of Sudden Change. 
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5 Sudden Change Abnormal 400 200 

  

Figure 9. The waveform of five different types of voltage telemetry data for the momentum wheel:
(a) comparison of 5 types of data in time-domain, (b) the waveform of Stable Change (large), (c) the
waveform of Stable Change (small), (d) the waveform of Large to Small, (e) the waveform of Irreg-ular
Change, (f) the waveform of Sudden Change.
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To verify the effectiveness of the method proposed in this article, the training set and
test set used in this article are shown in the Table 3.

Table 3. Label description of the momentum wheel voltage telemetry dataset.

Class Label Health Status Training Set Test Set

1 Stable Change (large) Normal 400 200
2 Stable Change (small) Normal 400 200
3 Large to Small Normal 400 200
4 Irregular Change Abnormal 400 200
5 Sudden Change Abnormal 400 200

5.2. Feature Extraction and Selection
5.2.1. Time/Frequency Domain Feature Extraction and Selection

According to the time-domain feature and frequency-domain feature calculation
methods shown in Table 1, the time-frequency feature values of the five types of momentum
wheel voltage telemetry data are calculated. The time-domain features are shown in
Figure 10, and the frequency-domain features are shown in Figure 11.

According to the time-frequency feature statistical feature distribution diagrams
of different types of data in Figures 10 and 11, the time-domain feature distribution of
SC is very scattered, but the frequency-domain feature distribution is relatively more
concentrated. Intuitively, peak and peak-to-peak in the time domain feature can distinguish
five types of data to a certain extent, and F3 and F4 in the frequency domain feature can
also distinguish five types of sample to a certain extent.

In order to quantify the ability of different feature values to distinguish samples, we
use the feature evaluation method (Laplacian Score and Relief-F Score) in Section 3.1.2
to score the above 25 types of time-domain features and frequency-domain features. The
evaluation results are shown in Figure 12. Comprehensively considering the evaluation
results of LS and RFS, this paper chooses nine features (peak, peak-to-peak, skewness,
kurtosis, F3, F4, F8, F10 and F11), which have higher scores in two evaluation methods,
as part of the feature sequence. These high-scoring features describe the amplitude char-
acteristics, fluctuation characteristics and spectral density characteristics of the voltage
telemetry signals.

5.2.2. Complexity Feature Analysis

To verify the effectiveness of the proposed complexity feature extraction method
of Huffman-multi-scale entropy, this paper analyzes the sample entropy under different
sample lengths and different scales.

Taking a normal type data Stable Change (large) as an example to study the impact
of sample length on complexity characteristics, the sample length is taken from 5000 to
25,000 at intervals of 2000. Figure 13 shows the results of calculating the multi-scale entropy
and Huffman-multi-scale entropy with each sample length respectively. The scale is from
10 to 300 at intervals of 10. It can be found that when the sample length is 9000 to 15,000,
both methods can achieve higher sample entropy. Therefore, this paper selects the sample
length as 10,000.
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Figure 10. The time-domain features of the five types of momentum wheel voltage telemetry data: (a) peak, (b) peak-to-
peak, (c) mean, (d) absolute mean, (e) root amplitude, (f) standard deviation, (g) root mean square, (h) skewness, (i) kur-
tosis, (j) peak index, (k) impulse factor, (l) margin index, (m) waveform index. 

Figure 10. The time-domain features of the five types of momentum wheel voltage telemetry data: (a) peak, (b) peak-to-peak,
(c) mean, (d) absolute mean, (e) root amplitude, (f) standard deviation, (g) root mean square, (h) skewness, (i) kur-tosis, (j)
peak index, (k) impulse factor, (l) margin index, (m) waveform index.
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Figure 11. The frequency-domain features of the five types of momentum wheel voltage telemetry data: (a) F1, (b) F2, (c) 
F3, (d) F4, (e) F5, (f) F6, (g) F7, (h) F8, (i) F9, (j) F10, (k) F11, (l) F12. 
Figure 11. The frequency-domain features of the five types of momentum wheel voltage telemetry data: (a) F1, (b) F2, (c) F3,
(d) F4, (e) F5, (f) F6, (g) F7, (h) F8, (i) F9, (j) F10, (k) F11, (l) F12.
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Figure 12. The time-domain (a) and frequency-domain (b) features evaluation results. 
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Figure 13. The results of the multi-scale entropy (a) and Huffman-multi-scale entropy (b) with dif-
ferent sample length. 
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At the same time, this paper also calculates the multi-scale entropy and Huffman-
multi-scale entropy of different types of momentum wheel voltage telemetry signals when
the sample length is 10,000. The scale ranges from 10 to 300, with an interval of 10. The
calculation result is shown in Figure 14. It can be seen from Figure 14 that, for normal data,
the results of multi-scale entropy and Huffman-multi-scale entropy are close. For Irregular
Change data, the value of Huffman-multi-scale entropy is significantly lower than that of
multi-scale entropy. This shows that Huffman-multi-scale entropy has better distinguishing
ability for data with high complexity. It is worth noting that, for the abnormal data of
Sudden Change type, the data itself has pulse characteristics, which causes the fluctuation
characteristics of the data before and after the sudden change to be concealed to a certain
extent. Therefore, both multi-scale entropy and Huffman-multi-scale entropy can well
describe the characteristics of increased complexity caused by sudden and large changes
in data.
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Based on the above analysis, this paper selects the sample length as 10,000. The feature
sequence (HMSE + T/F) is composed of 30 complexity features (scale from 10 to 300 at
intervals of 10) and nine time/frequency-domain features.

5.3. Anomaly Detection Results and Discussion

This paper uses a five-class SVM model based on the DAG method, and uses the
proposed APSO to train the classification model. To verify the effectiveness of the proposed
method on the spacecraft anomaly detection problem, this paper not only calculates the
recognition accuracy (RA) of the classification model for each category, but also calculates
the detection rate (DR), false alarm rate (FAR) and the missed alarm rate (MAR). The
calculation method of RA, DR, FAR and MAR are shown in Equations (25)–(28).

RA =
Num(predicted = true)

Num(true)
∗ 100% (25)

DR =
Num(NN + FF)

Num(true)
∗ 100% (26)

FAR =
Num(NF)
Num(N)

∗ 100% (27)

MAR =
Num(FN)

Num(F)
∗ 100% (28)

where Num(predicted = true) is the total number of category predictions that are ex-
actly the same as the true value, Num(true) is the total number of the test samples,
Num(NN + FF) is the total number of the real normal data predicted as normal data
and the real abnormal data predicted as abnormal data, Num(NF) is the total number of
real normal data predicted as abnormal data, Num(N) is the total number of real normal
data, Num(FN) is the total number of real abnormal data predicted as normal data, and
Num(F) is the total number of real abnormal data.

Figure 15 shows the corresponding part of the false alarm rate and the missed alarm
rate in the confusion matrix. C(large) is the Stable Change (large), C(small) is the Stable
Change (small), L-S is the Large to Small, IC is the Irregular Change, and SC is the
Sudden Change.
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This paper calculates the confusion matrix of the abnormal detection of the momentum
wheel voltage telemetry signal calculated by HMSE-T/F-APSO-SVM, MSE-T/F-APSO-
SVM and MSE-T/F-PSO-SVM. The results are shown in Figure 16. It can be seen from
the Figure 16, the identification accuracy of Sudden Change by the above three methods
can all reach 100%. This result is consistent with the conclusion of the qualitative analysis
of eigenvalues in the previous article. The probability of MSE-T/F-PSO-SVM identifying
Stable Change (large) and Stable Change (small) as Irregular Change reaches 10.33% and
11.33%, respectively. At the same time, the probability of MSE-T/F-PSO-SVM identifying
Irregular Change as Stable Change (large) and Stable Change (small) reaches 16.67% and
7.67%, respectively. The probability of HMSE-T/F-APSO-SVM and MSE-T/F-PSO-SVM
identifying Stable Change (large) and Stable Change (small) as Irregular Change are 0%.
At the same time, the probability of MSE-T/F-PSO-SVM identifying Irregular Change as
Stable Change (large) and Stable Change (small) reaches 16.67% and 7.67%, respectively.
The distinction between Stable Change (large) Stable Change (small) and Irregular Change
can be effectively improved by calculating Huffman-multi-scale entropy. This conclusion is
also consistent with the result in Figure 14.

In addition, the recognition accuracy of Large to Small and Sudden Change of the
three methods has reached 100%, which shows that the feature sequence and anomaly
detection model selected in this paper have strong sensitivity to signals with a definite
change rule.

To further verify that the method proposed in this paper can effectively improve the
accuracy of spacecraft anomaly detection and reduce the rate of false alarms and missed
alarms, this paper compares the proposed method with other methods, and calculates the
anomaly detection under different processing methods. Principal Component Analysis
(PCA), Random forest (RF), Logistic Regression (LR), K-Nearest Neighbor (KNN) and
Multilayer perceptron (MLP) are used in this paper. The results of the recognition accuracy,
false alarm rate and missed alarm rate of different methods are shown in Table 4.
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Figure 16. The confusion matrix of the abnormal detection for the momentum wheel voltage telem-
etry signal calculated by different processing methods (%): (a) HMSE-T/F-APSO-SVM, (b) HMSE-
T/F-PSO-SVM, (c) MSE-T/F-PSO-SVM. 
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Table 4. Results of the recognition accuracy, detection rate, false alarm rate and missed alarm rate of
different methods (%).

Methods Recognition
Accuracy Detection Rate False Alarms Rate Missed Alarms Rate

HMSE + T/F +
APSO + SVM 99.60 ± 0.28 99.87 ± 0.32 0.00 ± 0.00 0.34 ± 0.01

HMSE + T/F + PSO +
SVM 95.93 ± 0.36 97.80 ± 0.47 0.00 ± 0.00 5.50 ± 0.12

MSE + T/F + PSO +
SVM 90.20 ± 0.74 90.80 ± 0.39 7.22 ± 0.85 12.17 ± 1.68

Original data + SVM 80.55 ± 2.01 83.61 ± 2.34 15.88 ± 1.58 17.16 ± 2.54
Original data + PCA 75.26 ± 4.97 77.31 ± 6.28 23.32 ± 2.69 21.74 ± 4.71
HMSE + T/F + PCA 81.75 ± 2.96 85.36 ± 3.12 12.61 ± 1.47 17.68 ± 3.63
Original data + RF 76.95 ± 4.38 80.73 ± 5.26 19.54 ± 1.85 18.86 ± 1.95
HMSE + T/F+ RF 84.28 ± 1.98 87.62 ± 2.41 14.46 ± 1.74 9.26 ± 0.36
Original data + LR 70.36 ± 4.33 72.95 ± 8.57 20.35 ± 3.54 37.1 ± 5.43
HMSE + T/F+ LR 83.78 ± 4.05 85.74 ± 4.69 10.68 ± 0.79 19.63 ± 1.37

Original data + KNN 70.37 ± 4.69 72.83 ± 5.78 24.79 ± 4.75 30.74 ± 6.35
HMSE + T/F+ KNN 83.55 ± 1.38 86.28 ± 1.54 14.82 ± 1.24 12.07 ± 1.73
Original data + MLP 86.69 ± 2.17 87.94 ± 2.24 10.67 ± 2.42 14.14 ± 1.58
HMSE + T/F + MLP 95.25 ± 0.57 96.63 ± 0.68 0.00 ± 0.00 8.42 ± 0.83
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From the results in Table 4, it can be seen that: First, the recognition accuracy and
detection rate of the method proposed in this paper can reach 99.60% and 99.87%, which
are higher than other methods listed in the table, and the false alarm rate is reduced to
0, while the false alarm rate is reduced to 0.34%, which are lower than other methods.
Second, the detection method based on the feature sequence (HMSE + T/F) has a higher
recognition accuracy and detection rate as well as lower false alarm rate and missed
detection rate than the detection method based on the original data. Third, by comparing
the standard deviation of various indicators, it can be found that the feature sequence
based on Huffman-multi-scale entropy and time-frequency domain features proposed in
this paper can effectively improve the stability of the detection method.

6. Conclusions

In this research, we propose a new detection framework for anomaly detection based
on spacecraft telemetry data. Due to the very low frequency characteristics of telemetry
data, most frequency analysis methods are not suitable for spacecraft anomaly detection.
Therefore, this paper first proposes a feature sequence construction method based on
time-domain and frequency-domain feature screening and complexity feature fusion. On
this basis, a new method of Huffman-multi-scale entropy (HMSE) based on the Huffman
coding principle is proposed. To improve the classification accuracy of SVM, this paper
adopts a multi-class SVM model based on the DAG principle, and proposes an improved
adaptive particle swarm optimization (APSO) to train the SVM model. Then we apply
the proposed method to the voltage telemetry data set of the satellite momentum wheel.
Compared with other methods, the results show that the proposed method has a good
performance in improving the recognition accuracy and detection rate, and it can also
effectively reduce the false alarm rate and the missed alarm rate. Therefore, the method
proposed in this paper has a good development prospect in the field of anomaly detection
of spacecraft.

In the future work, more real-world datasets will be applied to verify the effectiveness
of the detection ability of the proposed method. In addition, more methods based on
artificial neural networks will be studied to further improve the versatility of anomaly
detection methods.
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