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Abstract: Time series analysis comprises a wide repertoire of methods for extracting information from
data sets. Despite great advances in time series analysis, identifying and quantifying the strength
of nonlinear temporal correlations remain a challenge. We have recently proposed a new method
based on training a machine learning algorithm to predict the temporal correlation parameter, «,
of flicker noise (FN) time series. The algorithm is trained using as input features the probabilities

of ordinal patterns computed from FN time series, x{™

(t), generated with different values of «.
Then, the ordinal probabilities computed from the time series of interest, x(t), are used as input
features to the trained algorithm and that returns a value, &,, that contains meaningful information
about the temporal correlations present in x(t). We have also shown that the difference, (), of the
permutation entropy (PE) of the time series of interest, x(t), and the PE of a FN time series generated
with o« = a,, xiN (t), allows the identification of the underlying determinism in x(t). Here, we
apply our methodology to different datasets and analyze how «, and ) correlate with well-known
quantifiers of chaos and complexity. We also discuss the limitations for identifying determinism
in highly chaotic time series and in periodic time series contaminated by noise. The open source
algorithm is available on Github.

Keywords: ordinal analysis; symbolic analysis; machine learning; time series analysis; permutation
entropy; complexity; chaos; noise

1. Introduction

Thanks to huge advances in data science and computing power, a wide repertoire
of time series analysis methods [1-7] are available for the quantitative characterization of
time series and are routinely used in all fields of science and technology, social sciences,
economy and finance, etc. Since different methods have different requirements and involve
different approximations, no single method can be expected to perform well over all types
of data. Therefore, despite huge advances, extracting reliable information from stochastic
or high dimensional signals remains a challenge. As any algorithm will return, at least, a
number (i.e., a “feature” that encapsulates some property of the time series), in order to
interpret the information in the obtained features and to assess the performance of different
algorithms, appropriate surrogates [8] or a “reference model” (where the systems that
generates the data are known) need to be used. The comparison of the features obtained
from the time series of interest with those obtained from surrogate time series or from
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reference time series allows testing (and even quantifying) some particular property of the
time series of interest.

We have recently proposed a new method for estimating the strength of the temporal
correlations in a given time series, which uses flicker noise (FN), a fully stochastic process,
as the reference model [9]. A FN time series, x5 (t), is characterized by a power spectrum
P(f) o< 1/ f*, with a being a parameter that quantifies the temporal correlations present
in the signal [10]. The method proposed in [9] combines the use of symbolic ordinal
analysis [11,12] and machine learning (ML): We utilize the ordinal probabilities computed
from EN time series generated with different « values as input features to a ML algorithm.
The algorithm is trained to return the value of ae, which estimates the real & value of a FN
time series from the D! probabilities of the ordinal patterns of length D, calculated from
the same time series. Then, after the training stage, the ordinal probabilities now computed
from a time series of interest, x(t), are provided as input features to the ML algorithm
that returns a value, a,, which encapsulates reliable information about the strength of
the temporal correlations present in x(t). By calculating the difference, (), between the
permutation entropy (PE) of x(t) and that of a FN time series generated with « = «,,
xEN(t), we were also able to identify determinism in x(t).

Our approach is, thus, based on reducing a large number of features (with D = 6, we
have D! = 720 ordinal probabilities) to only two: the a, value returned by the ML algorithm;
and the permutation entropy, S, computed with the ordinal probabilities. Dimensionality
reduction is a well known technique [13-15] that has been used to tackle a variety of
problems. With ordinal probabilities, for instance, it is possible to distinguish between
noise and chaos by reducing the set of probabilities to only two features—the permutation
entropy and the complexity; or the permutation entropy and the Fisher information—as
demonstrated in [16-19]. In our methodology, we not only apply dimensionality reduction
but also use a fully stochastic “reference” FN time series: we compare the value of S of
the time series of interest with that of a FN time series generated with & = a,. We have
shown that the entropy difference, (), may provide good contrast for distinguishing fully
stochastic time series from a time series with a degree of determinism [9].

The method we proposed has in fact a large degree of flexibility because, instead of
ordinal analysis and the permutation entropy, different symbolization rules [20,21] and
different entropies [22-24] could be tested. In addition, while we use a simple artificial
neural network, other algorithms could be evaluated. Different combinations may provide
different results and particular combinations may result in optimized performance for the
analysis of particular types of time series.

We have shown that the algorithm returns meaningful information even from time
series that are very short: for the synthetic examples considered in [9], we could distinguish
whether the dynamics is mainly chaotic or stochastic with only 100 data points. However,
an open question is as follows: What are the limitations in terms of the level of chaos, the
level of noise and the length of the time series? Here, we address this issue by using as
examples the time series generated with the Logistic map, the fx map and the Schuster
map. We also address the following questions: Can we distinguish a highly chaotic time
series from a stochastic one? Can we identify a periodic signal hidden by noise? In addition,
to gain insight into the information encapsulated by «, and (), we contrast them with well
known quantifiers of chaos and complexity: the maximum Lyapunov exponent and the
ordinal-based statistical complexity measure [25].

The organization of the paper is as follows: Section 2 describes the methodology,
Section 3 presents the datasets and systems analyzed, Section 4 presents the results and
Section 5 presents the discussion and our conclusions.

2. Methodology
The methodology proposed in [9] can be described in a few steps:
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1.  Calculate the ordinal probabilities (OPs) of a large set of FN time series generated
with different values of @ and use them as features to train a ML algorithm to return
the (known) value of ae;

2. Calculate the OPs of the time series of interest, x(#), and use them as features to the
trained ML algorithm, which returns a value «, (see Section 2.1);

3. Generate a FN time series with « = a, and calculate its permutation entropy (PE),
SEN (see Section 2.2);

4.  Calculate the relative difference, ), between the PE of x(t), S and Sgy;:

_ ISen =8I,

9) ; 1
S @

5. Use the value of a, to quantify the strength of the temporal correlations in the time
series of interest and use the value of () to identify underlying determinism: if () ~ 0,
x(t) is mainly stochastic, otherwise there is some determinism.

In the implementation proposed in [9], the probabilities of the 720 ordinal patterns
of length D = 6 (described in the next section) were used as input features to the ML
algorithm. Then, these features were reduced to only two: the scalar value returned by
the ML algorithm, a,, which quantifies the temporal correlations presented in the time
series of interest x(t); and the permutation entropy, S (Equation (4)). Then, the value of
S was compared with the PE of a FN time series generated with & = &, and the relative
difference, () (Equation (1)), was found to provide contrast for identifying determinism
in x(t). The value of Q) can be used to organize a set of time series according to their
level of stochasticity (the lower the value of (), the larger the stochasticity level) and, by
appropriately selecting a threshold value, () can be used to classify the time series into two
categories: mainly stochastic and mainly deterministic.

2.1. Machine Learning Algorithm

A wide range of ML algorithms are available nowadays . Since we want to regress the
information of the features (D! probabilities) into one real value, «, (a classical scalar re-
gression problem), an appropriate simple option is a feed forward artificial neural network
(ANN). Mathematically, the ANN can de described as follows. Considering a set of inputs
X of D! features with output ae, the ANN can be sketched by the following:

X' = f(WxX +b), )
ve = f/(W=xX +b'), (3)

where W and W’ are matrices of weights, b and b’ are biases column vectors, f and f’
correspond to activation functions and the “*” symbols corresponds to a tensor product.
In this sense, X’ is the result of the transformation f(W * X + b), which can be understood
as a new representation of the inputs X. The elements of the tensors W, W/, b, b’ are the
parameters of the ANN, which are calibrated in the training state. ANNs are well known,
and we refer the reader to our previous work [9] for details about the network structure
and the training procedure. We remark that our ANN is a fast and automatic tool and it
performed well in all the cases we tested, with a computational time and in a standard
notebook, of a few seconds for the analysis of time series with 10° data points. However,
we do not claim that an ANN is an optimal choice, since different ML algorithms may be
even more efficient. It is important to notice also that the optimal choice will likely depend
on the characteristics of the time series (length, frequency content, level of noise, etc.).

2.2. Ordinal Analysis and Permutation Entropy

Ordinal analysis and the permutation entropy were proposed by Bandt and Pompe [11]
almost 20 years ago and they are now well-known. For their interdisciplinary applications,
we refer the reader to a recent Focus Issue [12].
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Here, we compute the ordinal patterns of length D = 6 with the algorithm proposed
in [26]. For D = 6, there are 6! = 720 possible patterns. The patterns are calculated
with an overlap of D — 1 data points, i.e., for a time series with N data points, N — D
ordinal patterns are obtained, which are then used to evaluate the ordinal probabilities
P = {P(i);i = 1, ---, D!}. Then, the normalized permutation entropy is calculated
as follows.

D!
L P(0)In[P(0)]

5=- In[D!] ' @)

2.3. Quantifiers of Chaos and Complexity

The Lyapunov exponents measure the local divergence of infinitesimally close trajec-
tories, and positive exponents indicate chaos [27]. While there are important challenges
when calculating them from high-dimensional and/or noisy data [3,28], in the case of a one-
dimensional dynamical system for which its governing equation is known, the Lyapunov
exponent, x,, 11 = f(xy), can be straightforwardly calculated as follows.

A= lim =Y In[|f'(xa)]]. ©)

n—eo 11 &

A popular measure for characterizing complex systems is the statistical complexity
measure [25] that takes into account the distance to the most regular state and the most
random states of the system. It is defined as follows:

C=S(P)Q(P,P.), (6)

where § is the entropy and Q is the distance between the distribution that describes the
state of the system, P, and the equilibrium distribution, P,, that maximizes the entropy.

As we use the probabilities of the ordinal patterns [16,29], S is the normalized per-
mutation entropy and P, = {1/D!,1/D!,---,1/D!}. The distance between P and P, is
calculated with the Jensen—-Shannon divergence:

aP, P = aofs( PP} - 22 S,

@)

-1
where Q) a normalization factor Qg = —2{ (%) In[D!+1] —2In[2D!] +In [D!]} .

3. Datasets

We analyze time series generated by the following stochastic or deterministic dynami-
cal systems. Typical time series examples are presented in Figure 1.

3.1. Flicker Noise

Flicker noise (FN), also called as colored noise, is used for training the ML algorithm.
FN time series are stochastic and characterized by a temporal correlation coefficient a. The
power spectrum of this signal is given by 1/ f*, and different « values result in different
“colors”. We used the open Python library colorednoise.py [30,31] to generate FN time series
with different & values. An example is shown in panel (e) of Figure 1.

3.2. Uniform Noise

Uniform noise is a stochastic process with no memory and uniform distribution in
[0, 1]. Panels (a) and (b) of Figure 1 depict an example of a uniformly distributed white
noise and its PDEF, respectively.
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Figure 1. (a,b) Uniformly distributed white noise and its probability distribution function (PDF).
(c,d) Time series generated by iteration of the fx map with = 2 and its PDF. We observe that the
deterministic map depicts a very similar PDF of the white noise. (e) Power spectral density (PSD) of
flicker noise (FN) & = 0 (black), « = 1 (magenta) and a = 2 (red). By definition, the PSD of the FN
decays as 1/ f*. (f,g) Time evolution of two continuous chaotic systems: (f) |C1| of the three-waves
system and (g) x of the Hindmarsh-Rose model.

3.3. Random Walk

A one-dimensional random walk time series is defined by x,, 11 = x; + €;, where € is
a memory-less stochastic Gaussian process with mean 0 and standard deviation 1.

3.4. Periodic or Chaotic Signals Contaminated by Noise

In order to generate time series that represent periodic or chaotic signals contaminated
by noise, we used the map equation Z, = (1 — )X, + Yy. For a periodic signal, X, is
the sin map, X, 11 = sin(27n/ 1) with period 7; for a chaotic signal, X, is the fx map (see
below). In both cases, X; is normalized [0, 1], Y; is a uniform white noise and 7 € [0,1]
controls the stochastic component of Z;; for 7 = 0, the signal is fully deterministic (periodic
or chaotic depending on the map used), while for 77 = 1 the signal is fully stochastic and
memory-less.

3.5. Logistic Map

The Logistic map is a popular nonlinear dynamical system defined by x,, 1 = rx, (1 —
x), where r is the control parameter that allows us to obtain periodic or chaotic signals.

3.6. Bx Map

The generalized Bernoulli chaotic map, also known as fx map, is defined by x,,41 =
Bxn(modl), where B controls the dynamical characteristic of the map. Panel (c) and (d) of
Figure 1 depict the evolution of a fx map with § = 2 and its PDF, respectively. Here, we
observe that it cannot be visually distinguished from uniform noise; however, the level of
chaos can be estimated with the Lyapunov exponent, which has an exact solution in this
case: A = In (B) [27]. Therefore, the higher the § parameter, the more chaotic the signal is.

3.7. Schuster Map

The Schuster map [32] generates intermittent signals with a power spectrum P(f) ~
1/ f* and is defined as x,,11 = x,, + x5, (mod1), where we used z as a parameter control.

3.8. Lorenz System

The Lorenz system is also a well-known dynamical system [33], defined by three rate
equations: dx/dt = o(y — x), dy/dt = x(R — z) — y and dz/dt = xy — bz. Here we use
typical parameters o = 16, R = 45.92 and b = 4 that generate chaotic trajectories.



Entropy 2021, 23, 1025

6 of 14

3.9. Rossler System

The Rossler system [34] is also a well-known dynamical system, defined by the
equations dx/dt = —y —z, dy/dt = x + ay and dz/dt = b+ z(x — c¢). Here, we used
typical parameters for generating chaotic trajectories: a = b = 0.2and c = 5.7.

3.10. Three Waves System

This system is composed of three first-order autonomous differential equations written
in terms of the complex slowly varying wave amplitude [35] dC;/dt = 1C; + CoCs3,
dCy/dt = 12Cy — C1C5 +i6C; and dCs/dt = 73C3 — C1C5, where C; € C and we used
Y1 =1, 72 = 73 = —17 and § = 2. The chaotic dynamics can be observed at the amplitude
variations of |Cy |, which is depicted in panel (f) of Figure 1.

3.11. Hindmarsh—Rose Model

The Hindmarsh—Rose model [36] is a set of three rate equations that models the
neural activity. An example is shown in panel (g) of Figure 1. The equations are dx/dt =
y—ax®+bx*—z+1,dy/dt = c —dx* —yand dz/dt = r[s(x — x,) — z] and the parameters
usedarea=c=1,b=3,s =4, x, = —8/5 and r = 0.006.

4. Results

A demonstration of the methodology is presented in Figure 2 that shows, in the
plane (S, ae), the values obtained from time series generated with the dynamical systems
described in the previous section. All the time series analyzed possesses N = 24 points
and the error bars represent the standard deviation over 1000 time series generated with
different initial conditions or noise seeds.

Figure 2a presents results for discrete systems, while Figure 2b, for continuous systems.
In both panels the black line represents FN signals generated with different values of «,
which are perfectly recovered by the ANN (that returns a value a. equal to «). As expected,
for ae = 0, S ~ 1 since the FN signal is white noise [37]. For ae > 0, some ordinal patterns
occur in the time series more frequently than others, and the value of S decreases.

1.0 (a) | - Flicker Noise (b)
_\ O Lorenz max(x)
4 O nax(y
A &
0.8 1 - )
2 061 —— ©
’ 3-waves max()
+  Flicker Noise 4 F N O Hindmarsh-Rose max(z)
Uniform | [J Hindmarsh-Rose max(y)
0.44 < Random walk 10 A Hindmarsh-Rose max(z)
O prmap
O ] —_ A
A sd
0.2 T
0.0 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Qe Qe

Figure 2. Characterization of stochastic and chaotic time series in the plane (normalized permutation
entropy S; correlation coefficient a returned by the ML algorithm). Panel (a) presents results for
discrete systems. The black line represents a set of 10,000 FN signals and S decreases as the temporal
correlation increases. The stochastic cases (uniform noise and random walk) are very close to the
FN signals. Otherwise, the chaotic signal (Bx, logistic and Schuster maps signals) depict a lower S
compared to the FN signals. Panel (b) presents results for continuous systems. Here, we analyze
the sequence of maxima of each variable and, again, we observe that the vertical distance to the FN
curve reveals that the time series are not fully stochastic. All time series posses N = 24 points and
the error bars represent the standard deviation over 1000 time series generated with different initial
conditions or noise seeds. Small error bars are not shown.

In panel (a), the orange circle represents time series of uniform white noise, and the
ANN returns the correct value & = 0 (There is almost no dispersion in the returned
value of ae = 0, therefore, the error bar is not shown). The red diamond represents
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random walk signals; for them, the ANN returns ae. ~ 1.75 (Again, there is almost no
dispersion in the value of «,). We observe that the red diamond is very close to the black
line, providing a clear indication of the highly stochastic nature of a time series generated
by a one-dimensional random walk.

On the other hand, when we analyze chaotic signals (time series from Sx map with
B = 2, from logistic map with r = 4 and from Schuster map with z = 0.5), we observe that
the distance between the symbols and the FN noise curve (black line) allows identifying
the signals as not fully stochastic, i.e., the distance to the FN curve uncovers determinism
in the signals.

For continuous dynamical systems, the results obtained with ordinal analysis strongly
depend on the lag time between the data points, which can be performed in multiple
ways, for instance using the maxima of each variable or even the first minimum of the
mutual information [38]. While this dependence with the lag allows identifying different
time scales in a complex signal [39,40], it renders it difficult to compare different signals.
Therefore, for the continuous dynamical systems considered (Lorenz, Rossler, 3-waves
and Hindmarsh-Rose), the time series analyzed here are the sequence of maxima of each
variable of the system. Due to the fact that the variables obey different equations and
have oscillations with different properties, we can expect obtaining different values of ..
Despite a large dispersion in the values obtained, it can be observed in Figure 2b that all
the systems depict a substantial distance to the FN curve, clearly revealing that they are
not fully stochastic. The dispersion in the permutation entropy values is of the order of 1%;
therefore, vertical error bars are not shown.

4.1. Comparison with Standard Quantifiers

Next, we compare, for the three chaotic maps, the quantifiers obtained with our
approach, a and ), with well-known quantifiers of chaos and complexity including the
Lyapunov exponent, A and the ordinal statistical complexity, C (described in Section 2.3).

The results are depicted in Figure 3. Panels (a), (b) and (c) show results for the fx map.
For B < 1, the map is not chaotic since A = In () < 0. In this range, Q) decreases while .
remains constant. The Bx map is chaotic for f > 1, since A > 0. At § =1, Q) and &, vary
abruptly and both decreases as f increases. There is negative correlation between S and ()
and also between A and Q). If B is too large, () ~ 0 and S ~ 1 determinism can no longer
be identified. We note that the small oscillations of a. capture the changes in dynamics
when  approaches an integer number since the PDF of Bx is homogeneous for integer
but becomes inhomogeneous for non-integer values [41], which is not clearly observed in
the other quantifiers.

In panels (d), (e) and (f) for the logistic map, periodic windows embedded in chaotic
regions are detected in the Lyapunov exponent, and the quantifiers S, C and «. also show
abrupt variations. We note that () identifies the deterministic nature of the signals since,
for the entire interval of r, Q) remains well above zero and S remains well below one.

Similar results are found for the Schuster map, panels (g), (h) and (i): ) is anti-
correlated with A and confirms that the signal is always deterministic since relatively
large ) values are observed for the entire interval of z. Even though a signal generated
by the Schuster map has the same power spectrum as Flicker noise, its a. value varies
non-monotonically with z [32], contrary to the line @ = «, that is obtained from FN signals.
This is due to the fact that signals generated by the Schuster map and FN signals have
different sets of ordinal probabilities.
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Figure 3. Analysis of deterministic signals generated by chaotic maps. First column depicts the
normalized permutation entropy S, the complexity C (left vertical scale) and the Lyapunov exponent
A (right scale). Second column depicts the new quantifiers a. (left scale) and ) (right scale). The
third column presents S vs. O; the color codes represent the control parameter of each map. Panels
(a—c) illustrate the case of fx map as a function of B; (d—f) show the Logistic map as a function of r;
and (g—i) depict the Schuster map as a function of z.

4.2. Influence of the Length of the Time Series

The results so far indicate that our methodology is very precise for characterizing
chaotic and stochastic signals when long times series are analyzed (in Figures 2 and 3
N = 2'%). However, an important question is the following: What is the role of the time
series size in the analysis? In order to address this issue, we investigate both stochastic
and chaotic time series with different lengths N. Figure 4 displays the role of time series
length N in S (a), in the output of the ANN «a, (b) and in Q) (c) for chaotic and for stochastic
signals. Here, chaotic time series are represented by signals generated with the x map,
while stochastic ones are given by uniform white noise and a random walk.

0
1.0 2 (b) 10
1071 33
0.8 1 107’2 4
1 4
0 3 c1073 4
0.6 1
107" 5
—— uniform — =3 0 1 5
0.4 1 - random walk —F 8=10 - 1077 4
—F =2 o
- — - — 1076 - —
10! 10° 10° 10! 10° 10° 10! 10° 10°
N N N

Figure 4. The role of time series length N is studied using S (a), the output of the ANN a, (b) and
Q (c) for both chaotic and stochastic signals. The results are stable for N > 104, indicating the
robustness of our methodology. Here, we analyze Bx time series and also uniform noise and random
walk signals. Despite having similar values of S, our method is able to distinguish between the
chaotic and stochastic cases even for N < D! = 720 (number of ordinal patterns) for § =2 and g = 3.
However, for B = 10 the chaoticity is too high (A = In 10) therefore existing a great local divergence
of the trajectory. In this case, the deterministic nature cannot be detected since the ordinal probability
distribution is as uniform as a distribution of a white noise signal with S ~ 1.

One can observe that, in general, for a small number of data points (N < 100), our
method is unable to distinguish the signals as all of them are overlapping. Interestingly,
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for N = 100, our method is able to distinguish the chaotic signal generated by the f map
with B = 2 (green lines), since Q) depicts values that are higher than those of the other
signals. As N is increased, the signal of § = 3 is also separated and characterized as chaotic.
Surprisingly, for N < D! = 720 (the number of features), we are already able to distinguish
the chaotic signals of B = 2 and B = 3 from the stochastic ones (uniform and random
walk) by using the quantifier (2. The results improve as the number of points increases and,
for N > 10%, the analysis stabilizes. Here, an important point is that even if the chaotic
and stochastic signals have similar permutation entropy values (S), () is able to capture
their difference. On the other hand, if the chaoticity of the signal is too high, as observed
for B = 10 (purple lines), S ~ 1. In this case the ordinal probabilities of the signal are as
uniform as those of white noise, which means that we are unable to identify determinism.

Figure 5 shows that the above observations remain robust when noise is added to the
chaotic signal. As explained in Section 3.4, we control the amount of noise in the analyzed
time series by varying the parameter #. If the time series is too long and has too much
noise, () does not identify determinism (blue region). On the other hand, if the time series
is not long, () identifies determinism even when there is no determinism for # = 1 (orange
region). Therefore, for a correct interpretation of the information contained in the value of
Q), we need to compare it with the value of S obtained from “reference” time series of the
same length as the time series of interest, generated by a known stochastic process such as
Flicker noise.

() (b)

(c)

~

]0—3 [

1074

0.00 | ] : 10°°
o4 28 212 216 220 o4 28 9l2 216 220 o4 28 912 216 220
N N N
Figure 5. Robustness of the method to the application of additive noise in the fx map. The upper
row (a—c) depicts the ae values in color-code as a function of the percentage of noise # and the series’

size N for B = 2,3, 10, respectively. The lower row (d—f) shows () for the same simulations.

4.3. Analysis of Periodic Signals Contaminated by Noise

Another challenge to our methodology is the identification of periodic signals with
added noise. The results obtained when varying the parameter 7 (see Section 3.4) are
depicted in Figure 6, where panel (a) shows the temporal correlation «, returned by the
ANN and panel (b) shows the quantifier (), both as a function of #. Here, the periodic
signals with N = 2! points and different frequencies w are analyzed.

First, one can observe that, for 7 = 0.0, all signals are characterized as deterministic
(high value of () with a high temporal correlation (high value of a.), which is expected
from a periodic signal. Secondly, as we can also expect for # = 1.0, all signals are identi-
fied as stochastic and memory-less (zero temporal correlation), since the added noise is
white. However, for intermediate values of 7, an interesting behavior is observed. The
frequency of the signal is indeed important, because periodic signals with low frequencies
are characterized as stochastic time series for lower values of 7 (panel (b)). For instance,
for w < 1072, the signal is characterized as noisy even for very small values of 77, while
for signals with w ~ 1071, the deterministic nature of the original time series is kept for
1 < 0.35. As expected, the temporal correlation of the signals «. (panel (a)) also depends
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on the frequency w = 27t/7. As 17 is increased, the higher the frequency of the signal, the
slower the way ae — 0 (i.e., high-frequency signals loss memory slower than low-frequency
signals). Since the noise being added is white and thus, is memory-less, one can expect
that e — 0 and Q) — 0 for ¥ — 1. However, we see that the temporal correlation a. can
be high even when ) is very small. Therefore, these signals are first identified as noisy
with non-zero time correlation, and, subsequently, they are identified as noisy with no
time correlation.

0
1.0 10 (b)
0.8

1071
0.6

= 102 <
0.4
0.2 1073
0.0 0.0

1073 1072 1071 1073 102 101
w(l/2m) w(l/2m)

Figure 6. Analysis of periodic signals contaminated with white noise using the temporal correlation
ae (a) and the quantifier Q) (b). The results show that, when the noise strength, 7, increases, the
deterministic nature of the periodic signal gradually vanishes and, for large enough #, only stochastic
dynamics is identified. However, the frequency w = 27t/ 7 of the signal is important, because low
frequency signals are identified as stochastic at lower noise levels. Moreover, even when the signal is
characterized as stochastic, a nonzero temporal correlation can be estimated.

These results and conclusions are robust for different realizations of the noise, as is
shown in Figure 7, which depicts curves with fixed values of w (upper row) as a function
of 7. Panel (a) shows the temporal correlation coefficient ae, while panel (b) shows the
quantifier Q). Following the same idea, the lower row shows three examples with fixed %
values as a function of the periodic signal frequency w. In all cases, the error bars represent
the dispersion over 1000 different noise realizations, and we can observe that the trends
discussed previously persist over different noise realizations.

31 —— w =0.005 (1/27) (a) & (®)
—J— w=10.010 (1/27) 1071 4

g e —F— w=0.050 (1/27) o ‘

11 1073

0 4

0.0 .0

N (d)
g 21 —— n=04

11—+ n=06 j

0 . :

10-3 1072 1071 1073 1072 1071

w(1/27) w(l/2m)

Figure 7. The effects of noise on a periodic signal do not depend on the noise’s specific realization.
The error bars indicate the dispersion over 1000 analyses with different realization of the added noise.
Here, the upper row represents three examples of & (a) and Q) (b) as a function of 7 for a fixed value
of w. The lower row (c,d) shows three examples as a function of w for fixed values of ;7 following
the same representation. The dispersion in all cases is sufficiently low that the trends discussed in
Figure 6 remain.
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4.4. Analysis of Two Stochastic Processes

In experimental stochastic systems, two (or more) stochastic dynamics are often
present. In order to test the performance of the algorithm in this situation, we consider
the same approach as in the previous section, Z, = (1 — 1) X;, + 1Yy, but now X, is not a
periodic signal but a Flicker noise. The results are depicted in Figure 8, where panels (a)
and (b) present a. and (), respectively, and are calculated from 1000 FN time series with
« = 0 (purple), « = 1 (brown) and a« = 2 (pink). For # = 0 (FN noise) a, = &, as # increases
due to the influence of the uniform white noise, . decreases to 0 and & = 2 (pink line)
decays faster due to the slower dynamics, while « = 0 (purple) does not change since there
is no time correlation in both X, and Y},. () is extremely low for all cases (<0.01) identifying
the full stochasticity of the time series.

-2
27 —— a=0forn=0 (d‘) 10 (b)
—F— a=1lforn=0
a=2forn=0 10—3_-
g1 G

101
07 : : : — 105

0.0 0.2 0.4 0.6 0.8 1.0 0.0

n n

Figure 8. Analysis of FN time series contaminated with uniform noise. (a) The addition of uniform
noise decreases the a, predicted by the ML algorithm, leading from the value « of the FN time series
to value to ae = 0 for uniform noise. 7 also decreases the value of Q) (b) , revealing the increase in the
degree of stochasticity of the time series. The addition of uniform noise is, thus, similar in FN and in
deterministic time series.

5. Discussions and Conclusions

We have analyzed stochastic and deterministic time series using an algorithm [9]
that automatically reduces the dimensionality of the feature space from 720 probabilities
of ordinal patterns to 2 features: the degree of stochasticity ({2) and the strength of the
temporal correlations (we.). We have analyzed the performance and limitations of the
algorithm, presenting applications to different datasets, including highly chaotic and
periodic signals with added white noise.

For the analysis of chaotic time series, we have shown that a. and () are able to
capture the rich dynamics that chaotic systems can depict, where the transitions between
periodic windows and chaos are evident. In general, negative correlation between the
Lyapunov exponent and () and between the permutation entropy and () were found. For
highly chaotic signals, when the time evolution of the system is very similar to a stochastic
process, S ~ 1 and ) ~ 0 and our methodology characterizes highly chaotic signals as
stochastic ones.

In addition, we have studied periodic signals contaminated with noise. In this case, our
method captures the transition from deterministic time series to stochastic ones. However,
we have shown that the period of the signal is indeed important, with fast signals being
identified as deterministic even with large noise. We have found that when the noise
contamination increases, periodic signals lose their deterministic feature but preserve a
nonzero temporal correlation.

For future work, it will be interesting to analyze whether the performance of our
methodology can be improved by using different lengths of the ordinal pattern, D, or
different lags between the data points that define the ordinal patterns. It is well known that
the ordinal patterns distribution varies with the time scale of the analysis [19] and it will
also be interesting, for future work, to address the relevant question of whether our method
is able to estimate, from the same time series, different values of . by using different lags.

We remark that the automatic and easy-to-use time series analysis tool that we propose
is here is freely available at [42]. We believe that it will be a valuable contribution to the
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wide repertoire of time series analysis tools that are available nowadays. Many applications
are foreseen. As an example, for ultra-fast optical random number generation [43-45], it is
crucial to generate optical chaotic signals that are as uncorrelated and as “pseudorandom”
as possible, for which its deterministic nature is hidden by noise-like properties. Many
different setups have been proposed to generate such broad-band, high-entropy optical
signals [46-50]. Our algorithm allows an automatic comparison of the strength of the
correlations and the level of randomness of signals generated by different setups. More-
over, the algorithm may be used to identify, in a given experimental setup, the optimal
operation conditions and parameters that produce optical signals with the lowest temporal
correlations (lowest «,) or with highest level of randomness (lowest (2).
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