
entropy

Article

Fast Compression of MCMC Output

Nicolas Chopin *,† and Gabriel Ducrocq †

����������
�������

Citation: Chopin, N.; Ducrocq, G.

Fast Compression of MCMC Output.

Entropy 2021, 23, 1017. https://

doi.org/10.3390/e23081017

Academic Editor: Cathy W. S. Chen

Received: 6 July 2021

Accepted: 3 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institut Polytechnique de Paris, ENSAE Paris, CEDEX, 92247 Malakoff, France; gabriel.ducrocq@ensae.fr
* Correspondence: nicolas.chopin@ensae.fr
† These authors contributed equally to this work.

Abstract: We propose cube thinning, a novel method for compressing the output of an MCMC
(Markov chain Monte Carlo) algorithm when control variates are available. It allows resampling
of the initial MCMC sample (according to weights derived from control variates), while imposing
equality constraints on the averages of these control variates, using the cube method (an approach
that originates from survey sampling). The main advantage of cube thinning is that its complexity
does not depend on the size of the compressed sample. This compares favourably to previous
methods, such as Stein thinning, the complexity of which is quadratic in that quantity.

Keywords: control variates; Markov chain Monte Carlo; thinning

1. Introduction

MCMC (Markov chain Monte Carlo) remains, to this day, the most popular approach
to sampling from a target distribution p, in particular in Bayesian computations [1].

Standard practice is to run a single chain, X1, . . . , XN according to a Markov kernel
that leaves invariant p. It is also common to discard part of the simulated chain, either to
reduce its memory footprint, or to reduce the CPU cost of later post-processing operations,
or more generally for the user’s convenience. Historically, the two common recipes for
compressing an MCMC output are:

• burn-in, which allows discarding the b first states;
• thinning, which allows retaining only one out of t (post burn-in) states.

The impact of either recipes on the statistical properties of the subsampled estimates
are markedly different. Burn-in reduces the bias introduced by the discrepancy between p
and the distribution of the initial state X1 (since Xb ≈ p for b large enough). On the other
hand, thinning always increases the (asymptotic) variance of MCMC estimators [2].

Practitioners often choose b (the burn-in period) and t (the thinning frequency) sepa-
rately, in a somewhat ad hoc fashion (i.e., through visual inspection of the initial chain), or
using convergence diagnosis such as, e.g., those reviewed in [3].

Two recent papers [4,5] cast a new light on the problem of compressing an MCMC
chain by considering, more generally, the problem, for a given M, of selecting the subsample
of size M that best represents (according to a certain criterion) the target distribution p. We
focus for now on [5], for reasons we explain below.

Stein thinning, the method developed in [5], chooses the subsample S of size M which
minimises the following criterion:

D(S) :=
1

M2 ∑
m,n∈S

kp(Xm, Xn), S ⊂ {1, . . . , N}, |S| = M (1)

where kp is a p-dependent kernel function derived from another kernel function k: X ×
X → R, as follows:

kp(x, y) = ∇x ·∇yk(x, y)+ 〈∇xk(x, y), sp(y)〉+ 〈∇yk(x, y), sp(x)〉+ k(x, y)〈sp(x), sp(y)〉

Entropy 2021, 23, 1017. https://doi.org/10.3390/e23081017 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0628-5815
https://doi.org/10.3390/e23081017
https://doi.org/10.3390/e23081017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23081017
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23081017?type=check_update&version=1

Entropy 2021, 23, 1017 2 of 16

with 〈·, ·〉 being the Euclidean inner product, sp(x) := ∇ log p(x) is the so-called score
function (gradient of the log target density), and ∇ is the gradient operator.

The rationale behind criterion (1) is that it may be interpreted as the KSD (kernel Stein
discrepancy) between the true distribution p and the empirical distribution of subsample S.
We refer to [5] for more details on the theoretical background of the KSD, and its connection
to Stein’s method.

Stein thinning is appealing, as it seems to offer a principled, quasi-automatic way
to compress an MCMC output. However, closer inspection reveals the following three
limitations.

First, it requires computing the gradient of the log-target density, sp(x) = ∇ log p(x).
This restricts the method to problems where this gradient exists and is tractable (and, in
particular, to X = Rd).

Second, its CPU cost is O(NM2). This makes it nearly impossible to use Stein thin-
ning for M � 100. This cost stems from the greedy algorithm proposed in [5], see
their Algorithm 1, which adds at iteration t the state Xi which minimises kp(Xi, Xi) +

∑j∈St−1
kp(Xi, Xj), where St−1 is the sample obtained from the t− 1 previous iterations.

Third, its performance seems to depend in a non-trivial way on the original kernel
function k; the authors of [5] propose several strategies for choosing and scaling k, but none
of them seem to perform uniformly well in their numerical experiments.

We propose a different approach in this paper, which we call cube thinning, and
which addresses these shortcomings to some extent. Assuming the availability of J control
variates (that is, of functions hj with known expectation under p), we cast the problem of
MCMC compression as that of resampling the initial chain under constraints based on these
control variates. The main advantage of cube thinning is that its complexity is O(NJ3); in
particular, it does not depend on M. That makes it possible to use it for much larger values
of M. We shall discuss the choice of J, but, by and large, J should be of the same order as d,
the dimension of the sampling space. The name stems from the cube method of [6], which
plays a central part in our approach, as we explain in the body of the paper.

The availability of control variates may seem like a strong requirement. However, if
we assume we are able to compute sp(x) = ∇ log p(x), then (for a large class of functions
φ : Rd → Rd, which we define later)

Ep
[
φ(x)sp(x) +∇x · φ(x)

]
= 0

where ∇x · φ denotes the divergence of φ. In other words, the availability of the score
function implies, automatically, the availability of control variates. The converse is not true:
there exists control variates, e.g., [7], that are not gradient-based. One of the examples we
consider in our numerical examples feature such non gradient-based control variates; as a
result, we are able to apply cube thinning, although Stein thinning is not applicable.

The supporting methods of [4] do not require control variates. It is thus more generally
applicable than either cube thinning or Stein thinning. On the other hand, when gradients
(and thus control variates) are available, the numerical experiments of [5] suggest that Stein
thinning outperforms support points. From now on, we focus on situations where control
variates are available.

This paper is organised as follows. Section 2 recalls the concept of control variates,
and explains how control variates may be used to reweight an MCMC sample. Section 3
describes the cube method of [6]. Section 4 explains how to combine control variates and
the cube method to perform cube thinning. Section 5 assesses the statistical performance of
cube thinning through two numerical experiments.

We use the following notations throughout: p denotes both the target distribution
and its probability density; p(f) is a short-hand for the expectation of f (X) under p. The
gradient of a function f is denoted by∇x f (x), or simply∇ f (x) when there is no ambiguity.
The i−-th component of a vector v ∈ Rd is denoted by v[i], and it is transposed by vt. The
vectors of the canonical basis of Rd are denoted by ei, i.e., ei[j] = 1 if j = i, 0 otherwise.
Matrices are written in upper-case; the kernel (null space) of matrix A is denoted by

Entropy 2021, 23, 1017 3 of 16

kerA. The set of functions f : Ω→ Rd that are continuously differentiable is denoted by
C1(Ω,Rd).

2. Control Variates
2.1. Definition

Control variates are a very well known way to reduce the variance of Monte Carlo
estimates—see, e.g., the books of [1,8,9].

Suppose we want to estimate the quantity p(f) = Ep[f (X)] for a suitable f : Rd →
R, based on an IID (independent and identically distributed) sample {X1, . . . , XN} from
distribution p. The generalisation of control variates to MCMC will be discussed in Section 4.

The usual Monte Carlo estimator of p(f) is

p̂(f) =
1
N

N

∑
n=1

f (Xn). (2)

Assume we know J ∈ N? functions hj : Rd → R for j ∈ {1, . . . , J} such that p(hj) = 0.
Functions with this property are called control variates. We can use this property to build
an estimate with a lower variance: let us denote h(X) = (h1(X), . . . , hJ(X))t and write our
new estimate:

p̂β(f) =
1
N

N

∑
n=1

f (Xn) + βth(Xn) (3)

with β ∈ RJ . Then it is straightforward to show that E[p̂β(f)] = E[p̂(f)] = p(f). Depend-
ing on the choice of β, we may have Var[p̂β(f)] ≤ Var[p̂(f)]. The next section discusses
how to choose such a β.

2.2. Control Variates as a Weighting Scheme

The standard approach to choose β consists of two steps. First, one shows easily that
the value the minimises the variance of estimator (3) is:

β?(f) = Var(h(X))−1Cov(h(X), f (X)) (4)

where Var(h(X)) is the J × J variance matrix of the vector h(X) and Cov(h(X), f (X)) is
the J × 1 vector such that Cov(h(X), f (X))i,1 = Cov(f (X), hi(X)).

Second, one realises that this quantity may be estimated from the sample X1, . . . , XN
through a simple linear regression model, where the f (Xn)s are the outcome, and the
hj(Xn)s are the predictors:

f (Xn) ≈ µ + βth(Xn) + εn, E[εn] = 0. (5)

More precisely, let γ ∈ RJ+1 be the vector such that γt = (µ, βt), H = (Hij) the design
matrix such that Hi1 = 1, Hi(j+1) = hj(Xi), and F = (f (X1), . . . , f (XN)). Then, the OLS
(ordinary least squares) estimate of γ is

γ̂OLS = (HtH)−1HtF. (6)

Since E[f (Xn)] = µ in this artificial regression model, the first component of γ̂OLS:

p̂?(f) := γ̂OLS × e1, (7)

actually corresponds to estimate (3) when β = β̂OLS.

Entropy 2021, 23, 1017 4 of 16

At first glance, the approach described above seems to require implementing a differ-
ent linear regression for each function f of interest. Ref. [9] noted, however, that one may
re-express (7) as a weighted average:

p̂?(f) =
N

∑
n=1

wn f (Xn) (8)

where the weights wn sum to one, and do not depend on f . It is thus possible to compute
these weights once from a given sample (given a certain choice of control variates), and
then quickly compute p̂?(f) for any function f of interest.

The exact expression of the weights are easily deduced from (7) and (6): w = (wn) with

w = H(HtH)−1e1.

2.3. Gradient-Based Control Variates

In this section and the next, we recall generic methods to construct control variates.
This section specifically considers control variates that are derived from the score function,
sp(x) = ∇ log p(x). (We therefore assume that this quantity is tractable.)

Under the following two conditions:

1. The probability density p ∈ C1(Ω,R) where Ω ⊆ Rd is an open set;
2. Function φ ∈ C1(Ω,Rd) is such that

∮
∂Ω p(x)φ(x) · n(x)S(dx) = 0 where

∮
∂Ω denotes

the integral over the boundary of Ω, and S(dx) is the surface element at x ∈ ∂Ω.

The following function:

h(x) = ∇x · φ(x) + φ(x) · sp(x) (9)

is a control variate: p(h) = 0, see, e.g., [10] or [11] for further details. To gain some insight,
note that in dimension 1 and assuming the domain of integration is an interval]a, b[⊂ R,
this amounts to an integration by parts with the condition that h(b)p(b)− h(a)p(a) = 0.

Thus, whenever the score function is available (and the conditions above hold), we
are able to construct an infinite number of control variates (one for each function φ). For
simplicity, we shall focus on the following standard classes of such functions. First, for
i = 1, . . . , d,

φi : Rd → Rd

x 7→ ei

which leads to the following d control variates:

hi(x) = sp(x)[i]. (10)

For a Gaussian target, N(µ, Σ), the score is sp(x) = −Σ−1(x − µ), and the control
variates above make it possible to reweight the Monte Carlo sample to make it have the
same expectation as the target distribution.

Second, we consider, for i, j = 1, . . . , d:

φij : Rd → Rd

x 7→ x[i]ej

which leads to the following d2 control variates:

hij(x) = 1{i = j}+ x[i]sp(x)[j]. (11)

Again, for a Gaussian target N(µ, Σ), this makes it possible to fix the empirical covari-
ance matrix to true covariance Σ.

Entropy 2021, 23, 1017 5 of 16

In our simulations, we consider two sets of control variates: the ‘full’ set, consisting
of the d control variates defined by (10), and the d2 control variates defined by (11), and a
‘diagonal’ set of 2d control variates, where for (11), we only consider the cases where i = j.
Of course, the former set should lead to a better performance (lower variance), but since
the complexity of our approach will be O(J3), where J is the number of control variates,
taking J = O(d2) may be too expensive whenever the dimension d is large. In fact, when d
is very large, one might even consider considering only control variates that depend on a
few components of x of interest.

2.4. MCMC-Based Control Variates

We mention in passing other ways to construct control variates, in particular in the
context of MCMC.

For instance, [7] noted that, for a Markov chain {Xn}, the quantity

φ(Xn)−E[φ(Xn)|Xn=1]

has zero expectations. In particular, if the MCMC kernel is a Gibbs sampler, it is likely that
one is able to compute the conditional expectation of each component, i.e., φ(x) = x[i] for
i = 1, . . . , d.

See also [12,13] for other ways to construct control variates when the Xns are simulated
from a Metropolis kernel.

3. The Cube Method

We review in this section the cube method of [6]. This method originated from survey
sampling and is a way to sample from a finite population under constraints. The first
subsection gives some definitions, the second one explains the flight phase of the cube
method and the third subsection discusses the landing phase of the method.

3.1. Definitions

Suppose we have a finite population {1, . . . , N} of N individuals and that to each
individual n = 1, . . . , N is associated a variable of interest yn and J auxiliary variables,
vn = (vn1, . . . , vnJ). Without loss of generality, suppose also that the J vectors (v1j, . . . , vNj)

are linearly independent. We are interested in estimating the quantity Y = ∑N
n=1 yn using a

subsample of {1, . . . , N}. Furthermore, we know the exact value of each sum Vj = ∑N
n=1 vnj,

and we wish to use this auxiliary information to better estimate Y.
We assign, to each individual n, a sampling probability πn ∈ [0, 1]. We consider

random variables Sn such that, marginally, P(Sn = 1) = πn. We may then define the
Horvitz–Thompson estimator of Y as

Ŷ =
N

∑
n=1

Snyn

πn
(12)

which is unbiased, and which depends only on selected individuals (i.e., Sn = 1).
We define similarly the Horvitz–Thompson estimator of Vj as

V̂j =
N

∑
n=1

Snvnj

πn
. (13)

Our objective is to construct a joint distribution ξ for the inclusion variables Sn such
that Pξ(Sn = 1) = πn for all n = 1, . . . , N, and

V̂ = V ξ-almost surely. (14)

where V = (V1, . . . , VJ), V̂ = (V̂1, . . . , V̂J). Such a probability distribution is called a
balanced sampling design.

Entropy 2021, 23, 1017 6 of 16

3.2. Subsamples as Vertices

We can view all the possible samples from {1, . . . , N} as the vertices of the hypercube
C = [0, 1]N in RN . A sampling design with inclusion probabilities πn = Pξ(Sn = 1) is then
a distribution over the set of these vertices such that E[S] = π, where S = (S1, . . . , SN)

t,
and π = (π1, . . . , πN)

t is the vector of inclusion probabilities. Hence, π is expressed as a
convex combination of the vertices of the hypercube.

We can think of a sampling algorithm as finding a way to reach any vertex of the cube,
starting at π, while satisfying the balancing Equation (14). However, before we describe
such a sampling algorithm, we may wonder if it is possible to find a vertex such that (14)
is satisfied.

3.3. Existence of a Solution

The balancing equation, Equation (14), defines a linear system. Indeed, we can re-
express (14) as S, as a solution to As = V, where A = (Ajn) is of dimension J × N,
Ajn = vkn/πn. This system defines a hyperplane Q of dimension N − J in RN .

What we want is to find vertices of the hypercube C that also belong to the hyperplane
Q. Unfortunately, it is not necessarily possible, as it depends on how the hyperplane
Q intersects cube C. In addition, there is no way to know beforehand if such a vertex
exists. Since π ∈ Q, we know that K := C ∩ Q 6= ∅ and is of dimension N − J. The
only thing we can say is stated Proposition 1 in [6]: if r is a vertex of K, then in general
q = card({n : 0 < r[n] < 1}) ≤ J.

The next section describes the flight phase of the cube algorithm, which generates a
vertex in K when such vertices exist, or which, alternatively, returns a point in K with most
(but not all) components set to zero or one. In the latter case, one needs to implement a
landing phase, which is discussed in Section 3.5.

3.4. Flight Phase

The flight phases simulates a process π(t) which takes values in K = C ∩Q, and starts
at π(0) = π. At every time t, one selects a unit vector u(t), then one chooses randomly
between one of the two points that are in the intersection of the hypercube C and the line
parallel to u(t) that passes through π(t− 1). The probability of selecting these two points
are set to ensure that π(t) is a martingale; in that way, we have E[πt] = π at every time
step. The random direction u(t) must be generated to fulfil the following two requirements:
(a) that the two points are in Q, i.e., u(t) ∈ kerA, and (b) whenever π(t) reaches one of the
faces of the hypercube, it must stay within that face; thus, u(t)[k] = 0 if π(t− 1)[k] = 0
or 1.

Algorithm 1 describes one step of the flight phase.

Algorithm 1: Flight phase iteration

Input: π(t− 1)
Output: π(t)

1 Sample u(t) in ker A with uk(t) = 0 if the k-th component of π(t− 1) is an integer.
2 Compute λ?

1 and λ?
2 , the largest values of λ1 > 0 and λ2 > 0 such that:

0 ≤ π(t− 1) + λ1u(t) ≤ 1 and 0 ≤ π(t− 1)− λ2u(t) ≤ 1.
3 With probability λ?

2/(λ?
1 + λ?

2), set π(t)← π(t− 1) + λ1u(t); otherwise, set
π(t)← π(t− 1)− λ2u(t).

The flight phase stops when Step 1 of Algorithm 1 cannot be performed (i.e., no vector
u(t) fulfils these conditions). Until this happens, each iteration increases by at least one the
number of components in π(t) that are either zero or one. Thus, the flight phases completes
at most in N steps.

In practice, to generate u(t), one may proceed as follows: first generate a random vec-
tor v(t) ∈ RN , then project it in the constraint hyperplane: u(t) = I(t)v(t)− I(t)At(AI(t)At)−

Entropy 2021, 23, 1017 7 of 16

AI(t)v(t), where I(t) is a diagonal matrix such that Ikk(t) is 0 if πk(t) is an integer and 1
otherwise, and M− denotes the pseudo-inverse of the matrix M.

The authors of [14] propose a particular method to generate vector v(t), which ensures
that the complexity of a single iteration of the flight phase is O(J3). This leads to an overall
complexity of O(NJ3) for the flight phase, since it terminates in at most N iterations.

3.5. Landing Phase

Denote by π? the value of process π(t) when the flight phase terminates. If π? is a
vertex of C (i.e., all its components are either zero or one), one may stop and return π?

as the output of the cube algorithm. If π? is not a vertex, this informs us that no vertex
belongs to K. One may implement a landing phase, which aims at choosing randomly a
vertex which is close to π?, and such that the variance of the components of V̂ is small.

Appendix A gives more details on the landing phase. Note that its worst-case com-
plexity is O(2J). However, in practice, it is typically either much faster, or not required (i.e.,
π? is already a vertex) as soon as J � N.

4. Cube Thinning

We now explain how the previous ingredients (control variates, and the cube method)
may be combined in order to thin a Markov chain, X1, . . . , XN , into a subsample of size M.
As before, the invariant distribution of the chain is denoted by p, and we assume we know
of J control variates hj, i.e., p(hj) = 0 for j = 1, . . . , J.

4.1. First Step: Computing the Weights

The first step of our method is to use the J control variates to compute the N weights
wn, as defined at the end of Section 2.2. Recall that these weights sum to one, and that they
automatically fulfil the constraints:

N

∑
n=1

wnhj(Xn) = 0 (15)

for j = 1, . . . , J, and that we use them to compute

p̂?(f) =
N

∑
n=1

wn f (Xn) (16)

as a low-variance estimate for p(f) for any f .
Recall that the control variates procedure we described in Section 2 assume that the

input variables, X1, . . . , XN , are IID. This is obviously not the case in an MCMC context;
however, we follow the common practice [10,11] of applying the procedure to MCMC
points as if they were IID points. This implies that the weighted estimate above corresponds
to a value of β in (3) that does not minimise the (asymptotic) variance of estimator (3). It
is actually possible to estimate the value of β that minimises the asymptotic variance of
an MCMC estimate [7,15]. However, this type of approach is specific to certain MCMC
samplers, and, critically for us, it cannot be cast as a weighting scheme. Thus, we stick to
this standard approach.

We note in passing that, in our experiments (see Figure 1 and the surrounding discus-
sion), the weights wn make it easy to visually assess the convergence (and thus the burn-in)
of the Markov chain. In fact, since the MCMC points of the burn-in phase are far from the
mass of the target distribution, the procedure must assign a small or negative weight to
these points in order to respect the constraints based on the control variates. Again, see
Section 5.2 for more discussion on this issue. The fact that control variates may be used to
assess MCMC convergence has been known for a long time (e.g., [16]), but the visualisation
of weights makes this idea more expedient.

Entropy 2021, 23, 1017 8 of 16

Figure 1. Lotka–Volterra example: first 5000 weights of the cube methods, based on full (top) or
diagonal (bottom) set of covariates.

4.2. Second Step: Cube Resampling

The second step consists in resampling the weighted sample (wn, Xn)n=1,...,N , to obtain
a subsample S = {Xn : Sn = 1} where Sn are random variables such that (a) E[Sn] = wn;
(b) ∑N

n=1 Sn = M, and (c) for j = 1, . . . , J:

∑
Sn=1

hj(Xn) = 0.

Condition (a) ensures that the procedure does not introduce any bias:

E
[

1
M ∑

Sn=1
f (Xn)

∣∣∣∣X1:N

]
=

N

∑
n=1

wn f (Xn).

Condition (b) ensures that the subsample is exactly of size M.
We would like to use the cube method in order to generate the Sn’s. Specifically, we

would like to assign the inclusion probabilities πn to wn, and impose the (J + 1) constraints
defined above by conditions (b) and (c). There is one caveat, however: the weights wn do
not necessarily lie in [0, 1].

4.3. Dealing with Weights Outside of [0, 1]

We rewrite (16) as:

p̂?(f) =
Ω
M
×

N

∑
n=1

Wn × sgn(wn) f (Xn) (17)

Entropy 2021, 23, 1017 9 of 16

where Ω = ∑N
n=1 |wn| and Wn = M|wn|/Ω. We now have Wn ≥ 0, and ∑N

n=1 Wn = M,
which is required for condition (b) in the previous section. We might have a few points
such that Wn > 1. In that case, we replace them by bWnc copies, with adjusted weights
Wn/bWnc.

It then becomes possible to implement the cube method, using as inclusion probabili-
ties the Wns, and as the matrix A that defines the J + 1 constraints, the matrix A = (Ajn)
such that A1n = 1, A(j+1)n = sgn(wn)hj(Xn). The cube method samples variables Sn,
which may be used to compute the subsampled estimate

ν̂(f) =
Ω
M ∑

Sn=1
sgn(wn) f (Xn). (18)

More generally, in our numerical experiments, we shall evaluate to which extent the
random signed measure:

ν̂ =
Ω
M ∑

Sn=1
sgn(wn)δXn(dx). (19)

is a good approximation of the target distribution p.

5. Experiments

We consider two examples. The first example is taken from [5], and is used to compare
cube thinning with KSD thinning. The second example illustrates cube thinning when used
in conjunction with control variates that are not gradient-based. We also include standard
thinning in our comparisons.

Note that there is little point in comparing these methods in terms of CPU cost, as
KSD thinning is considerably slower than cube thinning and standard thinning whenever
M � 100. (In one of our experiments, for M = 1000, KSD took close to 7 h to run, while
cube thinning with all the covariates took about 30 s.) Thus, our comparison will be in
terms of statistical error, or, more precisely, in terms of how representative of p is the
selected subsample.

In the following (in particular in the plots), “cubeFull” (resp. “cubeDiagonal”) will
refer to our approach based on the full (resp. diagonal) set of control variates, as discussed
in Section 2.3. “NoBurnin” means that burn-in has been discarded manually (hence, no
burn-in in the inputs). Finally, “thinning” denotes the usual thinning approach, “SMPCOV”,
“MED” and “SCLMED” are the same names used in [5] for KSD thinning, based on three
different kernels.

To implement the cube method, we used R package BalancedSampling.

5.1. Evaluation Criteria

We could compare the three different methods in terms of variance of the estimates
of p(f) for certain functions f . However, it is easy to pick functions f that are strongly
correlated with the chosen control variates; this would bias the comparison in favour of
our approach. In fact, as soon as the target is Gaussian-like, the control variates we chose in
Section 2.3 should be strongly correlated with the expectation of any polynomial function
of order two, as we discussed in that section.

Rather, we consider criteria that are indicative of the performance of the methods for
a general class of function. Specifically, we consider three such criteria. The first one is the
kernel Stein discrepency (KSD) as defined in [5] and recalled in the introduction—see (1).
Note that this criterion is particularly favourable for KSD thinning, since this approach
specifically minimises this quantity. (We use the particular version based on the median
kernel in Riabiz et al. [5].)

The second criterion is the energy distance (ED) between p and the empirical distri-
bution defined by the thinning method, e.g., (19) for cube thinning. Recall that the ED
between two distributions F and G is:

Entropy 2021, 23, 1017 10 of 16

ED(F, G) = 2E||Z− X||2 −E||Z− Z′||2 −E||X− X′||2 (20)

where Z′, Z iid∼ F and X′, X iid∼ G, and that this quantity is actually a pseudo-distance:
ED(F, G) ≥ 0, ED(F, G) = 0⇒ F = G, ED(F, G) = ED(G, F), but ED does not fulfil the
triangle inequality [17,18].

One technical difficulty is that (19) is a signed measure, not a probability measure; see
Appendix B on how we dealt with this issue.

Our third criterion is inspired by the star discrepancy, a well-known measure of
the uniformity of N points un ∈ [0, 1]d in the context of quasi-Monte Carlo sampling [9]
(Chapter 15). Specifically, we consider the quantity

d?(P̂, ν̂) = sup
B∈B

∣∣P̂ψ(B)− ν̂ψ(B)
∣∣

where ψ : Rd → [0, 1]d, P̂ψ and ν̂ψ are the push-forward measures associated to empirical
distributions P̂ = (N − b)−1 ∑N

n=b+1 δXn(dx), and ν̂ as defined in (19), and B is the set of
hyper-rectangles B = ∏d

i=1[0, bi]. In practice, we defined function ψ as follows: we apply
the linear transform that makes the considered sample to have zero mean and unit variance,
and then we applied the inverse CDF (cumulative distribution function) of a unit Gaussian
to each component.

Additionally, since the sup above is not tractable, we replace it by a maximum over a
finite number of bi (simulated uniformly).

5.2. Lotka–Volterra Model

This example is taken from [5]. The Lotka–Volterra model describes the evolution of a
prey–predator system in a closed environment. We denote the number of prey by u1 and
the number of predators by u2. The growth rate of the prey is controlled by a parameter
θ1 > 0 and its death rate—due to the interactions with the predators—is controlled by a
parameter θ2 > 0. In the same way, the predator population has a death rate of θ3 > 0 and
a growth rate of θ4 > 0. Given these parameters, the evolution of the system is described
by a system of ODEs:

du1

dt
= θ1u1 − θ2u1u2

du2

dt
= θ4u1u2 − θ3u2

Ref. [5] set θ = (θ1, θ2, θ3, θ4) = (0.67, 1.33, 1, 1), the initial condition u0 = (1, 1),
and simulate synthetic data. They assume they observe the populations of prey and
predator at times ti, i = 1, . . . , 2400 where the ti are taken uniformly on [0, 25] and
that these observations are corrupted with a centered Gaussian noise with a covari-
ance matrix C = diag(0.22, 0.22). Finally, the model is parametrised in terms of x =
(log θ1, log θ2, log θ3, log θ4) ∈ R4 and a standard normal distribution as a prior on x is used.

The authors have provided their code as well as the sampled values they obtained
by running different MCMC chains for a long time. We use the exact same experimental
set-up, and we do not run any MCMC chain on our own, but use the ones they provide
instead, specifically the simulated chain, of length 2× 106, from preconditionned MALA.

We compress this chain into a subsample of size either M = 100 or M = 1000. For each
value of M, we run different variations of our cube method 50 times and make a comparison
with the usual thinning method and with the KSD thinning method with different kernels,
see [5]. In Figure 1, we show the first 5000 weights of the cube method. We can see that
after 1000 iterations, the weights seem to stabilise. Based on visual examination of these
weights, we chose a conservative burn-in period of 2000 iterations for the variants where
burn-in is removed manually.

We plot the results of the experiment in Figures 2–4.

Entropy 2021, 23, 1017 11 of 16

First, we see that regarding the kernel Stein discrepancy metric, Figure 2, the KSD
method performs better than the standard thinning procedure and the cube method. This
is not surprising since, even if this method does not properly minimise the Kernel–Stein
Discrepency, this is still its target. We also see that, for M = 1000, the KSD method performs
a bit better than our cube method which in turn performs better than the standard thinning
procedure. Note that the relative performance of the KSD method to our cube methods
depends on the kernel that is being used and that there is no way to determine which
kernel will perform best before running any experiment.

The picture is different for M = 100: KSD thinning outperforms standard thinning,
which in turn outperforms all of our cube thinning variations. Once again, the fact that
the KSD method performs better than any other method seems reasonable: since it re-
gards minimizing the Kernel–Stein Discrepancy, the KSD method is “playing at home” on
this metric.

If we look at Figure 4, we see that all of our cube methods outperform the KSD method
with any kernel. Interestingly, the standard thinning methods has a similar energy distance
as the cube methods with “diagonal” control variates. These observations are true for both
M = 100 and M = 1000. We can also note that the cube method with the full set of control
variates tends to perform much better than its “diagonal” counterpart, whatever the value of M.

Finally, looking at Figure 3, it is clear that the KSD method—with any kernel—performs
worse than any cube method in terms of star discrepancy.

Figure 2. Lotka–Volterra example: box-plots of the kernel Stein discrepency for all the cube method
variations, compared with the KSD method for three kernels and the usual thinning method (hori-
zontal lines). Top: M = 100. Bottom: M = 1000. (In the top plot, standard thinning is omitted to
improve clarity, as corresponding value is too high.)

Entropy 2021, 23, 1017 12 of 16

Figure 3. Lotka–Volterra example: box-plots of the star discrepency for all the cube method variations,
compared with the KSD method for three kernels and the usual thinning method (horizontal lines).
Top: M = 100. Bottom: M = 1000.

Figure 4. Cont.

Entropy 2021, 23, 1017 13 of 16

Figure 4. Lotka–Volterra example: boxplots of the energy distance for all the cube method variations,
compared with the KSD method for three kernels and the usual thinning method (horizontal lines).
Top: M = 100. Bottom: M = 1000.

Overall, the relative performance of the cube methods and KSD methods can change
a lot depending on the metric being used and the number of points we keep. In addition,
while all the cube methods tend to perform roughly the same, this is not the case of the
KSD method, whose performances depend on the kernel we use. Unfortunately, we have
no way to determine beforehand which kernel will perform best. This is a problem since
the KSD method is computationally expensive for subsamples of cardinality M� 100.

Thus, by and large, cube thinning seems much more convenient to use (both in terms
of CPU time and sensitivity to tuning parameters) while offering, roughly, the same level
of statistical performance.

5.3. Truncated Normal

In this example, we use the (random-scan version of) the Gibbs sampler of [1] to
sample from 10-dimensional multivariate normal truncated to [0, ∞)10. We generated the
parameters of this truncated normal as follows: the mean was set as the realisation of a
10-dimensional standard normal distribution, while for the covariance matrix Σ, we first
generated a matrix M ∈ M10,10(R) for which each entry was the realisation of a standard
normal distribution. Then, we set Σ = MT M.

Since we used a Gibbs sampler, we have access to the Gibbs control variates of [7],
based on the expectation of each update (which amounts to simulating from a univariate
Gaussian). Thus, we consider 10 control variates.

The Gibbs sampler was run for N = 105 iterations and no burn-in was performed.
We compare the following estimators of the expectation of the target distribution the
standard estimator, based on the whole chain ("usualEstim" in the plots), the estimator
based on standard thinning ("thinEstim" in the plots), the control variate estimator based
on the whole chain, i.e., (7) ("regressionEstim" in the plots), and finally our cube estimator
described in Section 4 ("cubeEstim" in the plots). For standard thinning and cube thinning,
the thinning sample size was set to M = 100, which corresponds to a compression factor
of 103.

The results are shown in Figure 5. First, we can see that the control variates we chose
led to a substantial decrease in the variance of the estimates for regressionEstim compared
to usualEstim. Second, the cube estimator performed worse than the regression estimator
in terms of variance, but this was expected, as explained in Section 4. More interestingly,
if we cannot say that the cube estimator performs better than the usual MCMC estimator
in general, we can see that for some components it performed as well or even better,
even though the cube estimator used only M = 100 points while the usual estimator
used 105 points. This is largely due to the good choice of the control variates. Finally,

Entropy 2021, 23, 1017 14 of 16

the cube estimator outperformed the regular thinning estimator for every component,
sometimes significantly.

Figure 5. Truncated normal example: box-plots over 100 independent replicates of each estimator;
see text for more details.

Author Contributions: Conceptualization, N.C.; Formal analysis, N.C. and G.D.; Investigation, G.D.;
Methodology, G.D.; Software, G.D.; Writing—original draft, G.D.; Writing—review and editing, N.C.
All authors have read and agreed to the published version of the manuscript.

Funding: The PhD grant of the second author is funded by the French National Research Agency
(ANR) contract ANR-17-C23-0002-01 (project B3DCMB).

Data Availability Statement: The data that support the findings of the first numerical experiment are
openly available in stein.thinning at https://github.com/wilson-ye-chen/stein.thinning (accessed
on 2 August 2021).

Acknowledgments: We are grateful to the editor and the referees for their supportive and useful
comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Details on the Landing Phase

The landing phase seeks to generate a random vector S in {0, 1}N , with expectation π?

(the output of the flight phase), which minimises the criterion tr(MVar(V̂|π?)) for a certain
matrix M. (The notation ·|π? refers to the distribution of S conditional on π(t) = π? at the
end of the flight phase.)

Since Var(S) = Var(E[S|π?]) + E[Var(S|π?)] by the law of total variance, and since
the first term is zero (as E[S|π?] = π?), we have

Var(V̂) = E[Var(V̂|π?)] = E[AVar(S|π?)At]. (A1)

and thus:
tr(MVar(V̂|π?)) = ∑

s∈{0,1}N

p(s|π?)(s− π?)t At MA(s− π?). (A2)

https://github.com/wilson-ye-chen/stein.thinning

Entropy 2021, 23, 1017 15 of 16

Choosing M = (AAt)−1, as recommended by [6], amounts to minimising the distance
to the hyperplane ‘on average’. Let C(s) = (s − π?)t At(AAt)−1 At(s − π?), then the
minimisation program is equivalent to the following linear programming problem over q
variables only:

min
ξ?(.)

∑
s?∈S?

C(s?)ξ?(s?) (A3)

with constraints ∑s?∈S? ξ?(s?) = 1, 0 ≤ ξ?(s?) ≤ 1, ∑s?∈S? |s?k=1 ξ?(s?) = π?
k for every

k ∈ U? and S? = {0, 1}q where q = card(U?) and U? = {k ∈ U : 0 < π?[k] < 1}. Here, ξ?

denotes the marginal distribution of the components U? of the sampling design ξ and C(s?)
must be understood as C(s) with the components of s /∈ U? being fixed by the result of the
flight phase; thus, in this minimisation problem, C is in fact dependent on the components
of s that are in U? only.

The constraints define a bounded polyhedron. By the fundamental theorem of linear
programming, this optimisation problem has at least one solution on a minimal support—
see [6].

The flight phase ends on a vertex of K and, by Proposition 1 in [6], q ≤ J—typically
J � N. This means that we are solving a linear programming problem in a dimension
q potentially much lower than the population size N, and if we do not have too many
auxiliary variables, this optimisation problem will not be computationally too expensive.
In practice, a simplex algorithm is used to find the solution.

Appendix B. Estimation of the Energy Distance

There are two difficulties with computing (20). First, it involves intractable expecta-
tions. Second, as pointed out at the end of Section 4.3, the empirical distribution generated
by cube thinning, (19), is actually a signed measure.

Regarding the first issue, we can approximate (20) from our MCMC sample X1, . . . , XN .
That is, if our subsampled empirical measure writes ν̂ = ∑M

m=1 wmδZm and that we approxi-
mate the distribution associated with p by P̂ = (N − b)−1 ∑N

n=b+1 δXn where 1 ≤ b ≤ N is
the burn-in of the chain; then, we can estimate ED(µ̂, p) with ED(µ̂, P̂).

Regarding the second issue, we can generalize the energy distance to finite measures:
suppose we have two finite and potentially signed measures ν1 and ν2, both defined on the
same measurable space (Ω,P(Ω)} where Ω = {X1, . . . , XN} and P(Ω) denote the set of
parts of Ω. Suppose, in addition, that ν1(Ω) = α1 and ν2(Ω) = α2 with α1 6= 0 and α2 6= 0.
We define the generalized energy distance as:

ED?(ν1, ν2) =
2

α1α2

∫
Ω
||x− y||2dν1(x)dν2(y)

− 1
α2

1

∫
Ω
||x− x′||2dν1(x)dν1(x′)

− 1
α2

2

∫
Ω
||y− y′||2dν2(y)dν2(y′).

Then, by negative definiteness of the application φ(x, y) = ||x − y||2 on RN × RN ,

ED?(ν1, ν2) ≥ 0 with equality if and only if
1
α1

ν1 =
1
α2

ν2. This means that the gener-

alized energy distance is zero if and only if the two measures are equal up to a non-zero
multiplicative constant—see [17] for a demonstration. This generalized energy distance is
also symmetric, but the triangle inequality does not hold. It is a pseudo-distance.

Entropy 2021, 23, 1017 16 of 16

Thus, we will use the following criterion, which we will call the energy distance:

ED?(ν̂, P̂) =
2

(N − b)α1

N

∑
k=1

N

∑
n=b+1

Ω
M

sgn(wk)||Xk − Xn||21{Sk=1}

− 1
α2

1

N

∑
n=1

N

∑
k=1

(
Ω
M

)2
sgn(wn)sgn(wk)||Zk − Zn||21{Sk=1}1{Sn=1}

where ν̂ is defined in (19) and we dropped the last term because it does not depend on ν̂
and it is a potentially expensive sum of (N − b)2 terms.

Note that the probability of ν̂(Ω) being zero is non-null and then there is a non-
negligible probability of ED?(ν̂, P̂) being undefined. However, this event is unlikely
to happen.

References
1. Robert, C.P.; Casella, G. Monte Carlo Statistical Methods; Springer: New York, NY, USA, 2004. [CrossRef]
2. Geyer, C.J. Practical Markov Chain Monte Carlo. Stat. Sci. 1992, 7, 473–483. [CrossRef]
3. Cowles, M.K.; Carlin, B.P. Markov chain Monte Carlo convergence diagnostics: A comparative review. J. Am. Statist. Assoc. 1996,

91, 883–904. [CrossRef]
4. Mak, S.; Joseph, V.R. Support points. Ann. Stat. 2018, 46, 2562–2592. [CrossRef]
5. Riabiz, M.; Chen, W.; Cockayne, J.; Swietach, P.; Niederer, S.A.; Mackey, L.; Oates, C.J. Optimal Thinning of MCMC Output. arXiv

2020, arXiv:2005.03952.
6. Deville, J.C. Efficient balanced sampling: The cube method. Biometrika 2004, 91, 893–912. [CrossRef]
7. Dellaportas, P.; Kontoyiannis, I. Control variates for estimation based on reversible Markov chain Monte Carlo samplers. J. R.

Stat. Soc. Ser. B (Stat. Methodol.) 2011, 74, 133–161. [CrossRef]
8. Glasserman, P. Monte Carlo Methods in Financial Engineering; Springer: New York, NY, USA, 2004; Volume 53, pp. xiv+596.
9. Owen, A.B. Monte Carlo Theory, Methods and Examples; in progress, 2013. Available online: https://statweb.stanford.edu/~{}owen/

mc/ (accessed on 2 August 2021).
10. Oates, C.J.; Girolami, M.; Chopin, N. Control functionals for Monte Carlo integration. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2016,

79, 695–718. [CrossRef]
11. Hammer, H.; Tjelmeland, H. Control variates for the Metropolis-Hastings algorithm. Scand. J. Stat. 2008, 35, 400–414. [CrossRef]
12. Mijatović, A.; Vogrinc, J. On the Poisson equation for Metropolis-Hastings chains. Bernoulli 2018, 24, 2401–2428. [CrossRef]
13. Chauvet, G.; Tillé, Y. A fast algorithm for balanced sampling. Comput. Stat. 2006, 21, 53–62. [CrossRef]
14. Brosse, N.; Durmus, A.; Meyn, S.; Moulines, E.; Radhakrishnan, A. Diffusion approximations and control variates for MCMC.

arXiv 2019, arXiv:1808.01665.
15. Brooks, S.; Gelman, A. Some issues for monitoring convergence of iterative simulations. Comput. Sci. Stat. 1998, 1998, 30–36.
16. Székely, G.J.; Rizzo, M.L. A new test for multivariate normality. J. Multivar. Anal. 2005, 93, 58–80. [CrossRef]
17. Székely, G.J.; Rizzo, M.L. A new test for multivariate normality. J. Multivar. Anal. 2005, 93, 58–80. [CrossRef]
18. Klebanov, L.B. N-Distances and Their Applications; The Karolinum Press, Charles University: Prague, Czech Republic, 2006.

http://doi.org/10.1007/978-1-4757-4145-2
http://doi.org/10.1214/ss/1177011137
http://doi.org/10.1080/01621459.1996.10476956
http://doi.org/10.1214/17-AOS1629
http://doi.org/10.1093/biomet/91.4.893
http://doi.org/10.1111/j.1467-9868.2011.01000.x
https://statweb.stanford.edu/~{}owen/mc/
https://statweb.stanford.edu/~{}owen/mc/
http://doi.org/10.1111/rssb.12185
http://doi.org/10.1111/j.1467-9469.2008.00601.x
http://doi.org/10.3150/17-BEJ932
http://doi.org/10.1007/s00180-006-0250-2
http://doi.org/10.1016/j.jmva.2003.12.002
http://dx.doi.org/10.1016/j.jmva.2003.12.002

	Introduction
	Control Variates
	Definition
	Control Variates as a Weighting Scheme
	Gradient-Based Control Variates
	MCMC-Based Control Variates

	The Cube Method
	Definitions
	Subsamples as Vertices
	Existence of a Solution
	Flight Phase
	Landing Phase

	Cube Thinning
	First Step: Computing the Weights
	Second Step: Cube Resampling
	Dealing with Weights Outside of [0, 1]

	Experiments
	Evaluation Criteria
	Lotka–Volterra Model
	Truncated Normal

	Details on the Landing Phase
	Estimation of the Energy Distance
	References

