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Abstract: A robust vehicle speed measurement system based on feature information fusion for
vehicle multi-characteristic detection is proposed in this paper. A vehicle multi-characteristic dataset
is constructed. With this dataset, seven CNN-based modern object detection algorithms are trained
for vehicle multi-characteristic detection. The FPN-based YOLOv4 is selected as the best vehi-
cle multi-characteristic detection algorithm, which applies feature information fusion of different
scales with both rich high-level semantic information and detailed low-level location information.
The YOLOv4 algorithm is improved by combing with the attention mechanism, in which the residual
module in YOLOv4 is replaced by the ECA channel attention module with cross channel interaction.
An improved ECA-YOLOv4 object detection algorithm based on both feature information fusion
and cross channel interaction is proposed, which improves the performance of YOLOv4 for vehicle
multi-characteristic detection and reduces the model parameter size and FLOPs as well. A multi-
characteristic fused speed measurement system based on license plate, logo, and light is designed
accordingly. The system performance is verified by experiments. The experimental results show
that the speed measurement error rate of the proposed system meets the requirement of the China
national standard GB/T 21555-2007 in which the speed measurement error rate should be less than
6%. The proposed system can efficiently enhance the vehicle speed measurement accuracy and
effectively improve the vehicle speed measurement robustness.

Keywords: feature information fusion; cross-channel interaction; YOLOv4; ECA; vehicle speed
measurement

1. Introduction

Vehicle speed measurement is one of the most important tasks of intelligent traffic
monitoring system [1–4]. It helps to monitor speeding behavior and improve road safety.
Common vehicle speed measurement methods can be divided into intrusive and nonintru-
sive. The intrusive method uses inductive loop detectors (ILDs) embedded in the road to
measure the average vehicle speed, which is difficult to install and maintain due to the dam-
age to road [5]. The nonintrusive speed measurement methods include Radar [6], Lidar [7],
and video-based speed measurement systems [8]. The Radar method uses Doppler effect
produced by the relative motion between vehicle and radar equipment (fixed or mobile) to
measure the vehicle speed [6]. The Lidar method uses a laser to measure the distance from
a fixed lidar equipment to vehicle twice within a specific time interval, and calculates the
average vehicle speed [7]. Both methods transmit signals, which are easy to be detected
and hard to make secret measurements. Video-based speed measurement methods can
be further divided into two categories: monocular 2D video-based method and binocular
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3D video-based method [9]. The monocular 2D video-based methods [8,10,11] use the
perspective projection relationship of 2D imaging to estimate the distance traveled by
the vehicle within a fixed frame interval, thereby calculate the vehicle speed. Due to the
perspective projection relationship, they can only accurately measure the speed of vehicle
in straight-line motion, but not in curved motion. The binocular 3D video-based meth-
ods [12–14] use the stereo imaging principle of the binocular camera, which can directly
calculate the distance traveled by the vehicle within a fixed frame interval, thereby calculate
the vehicle speed. However, the existing methods still have disadvantages such as low
object detection efficiency and lack of intelligence, which need to be further improved.

To overcome the shortcomings of the existing methods, a binocular stereovision-based
vehicle speed measurement system is proposed in [14]. The system consists of three parts:
vehicle characteristic detection, vehicle tracking and stereo matching, and vehicle speed
and trajectory measurement. The system uses a SSD (Single-Shot Multibox Detector)
network [15] optimized for license plate detection to efficiently detect the license plate
in binocular stereo video, performs fast stereo matching [16,17] in the detected left-view
and right-view license plate areas, calculates the 3D coordinates of the matching point
pairs, eliminates the abnormal points and selects the point closest to the license plate
center as the speed measurement point of the current frame, and calculates the vehicle
speed by dividing the distance between the speed measurement points in consecutive
frames by the frame interval. This system is of low cost and high accuracy. It can realize
nonintrusive and secret vehicle speed measurement, and can simultaneously measure the
speed of multiple vehicles in different motions and on multiple lanes. The system is based
on vehicle license plate detection, and the detection network is optimized for license plate
detection. Moreover, the system designed is also based on the premise that the license plate
characteristic of the vehicle can be accurately detected. However, vehicles license plate
violation often exists, including no license plate, deliberately shielding or blurring license
plate, faking license plate, etc. [18]. According to traffic statistical reports [19–22], license
plate violation accounts for a relatively high proportion of traffic violation, which poses
a challenge to the binocular stereovision-based vehicle speed measurement system with
license plate in [14]. Once license plate violation occurs, the system will be invalid.

A robust binocular stereovision-based vehicle speed measurement system with vehicle
multi-characteristic detection is proposed in this paper. The system model is shown in
Figure 1, wherein, A, B, C and D respectively represent the multiple characteristics of
vehicle, i.e., mirror, light, logo, and license plate. ∆S1, ∆S2, ∆S3, and ∆S4, respectively,
represent the displacements of multiple characteristics in the speed measurement frame
interval ∆t. As the multiple characteristics of the vehicle are of multiple scales at multiple
distances, You Only Look Once (YOLO) v4 network is selected, and a YOLOv4-based
vehicle multi-characteristic detection network is proposed, which can efficiently detect
multiple characteristics of vehicle. Combined with attention mechanism, Efficient Channel
Attention (ECA) module is chosen, and an ECA-YOLOv4-based vehicle multi-characteristic
detection network is proposed, which can further improve the detection efficiency and
accuracy of the network for multiple characteristics of the vehicle. Accordingly, a multi-
characteristic combined speed measurement system based on binocular stereovision with
license plate, logo and light detection is proposed. In normal case, this system can efficiently
enhance the speed measurement accuracy. In the case of license plate violation, this system
can effectively improve the speed measurement robustness, which can solve the problem
that the system in [14] cannot measure the vehicle speed in the case of license plate violation.

The rest of the paper is organized as follows. In Section 2, related work is discussed.
In Section 3, a robust binocular stereovision-based vehicle speed measurement system
with vehicle multi-characteristic detection is proposed. The main work focuses on the
optimization of object detection algorithm for multiple characteristics of vehicle and the de-
sign of the multi-characteristic combined vehicle speed measurement system. In Section 4,
the experimental setup and results are reported. In Section 5, the conclusion is drawn.
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Figure 1. The proposed system model.

2. Related Works
2.1. Object Detection Algorithm

Accurate vehicle characteristic detection, namely, accurate object detection is an im-
portant premise of the vehicle speed measurement system proposed in this paper, and is
also the main research content of this paper. Object detection includes two broad categories:
traditional object detection and deep learning-based object detection [23]. Traditional object
detection extracts informative feature sets by handcrafted features, while deep learning
based object detection extracts informative feature sets by various end-to-end deep learning
networks [24]. In recent years, thanks to the rapid development of artificial intelligence,
object detection based on deep learning has become the mainstream, with better adapt-
ability and more intelligence. Deep learning networks can be divided into Convolutional
Neural Networks (CNNs) for Euclidean data and the currently state-of-the-art Graph
Neural Networks (GNNs) for non-Euclidean data [25]. CNNs extract multi-scale local
spatial information and fuse them to construct feature representation [26]. GNNs capture
the dependency in graph by information transfer between nodes in graph, among which
Graph Convolutional Networks (GCNs) have become a hot topic. An improved version
of GCNs, known as miniGCNs, has been proposed, which allows to train in a minibatch
fashion and is capable of inferring out-of-sample data without retraining [27]. However,
as the object detection in this paper is performed on the captured stereo images which
belong to Euclidean data, CNNs based object detection is enough for this application scene.

CNN-based object detection algorithm aims to detect the object of interest from the
image, determine the category of each object, and locate the bounding box of each object
by self-learning the high-level features of the images. Feature extraction backbone network
includes AlexNet [28], VGG [29], Inception [30], ResNet [31], DenseNe [32], DarkNet [33],
CSPDarkNet [34], and so on. According to the different ways of using the extracted feature
maps, the object detection algorithms can be divided into three categories: object detection
algorithm based on single feature map, object detection algorithm based on pyramid feature
hierarchy, and object detection algorithm based on Feature Pyramid Network (FPN) [35].

R-CNN [36], Fast R-CNN [37], Faster R-CNN [38], and YOLOv1 [33] are all based
on the single feature map. The advantage is the fast detection speed and little memory
requirement. The disadvantage is that only the features of the last high-level are used;
the resolution is low and is not conductive to small object detection.
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SSD [15], RFB [39], and YOLOv2 [40] are all based on the pyramid feature hierarchy.
The advantage is the simultaneous use of multi-layer feature maps. The disadvantage
is that the calculated low-level high-resolution feature maps are not reused, the spatial
information in the low-level feature maps is not fully utilized, and the small object detection
task is still not well completed.

The FPN-based object detection algorithm takes the feature pyramid hierarchy as the
foundation structure and makes joint prediction by the fused feature map of each layer.
Commonly used feature fusion schemes include additive fusion, elementwise multiplica-
tive fusion, and concatenation fusion [27]. Several state-of-the-art fusion strategies include
concatenation-based fusion: early fusion, middle fusion, and late fusion, and compactness-
based fusion: encoder–decoder fusion and cross-fusion [41]. The purpose of feature fusion
is to combine the resulting features using different fusion strategies before the final classi-
fication. By feature fusion from the top layer to the bottom layer, the fused feature map
contains both rich high-level semantic information and detailed low-level location informa-
tion [42,43]. Then, the predicted joint feature pyramid hierarchy is used for object detection.
For distinguishing multiple objects of multiple scales in the image, multiple feature maps
in the predicted joint feature pyramid hierarchy can be used. YOLOv3 [44], M2Det [45],
Retinanet [46], YOLOv4 [34], and EfficientDet [47] are all based on FPN. The advantage
is that it can transfer the semantic information from the high-level to the low-level by
information fusion and effectively supplement the semantic information to the low-level,
therefore obtain features with high-resolution and rich semantic information, which can
successfully complete the small object detection task.

2.2. Attention Mechanism

The essence of the attention mechanism is to locate the information of interest and
suppress the useless information. In object detection network, the convolution operation
module in the feature extraction backbone network can be replaced by the attention module
to assign more weight to the part containing the information of interest and reduce the
weight of the part containing the interference information. Thereby, the object detection
accuracy can be improved.

The attention module can be divided into spatial attention module, channel attention
module, and mixed attention module according to the attention principle [48–50]. The task
of spatial attention module is to find the 2D spatial position containing the information
of interest in a single feature map. It performs average pooling and maximum pooling
on the single feature map of the input features, connects the average pooling, and maxi-
mum pooling results by convolution, and generates a corresponding 2D spatial attention
features map.

The task of channel attention module is to find the channel position containing the
information of interest among different channels. Squeeze-and-Excitation (SE) [51] and
ECA [52] are typical representatives of channel attention module. SE performs global
average pooling on the feature map of each channel, obtains the correlation between the
two fully connected layers by sharing the multi-layer perception (MLP), and generates a
corresponding channel attention map. For the two convolutions between the two fully
connected layers in SE by which the channel dimension is first reduced and then increased,
ECA replace them with a one-dimensional convolution that utilizes the local cross channel
interaction information which fuses the information of each channel and its k neighbors.
Dimension reduction can be avoided by cross-channel interaction which is a kind of infor-
mation fusion as well. ECA can significantly reduce the model complexity while improving
the network performance. It is an extremely lightweight channel attention module.

The task of mixed attention module is to simultaneously find the channel position
containing the information of interest among different channels and the 2D spatial position
containing the information of interest in each channel. Convolutional Block Attention
Module (CBAM) [53] is a typical representative of mixed attention module. It divides the
attention process into two independent cascaded modules: channel attention module and
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spatial attention module. First, channel attention map is generated by the channel attention
module for input features, and the refined features of channel attention optimization are
obtained by multiplying the input features with the generated channel attention map. Then,
spatial attention map is generated by the spatial attention module for the refined feature,
and the features of channel attention and spatial attention joint optimization are obtained
by multiplying the refined features of channel attention optimization with the generated
spatial attention map. Mixed attention model can refine features from both spatial and
channel dimensions at the same time, which can better obtain the feature information of the
region of interest and provide more effective information for prediction, thus improving
the performance of object detection algorithm.

2.3. Cross-Entropy Loss

Cross-entropy is an important concept in Shannon’s information theory. Cross-entropy
loss is an important index to measure the performance of an object detection classification
model in deep learning training. It measures the similarity between the prediction and
the actual target, which can effectively avoid the problem of learning rate decline in
gradient descent. Cross-entropy loss increases as the predicted probability diverges from
the actual label. For multi-class classification, the cross-entropy loss function is as shown
in Equation (1) [54].

L =
1
N

N

∑
i=1

[
−

C

∑
j=1

yij log
(

pij
)]

(1)

wherein, C is the number of classes; N is the number of samples; yij is the indicator variable,
which is 1 if the predicted class of sample i is the same as the actual class j, and 0 otherwise;
pij is the predicted probability that the sample i belongs to the actual class j. The smaller
the cross-entropy loss is, the better the model prediction will be.

3. The Proposed Method

The system proposed is built by two industrial cameras and a laptop. The Hikvision
MV-CA050-11UC industrial camera has a resolution of 2448 × 2048, with a Wallis WL1608-
5MP fixed-focus lens of 8 mm. The laptop is equipped with an Intel Core i7-10750H CPU,
16 GB RAM, and a Nvidia RTX2060 6G graphics card. The stereo camera is calibrated
by Zhengyou Zhang’s calibration method, and the cell size of the calibration board is
30 mm × 30 mm. The system configuration is shown in Figure 2.

Figure 2. System configuration.

The whole procedure of the proposed system is shown in Figure 3, which includes
three parts: vehicle multi-characteristic detection and decision, stereo matching, and speed
measurement. In the vehicle multi-characteristic detection and decision part, the proposed
ECA-YOLOv4 object detection network is trained by the vehicle multi-characteristic dataset
to get a model. The model is used to detect the left-view and right-view images separately
to obtain multiple characteristics of vehicle, i.e., vehicle, license plate, logo, and light.
The bounding box of the detected vehicle is used to constrain the detected multiple char-
acteristics into the same vehicle area. Assuming the light characteristic always exists and
can be detected, the speed measurement scheme is decided according to whether license
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plate and logo exist in the detection results, which can be divided into four cases: (1) three
vehicle characteristics detected, i.e., license plate, logo and light detected; (2) two vehicle
characteristics detected, i.e., license plate and light detected; (3) two vehicle characteristics
detected, i.e., logo and light detected; (4) one vehicle characteristic detected, i.e., only light
detected. In the stereo matching part, the stereo matching algorithm in [14] is reused, while
the speed measurement point selection is slightly adjusted for the multiple characteristics
with irregular shapes. In the speed measurement part, the binocular stereovision calibra-
tion algorithm in [14] is reused to perform speed measurement of single characteristic
respectively, then the vehicle speed is calculated according to the speed measurement
scheme decided in the detection and decision part.

3.1. Vehicle Multi-Characteristic Detection Based on YOLOv4

First, the vehicle multi-characteristic dataset is constructed. We randomly select
6103 images with a resolution of 1600 × 1200 from the Open ITS dataset [55], 1921 images
with a resolution of 1920 × 1080 from the BIT Vehicle dataset [56], and 280 images with a
resolution of 720 × 1160 from the CCPD dataset [57]. In addition, we capture 3351 images
with a resolution of 6000 × 4000 by Nikon d3200 SLR camera and 480 images with a
resolution of 2448 × 2048 by the Hikvision MV-CA050-11UC camera. The dataset has a
total of 12,135 vehicle images with multiple characteristics. Figure 4 shows some image
examples of our vehicle multi-characteristic dataset.

According to regulation on the relative size of small objects by SPIE, an object with a
pixel ratio less than 0.12% can be regarded as small object, otherwise it can be regarded
as regular object [58] . Statistical analysis is performed on the pixel ratio of four common
vehicle characteristics (license plate, logo, light, and mirror) in the image captured at
different distance within the speed measurement range. As shown in Figure 5, the distance
threshold of small object for the license plate is about 9 m; the distance threshold of small
object for the logo is about 4 m; the distance threshold of small object for the light is about
9 m; and the distance threshold of small object for the mirror is about 7 m. Therefore,
the detection of multiple characteristics of vehicle is a multi-scale object detection problem.

As mentioned above, object detection algorithms based on single feature map and
pyramidal feature hierarchy are not suitable for this multi-scale varying object detection
problem, while object detection algorithm based on FPN is suitable for this multi-scale
varying object detection problem. Therefore, the object detection algorithm based on FPN
is selected to detect the multiple characteristics of vehicle. Among them, YOLOv4 based
on FPN is chosen due to its faster speed and higher accuracy [34]. Figure 6 is the schematic
block diagram of the YOLOv4-based vehicle multi-characteristic object detection algorithm.
Features are extracted from the input vehicle images by the feature extraction backbone
network CSPDarknet53. The extracted features of different scales are fused by SPP and
PANet. Finally, prediction is performed on the three different scale feature maps output
by PANet, so as to obtain the bounding box, category, and confidence of the multiple
characteristics of vehicle.

There are 23 Cross-Stage Partial (CSP) modules in CSPDarknet53. The CSP module
enhances the learning ability of CNN and reduces the memory usage, whose structure is
shown in Figure 7. The CBM module is composed of convolution, batch normalization and
mish activation function. The structure of the residual unit is shown in Figure 8. The input
feature map is added to the original feature map after two convolution operations.

After three convolution operations on the last feature map of CSPDarknet53, the Spa-
tial Pyramid Pooling (SPP) module executes maximum pooling operations of four different
scales, i.e., 1 × 1, 5 × 5, 9 × 9, and 13 × 13, and then the maximum pooling results of
multiple scales are cascaded. After that, the feature maps are fused from the bottom to the
top by PANet, and then the fused feature maps are fused again from the top to the bottom.
Finally, the bounding box, category, and confidence of the object are predicted by the fused
feature maps of three different scales.
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Figure 3. The whole procedure of the proposed vehicle speed measurement system with vehicle multi-characteristic detection.
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Figure 4. Image examples of our vehicle multi-characteristic dataset. (a) Image from CCPD. (b) Image
from BIT Vehicle. (c) Image from Open ITS. (d) Self-captured image.
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Figure 5. Pixel ratio graph of multiple characteristics in the speed measurement range of 0 to 15 m.

Figure 6. Schematic block diagram of the YOLOv4-based vehicle multi-characteristic object detection algorithm.
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Figure 7. CSP structure in YOLOv4.

Figure 8. Residual unit structure in YOLOv4.

The performance of the YOLOv4-based vehicle multi-characteristic detection algo-
rithm is experimentally verified. Six representative object detection algorithms, i.e., Faster
R-CNN, SSD, RFB, Retinanet, M2Det, and YOLOv3 are also selected for performance
comparison. During the experiment, the model training parameters are the same, and the
same model measurement indexes AP and mAP are selected. The experimental results are
shown in Table 1. YOLOv4 has an AP of 96.47% for car, 92.13% for license plate, 87.72%
for logo, 94.17% for light, and 91.2% for mirror, whose detection accuracy for vehicle
single-characteristic detection is better than the other six algorithms. The average accuracy
mAP of YOLOv4 is 92.34%, which is also better than that of the other six algorithms.
Experimental results show that the proposed algorithm based on YOLOv4 is suitable for
vehicle multi-characteristic detection and performs well.

Table 1. Performance comparison of multiple object detection algorithms for vehicle multi-characteristic detection.

Algorithm APcar (%) APplate (%) APlogo (%) APlight (%) APmirror (%) mAP (%)

Faster R-CNN 87.75 45.82 53.91 79.32 68.84 67.13

SSD 94.90 77.16 71.68 87.79 80.82 82.47

RFB 94.62 56.93 60.21 82.67 80.08 74.90

Retinanet 93.97 33.14 51.61 73.59 56.80 61.82

M2Det 95.87 68.75 71.15 87.27 84.84 81.58

YOLOv3 93.91 88.06 81.94 90.89 86.99 88.35

YOLOv4 96.47 92.13 87.72 94.17 91.20 92.34

3.2. Vehicle Multi-Characteristic Detection Based on ECA-YOLOv4

The vehicle characteristics to be detected are local information, and the attention
mechanism that conforms to the human perception mechanism helps to focus on the local
information. As mentioned above, the multiple vehicle characteristics to be detected are
multi-scale varying, and a large proportion of them are small objects. Thus, the channel
attention mechanism is suited to solve such problem. However, the position of the vehicle
characteristics in the imaging plane constantly changes with the moving of the vehicle,
and the spatial attention mechanism is not applicable. Therefore, the channel attention
module is selected to optimize the YOLOv4-based vehicle multi-characteristic detection
algorithm. In the two commonly used channel attention modules, the ECA module is an
upgrade version of the SE module. Therefore, the ECA module is chosen to optimize the
network structure of the YOLOv4 and improve the detection performance.
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In the ECA module [52], cross-channel interaction and channel weight sharing are
adopted. A weight matrix Wk is defined for the cross-channel interaction, as shown in
Equation (2).

Wk =


ω1

1 · · · ωk
1 0 0 · · · · · · 0

0 ω2
2 · · · ωk+1

2 0 · · · · · · 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · ωC−k+1

C · · · ωC
C

 (2)

wherein Wk has k× C parameters. For the ith channel yi, as shown in Equation (3), the in-
teractive relationship of k adjacent channels yj

i (including yi) to yi should be considered to
calculate its weight ωi, j = 1, . . . , k.

ωi = σ

(
k

∑
j=1

ω
j
i y

j
i

)
, yj

i ∈ Ωk
i (3)

wherein Ωk
i represents the set is composed of the k adjacent channels of yi

After cross-channel interaction, channel weight sharing is carried out, so that all the
channels share the same k parameters, as shown in Equation (4).

ω′i = σ

(
k

∑
j=1

ω jyj
i

)
, yj

i ∈ Ωk
i (4)

In this way, the parameter number of the weight matrix Wk are reduced from k× C to
k. Weight parameter learning can be achieved by 1D fast convolution with a convolution
kernel size of k.

ω = σ(C1Dk(y)) (5)

wherein C1D represents 1D convolution operation.
As shown in Figure 9, the two CBM modules in each residual unit in each CSP module

of YOLOv4 are replaced by one ECA module, and the YOLOv4 is improved to ECA-
YOLOv4. Moreover, SE channel attention module and CBAM mixed attention module
are also, respectively, used to improve YOLOv4 to SE-YOLOv4 and CBAM-YOLOv4 in
the same way for performance comparison. The model parameter sizes and floating point
operations (FLOPs) of the object detection networks with different attention modules
are shown in Table 2. For the same input size of 416× 416, the model parameter size of
YOLOv4 is 244.29 M, the model parameter size of CBAM-YOLOv4 is 180.51 M with a
compression rate of 26.10%, the model parameter size of SE-YOLOv4 is 179.66 M with a
compression rate of 26.45%, and the model parameter size of ECA-YOLOv4 is 178.82 M
with a compression rate of 26.8%. ECA-YOLOv4 has the smallest model parameter size.
For the same input size of 416× 416, the FLOPs of YOLOv4 is 29.95 G, the FLOPs of CBAM-
YOLOv4 is 19.28 G, the FLOPs of SE-YOLOv4 is 19.28 G, and the FLOPs of ECA-YOLOv4
is 19.28 G. ECA-YOLOv4, SE-YOLOv4, and CBAM-YOLOv4 have the same FLOPs, which
is smaller than that of YOLOv4.

Figure 9. Residual unit structure in ECA-YOLOv4.
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Table 2. The model parameter size and FLOPs of the object detection networks with different
attention modules.

Algorithm Input Size Model
Parameters Size

Model
Compression Rate FLOPs

YOLOv4 416 × 416 244.29 MB / 29.95 G

CBAM-YOLOv4 416 × 416 180.51 MB 26.10% 19.28 G

SE-YOLOv4 416 × 416 179.66 MB 26.45% 19.28 G

ECA-YOLOv4 416 × 416 178.82 MB 26.80% 19.28 G

During the experiment, the model training parameters are the same, and the same
model measurement indexes AP, mAP, and FPS are selected. The experimental results are
shown in Table 3. From the AP of vehicle, license plate, logo, and mirror, the detection
performances of CBAM-YOLOv4, SE-YOLOv4, and ECA-YOLOv4 are all superior to that
of YOLOv4. From the AP of light, the detection performances of SE-YOLOv4 and ECA-
YOLOv4 are superior to that of YOLOv4. From the mAP, the detection performances
of CBAM-YOLOv4, SE-YOLOv4, and ECA-YOLOv4 are all superior to that of YOLOv4.
From the FPS, only the detection speed of ECA-YOLOv4 is faster than that of YOLOv4.
Note that for all four networks, the AP of logo is slightly lower than that of other vehicle
characteristics. This is because the shapes of logos are more diverse than those of license
plates, lights and mirrors, and a few special logos may not be accurately detected, which
will reduce the precision corresponding to some recall and thus reduce the AP of logo.

Table 3. Performance comparison of the object detection networks with different attention modules.

Algorithm APcar (%) APplate (%) APlogo (%) APlight (%) APmirror (%) mAP (%) FPS

YOLOv4 96.47 92.13 87.72 94.17 91.20 92.34 22

ECA-YOLOv4 97.01 93.19 87.98 94.53 91.99 92.94 23

SE-YOLOv4 97.02 93.24 88.30 94.49 92.29 93.07 21

CBAM-YOLOv4 97.27 93.47 88.48 93.91 91.76 92.98 16

Considering the four indexes of model parameter size, AP, mAP, and FPS. ECA-
YOLOv4 has the smallest model parameter size and the fastest FPS, with AP for vehicle
single-characteristic detection and mAP for vehicle multi-characteristic superior to that
of YOLOv4 and equivalent to that of CBAM-YOLOv4, and SE-YOLOv4. In summary,
the performance of ECA-YOLOv4 is better than that of the other three algorithms.

3.3. Optimal Design of Binocular Stereovision-Based Vehicle Speed Measurement System with
Vehicle Multi-Characteristic Detection

After the multiple characteristics of the vehicle are detected, as shown in Figure 10,
stereo matching is performed on each detected vehicle characteristic by the stereo matching
algorithm in [14]. Thus, the stereo matching point pairs in the left-view and right-view
images of the vehicle characteristic are obtained. Then, the matching point pair with the
smallest square sum of the Euclidean distance to the bounding box center is selected as
the speed measurement point. Zhengyou Zhang’s calibration method is used to calculate
the 3D coordinates of the selected speed measurement point, the displacement of adja-
cent speed measurement points are calculated, and the vehicle speed can be obtained by
dividing the displacement by the time interval.
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Figure 10. Vehicle multi-characteristic detection results: (a) left-view and (b) right-view.

The video capture frame rate is 30FPS, the vehicle speed is set to 43 km/h, the vehicle
drives to the camera in a straight line from far and near at a constant speed, and the
speed measurement is performed ten times per second. The speed measurement data
by a professional satellite speed meter P-Gear P-510 are taken as the ground truth for
comparison. The speed measurement results of single characteristic are shown in Table 4,
and the error rate curve is shown in Figure 11. It can be seen from Table 4 that the
speeds measured by the license plate, logo, and light are all consistent with the satellite
ground truth. The error rate range is [−2.49%, 4.55%], [−3.71%, 3.20%], and [−4.16%,
5.66%], respectively, all of which do not exceed the 6% error rate limit specified by the
China national standard GB/T21255-2007 [59]. However, the speeds measured by the
mirror differs greatly from the satellite ground truth, with an error rate range of [−82.27%,
184.69%], which is far more than the 6% error rate limit.

By analyzing the speed measurement procedure of the mirror, the large error is mainly
due to the smooth surface which is lack of detailed information such as texture. Thus,
large error occurs in the stereo matching, which leads to the incorrect speed measurement.
Therefore, in the following design of the multi-characteristic speed measurement system,
only three vehicle characteristics (license plate, logo, and light) are selected, and the mirror
characteristic is abandoned.

Table 4. Speed measurement results of single characteristics of the vehicle.

Number
Plate Logo Light Mirror

Satellite Speed (km/h)Speed
(km/h)

Error
Rate (%)

Speed
(km/h)

Error
Rate (%)

Speed
(km/h)

Error
Rate (%)

Speed
(km/h)

Error
Rate (%)

1 42.29 −2.49 43.70 0.76 42.53 −1.94 79.65 83.65 43.37

2 43.55 0.41 43.41 0.08 43.50 0.30 22.43 −48.28 43.37

3 44.52 2.28 44.71 2.71 44.47 2.16 39.10 −10.18 43.53

4 45.32 3.56 45.16 3.20 46.21 5.60 58.24 33.09 43.76

5 43.28 −1.10 45.16 3.20 43.09 −1.53 13.04 −70.20 43.76

6 43.22 −1.06 42.06 −3.71 43.94 0.60 124.35 184.68 43.68

7 44.63 2.53 43.64 0.26 41.72 −4.16 9.57 −78.02 43.53

8 42.39 −2.25 42.05 −3.04 41.95 −3.27 7.69 −82.27 43.37

9 45.34 4.55 44.04 1.56 43.56 0.44 75.34 73.71 43.37

10 43.09 0.34 41.62 −3.07 45.37 5.66 42.48 −1.07 42.94

Error rate
range [−2.49%, 4.55%] [−3.71%, 3.20%] [−4.16%, 5.66%] [−82.27%, 184.69%]
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Figure 11. Speed measurement error rate curve for single characteristic of vehicle.

Assuming that the vehicle light characteristic always exists, the vehicle speed mea-
surement algorithm of the proposed binocular stereovision vehicle speed measurement
system with vehicle multi-characteristic detection is designed as Algorithm 1.

Algorithm 1 Vehicle Speed Measurement Algorithm

Input: Binocular Stereovision Video Sequence
Output: Vehicle Speed

1: function Vehicle speed measurement
2: if License plate detected then
3: if Logo detected then
4: v =

vplate+vlogo+vlight
3

5: else Logo undetected
6: v=

vplate+vlight
2

7: end if
8: else License plate undetected
9: if Logo detected then

10: v =
vlogo+vlight

2
11: else Logo undetected
12: v = vlight
13: end if
14: end if
15: return v
16: end function

4. Experiments

In the actual speed measurement test, the video capture frame rate is 30 FPS, the vehi-
cle drives to the camera in a straight line from far and near at a constant speed, and the
speed measurement is performed ten times per second. The speed measurement data by
the professional satellite speed meter P-Gear P-510 is taken as the ground truth for compar-
ison. To verify the algorithm, four speed measurement scenarios are set up, as shown in
Figure 12. Figure 12a,b shows the vehicle speed measurement experiments with license
plate detected, while Figure 12c,d shows the vehicle speed measurement experiments with
license plate undetected.
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Figure 12. Four speed measurement scenarios. (a) Speed measurement scenario where license plate,
logo and light all exist; (b) Speed measurement scenario where license plate and light exist; (c) Speed
measurement scenario where logo and light exist; (d) Speed measurement scenario where only
light exists.

4.1. Vehicle Speed Measurement Experiments with License Plate Detected

First, experiments are carried out in the speed measurement scenario where license
plate, logo, and light all exist, as shown in Figure 12a. Table 5 shows the speed measurement
results of a single experiment in this scenario, in which the vehicle drives in a straight line
at a constant speed of 46 km/h.

Table 5. The speed measurement results in the scenario where license plate, logo, and light all exist.

Number
Plate Logo Light Average

Satellite Speed (km/h)Speed
(km/h)

Error
Rate (%)

Speed
(km/h)

Error
Rate (%)

Speed
(km/h)

Error
Rate (%)

Speed
(km/h)

Error
Rate (%)

1 44.81 −2.48 45.30 −1.41 44.64 −2.85 44.92 −2.25 45.95

2 45.79 −0.74 46.50 0.80 46.57 0.95 46.29 0.34 46.13

3 47.08 1.50 48.27 4.08 45.34 −2.24 46.90 1.11 46.38

4 47.02 1.01 48.88 5.01 45.87 −1.46 47.26 1.52 46.55

5 47.42 1.50 46.71 −0.02 43.93 −5.97 46.02 −1.50 46.72

6 47.21 1.41 44.67 −4.04 47.61 2.28 46.50 −0.12 46.55

7 46.87 0.48 45.64 −2.14 46.17 −1.01 46.23 −0.89 46.64

8 45.22 −3.39 46.36 −0.96 46.54 −0.58 46.04 −1.64 46.81

9 45.26 −3.49 46.25 −1.39 44.77 −4.54 45.43 −3.14 46.9

10 45.16 −3.33 44.82 −4.07 45.23 −3.19 45.07 −3.53 46.72

Error rate
range [−3.49%, 1.50%] [−4.07%, 5.01%] [−5.97%, 2.28%] [−3.53%, 1.52%]

As shown in Table 5, the speed measurement error rate range is [−3.49%, 1.50%] for
the license plate, [−4.07%, 5.01%] for the logo, [−5.97%, 2.28%] for the light, and [−3.53%,
1.52%] for the average of all the three characteristics of vehicle. The average speed measure-
ment of all the three vehicle characteristics can effectively reduce the error rate fluctuation
range of the individual speed measurement by individual vehicle characteristic. Multiple
experiments are also carried out in this scenario, and the speed measurement results are
shown in Table 6. The vehicle speeds set for test 2–8 are 44 km/h, 36 km/h, 32 km/h,
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38 km/h, 40 km/h, 43 km/h, and 30 km/h, respectively. The error rate ranges of test 2–8
are [−3.08%, 2.92%], [−1.36%, 2.62%], [−2.23%, 3.61%], [−1.39%, 2.87%], [−2.04%, 3.97%],
[−2.86%, 4.12%], and [−0.84%, 3.20%], respectively. The maximum absolute error rate
is 4.12%, which meets the 6% error rate limit specified by the China national standard
GB/T21255-2007 [59].

Table 6. The error rates of multiple experiments in the average speed measurement of the three vehicle characteristics
(license plate, logo, and light).

Number Error Rate of
Test 2 (%)

Error Rate of
Test 3 (%)

Error Rate of
Test 4 (%)

Error Rate of
Test 5 (%)

Error Rate of
Test 6 (%)

Error Rate of
Test 7 (%)

Error Rate of
Test 8 (%)

1 −3.08 0.25 −0.01 1.55 −2.04 −1.22 −0.77

2 −1.14 1.93 1.84 2.82 −1.39 0.27 1.90

3 2.92 1.20 2.77 1.80 0.86 2.38 −0.84

4 0.47 −1.28 0.87 1.96 −1.07 4.12 −0.28

5 −1.91 0.84 3.61 −0.88 1.24 0.19 3.20

6 1.02 1.89 2.20 2.06 0.26 −1.39 1.65

7 1.61 −0.88 −2.23 2.87 −1.55 −0.46 1.06

8 −2.77 1.88 0.33 −1.39 −0.51 −2.86 0.78

9 −2.23 −1.36 1.25 0.36 −0.04 2.18 1.07

10 1.65 2.62 −0.24 1.54 3.97 0.98 1.65

Error rate
range [−3.08%, 2.92%] [−1.36%, 2.62%] [−2.23%, 3.61%] [−1.39%, 2.87%] [−2.04%, 3.97%] [−2.86%, 4.12%] [−0.84%, 3.20%]

Next, as shown in Figure 12b, the logo is artificially covered to simulate the speed
measurement scenario where license plate and light exist but logo does not exist, and the
experiments are carried out therein. Table 7 shows the speed measurement results of a
single experiment in this scenario, in which the vehicle drives in a straight line at a constant
speed of 30 km/h.

Table 7. The speed measurement results in the scenario where license plate and light exist.

Number
Plate Light Average

Satellite Speed (km/h)Speed
(km/h)

Error Rate
(%)

Speed
(km/h)

Error Rate
(%)

Speed
(km/h)

Error Rate
(%)

1 28.84 −3.62% 30.92 3.35% 29.88 −0.14% 29.92

2 29.97 2.62% 30.57 4.68% 30.27 3.65% 29.2

3 30.58 1.83% 31.36 4.42% 30.97 3.12% 30.03

4 31.80 5.22% 30.96 2.44% 31.38 3.83% 30.22

5 31.04 1.44% 29.62 −3.20% 30.33 −0.88% 30.6

6 31.12 1.69% 29.72 −2.87% 30.42 −0.59% 30.6

7 30.91 0.41% 29.45 −4.35% 30.18 −1.97% 30.79

8 29.05 −4.76% 32.30 5.90% 30.67 0.57% 30.5

9 29.78 −2.68% 30.35 −0.81% 30.07 −1.74% 30.6

10 32.01 4.51% 31.77 3.74% 31.89 4.12% 30.63

Error rate
range [−4.76%, 5.22%] [−4.35%, 5.90%] [−1.97%, 4.12%]

As shown in Table 7, the speed measurement error rate range is [−4.76%, 5.22%] for
the license plate, [−4.35%, 5.90%] for the light, and [−1.97%, 4.12%] for the average of
the two characteristics of vehicle. The average speed measurement of the two vehicle
characteristics can reduce the error rate fluctuation range of the individual speed mea-
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surement by individual vehicle characteristic. Multiple experiments are also carried out
in this scenario, and the speed measurement results are shown in Table 8. The vehicle
speeds set for test 2–8 are 45 km/h, 36 km/h, 43 km/h, 38 km/h, 46 km/h, 33 km/h,
and 31 km/h, respectively. The error rate ranges of test 2–8 are [−4.16%, 4.50%], [−3.36%,
3.33%], [−2.76%, 4.58%], [−2.08%, 4.24%], [−4.02%, 1.84%], [−2.14%, 3.37%], and [−1.57%,
4.22%], respectively. The maximum absolute error rate is 4.58%, which also meets the 6%
error rate limit specified by the China national standard GB/T21255-2007 [59].

Table 8. The error rates of multiple experiments in the average speed measurement of the two vehicle characteristics (license
plate and light).

Number Error Rate of
Test 2 (%)

Error Rate of
Test 3 (%)

Error Rate of
Test 4 (%)

Error Rate of
Test 5 (%)

Error Rate of
Test 6 (%)

Error Rate of
Test 7 (%)

Error Rate of
Test 8 (%)

1 −3.02 1.53 −2.21 1.96 −2.67 −0.57 0.14

2 −1.55 2.11 0.36 2.67 0.11 −1.95 1.48

3 4.50 1.32 2.22 0.76 −0.37 1.41 −1.57

4 −1.48 −3.36 4.58 3.53 −0.23 −0.57 −0.02

5 −2.24 0.92 −1.31 −2.08 −2.24 1.95 2.58

6 0.42 1.63 −0.23 4.24 1.84 1.03 0.19

7 2.89 0.33 −0.82 2.54 −0.26 −0.87 4.22

8 −2.99 1.54 −2.76 −0.68 −1.99 1.53 1.07

9 −4.16 −0.26 2.49 −1.44 −4.02 −2.14 3.25

10 1.02 3.33 3.00 2.67 −3.26 3.37 1.95

Error rate
range [−4.16%, 4.50%] [−3.36%, 3.33%] [−2.76%, 4.58%] [−2.08%, 4.24%] [−4.02%, 1.84%] [−2.14%, 3.37%] [−1.57%, 4.22%]

4.2. Vehicle Speed Measurement Experiments with License Plate Undetected

Then, as shown in Figure 12c, the license plate is artificially covered to simulate the
speed measurement scenario where logo and light exist but license plate does not exist,
and the experiments are carried out therein. Table 9 shows the speed measurement results
of a single experiment in this scenario, in which the vehicle drives in a straight line at a
constant speed of 45 km/h.

Table 9. The speed measurement results in the scenario where logo and light exist.

Number
Logo Light Average

Satellite Speed (km/h)Result
(km/h)

Error Rate
(%)

Result
(km/h)

Error Rate
(%)

Result
(km/h)

Error Rate
(%)

1 42.96 −3.20 43.59 −1.78 43.28 −2.49 44.38

2 44.61 −0.34 44.47 −0.65 44.54 −0.49 44.76

3 44.73 −0.24 47.01 4.84 45.87 2.30 44.84

4 46.98 4.38 44.75 −0.59 45.87 1.90 45.01

5 44.52 −1.26 43.14 −4.32 43.83 −2.79 45.09

6 46.09 2.22 44.40 −1.54 45.25 0.34 45.09

7 44.68 −0.94 46.44 2.97 45.56 1.02 45.1

8 44.04 −2.32 44.28 −1.80 44.16 −2.06 45.09

9 45.83 1.65 42.96 −4.72 44.40 −1.54 45.09

10 46.44 2.90 45.28 0.33 45.86 1.62 45.13

Error rate
range [−3.20%, 4.38%] [−4.72%, 4.84%] [−2.79%, 2.30%]
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As shown in Table 9, the speed measurement error rate range is [−3.20%, 4.38%] for
the logo, [−4.72%, 4.84%] for the light, and [−2.79%, 2.30%] for the average of the two
characteristics of vehicle. The average speed measurement of the two vehicle characteris-
tics can reduce the error rate fluctuation range of the individual speed measurement by
individual vehicle characteristic. Multiple experiments are also carried out in this scenario,
and the speed measurement results are shown in Table 10. The vehicle speeds set for test
2–8 are 43 km/h, 36 km/h, 32 km/h, 38 km/h, 46 km/h, 33 km/h, and 31 km/h, respec-
tively. The error rate ranges of test 2–8 are [−5.61%, 4.33%], [−2.99%, 3.93%], [−1.39%,
3.45%], [−3.85%, 3.84%], [−3.63%, 1.77%], [−2.50%, 4.99%], and [−1.64%, 4.62%], respec-
tively. The maximum absolute error rate is 5.61%, which also meets the 6% error rate limit
specified by the China national standard GB/T21255-2007 [59].

Table 10. The error rates of multiple experiments in the average speed measurement of the two vehicle characteristics (logo
and light).

Number Error Rate of
Test 2 (%)

Error Rate of
Test 3 (%)

Error Rate of
Test 4 (%)

Error Rate of
Test 5 (%)

Error Rate of
Test 6 (%)

Error Rate of
Test 7 (%)

Error Rate of
Test 8 (%)

1 −1.38 0.51 0.45 1.85 −2.13 −2.50 −0.02

2 −0.03 0.97 3.26 2.36 0.88 0.67 3.57

3 2.27 1.40 1.90 2.48 0.92 2.38 −1.64

4 1.29 −0.91 0.52 0.01 1.77 −1.11 −0.11

5 0.21 2.29 3.45 −1.16 −3.00 2.52 4.31

6 0.01 1.45 1.99 0.93 −0.88 −1.26 4.62

7 4.33 −2.99 −1.39 3.84 −1.58 −0.61 −0.82

8 −5.61 3.93 0.42 −3.85 −0.77 0.22 1.24

9 −0.81 −1.08 1.98 0.76 −2.96 1.02 −0.02

10 0.36 2.03 1.25 −0.11 −3.63 4.99 0.62

Error rate
range [−5.61%, 4.33%] [−2.99%, 3.93%] [−1.39%, 3.45%] [−3.85%, 3.84%] [−3.63%, 1.77%] [−2.50%, 4.99%] [−1.64%, 4.62%]

Finally, as shown in Figure 12d, the license plate and the logo are artificially covered
to simulate the speed measurement scenario where only light exists but license plate and
logo do not exist, and the experiments are carried out therein. Table 11 shows the speed
measurement results of a single experiment in this scenario, in which the vehicle drives in
a straight line at a constant speed of 36 km/h.

Table 11. The speed measurement results in the scenario where only light exists.

Number Light (km/h) Satellite Speed (km/h) Error Rate (%)

1 37.31 36.12 3.30

2 36.24 36.11 0.37

3 36.86 36.19 1.84

4 34.56 36.26 −4.68

5 37.75 36.33 3.90

6 36.67 36.49 0.49

7 35.22 36.19 −2.68

8 38.17 36.25 5.30

9 36.72 36.21 1.41

10 37.26 36.22 2.87

Error rate range [−4.68%, 5.30%]
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As shown in Table 11, the speed measurement error rate range is [−4.68%, 5.30%]
for the light. Multiple experiments are also carried out in this scenario, and the speed
measurement results are shown in Table 12. The vehicle speeds set for test 2–8 are 31 km/h,
32 km/h, 38 km/h, 46 km/h, 33 km/h, 30 km/h, and 45 km/h, respectively. The error rate
ranges of test 2–8 are [−4.35%, 5.90%], [−3.87%, 4.57%], [−4.86%, 4.16%], [−5.97%, 2.28%],
[−2.13%, 5.21%], [−3.90%, 4.67%], and [−4.72%, 4.84%], respectively. The maximum
absolute error rate is 5.97%, which still meets the 6% error rate limit specified by the China
national standard GB/T21255-2007 [59].

Table 12. The error rates of multiple experiments in the speed measurement of the one vehicle characteristic (light).

Number Error Rate of
Test 2 (%)

Error Rate of
Test 3 (%)

Error Rate of
Test 4 (%)

Error Rate of
Test 5 (%)

Error Rate of
Test 6 (%)

Error Rate of
Test 7 (%)

Error Rate of
Test 8 (%)

1 3.35 1.82 2.96 −2.85 −0.03 2.56 −1.78

2 4.68 4.57 1.61 0.95 1.61 4.39 −0.65

3 4.42 −1.23 1.07 −2.24 5.01 −3.90 4.84

4 2.44 0.74 1.21 −1.46 −0.15 0.59 −0.59

5 −3.20 4.41 −3.82 −5.97 5.21 4.18 −4.32

6 −2.87 2.10 4.16 2.28 −1.25 4.67 −1.54

7 −4.35 −0.03 4.16 −1.01 1.67 3.64 2.97

8 5.90 −3.87 −4.86 −0.58 5.03 2.28 −1.80

9 −0.81 4.14 −2.46 −4.54 −2.13 3.25 −4.72

10 3.74 4.33 0.51 −3.19 4.81 0.19 0.33

Error rate
range [−4.35%, 5.90%] [−3.87%, 4.57%] [−4.86%, 4.16%] [−5.97%, 2.28%] [−2.13%, 5.21%] [−3.90%, 4.67%] [−4.72%, 4.84%]

4.3. Contrast Experiments

The speed measurement results of the proposed system are compared with that of
the original system in [14] in the same speed measurement scenario, including the speed
measurement scenario with license plate not covered and the speed measurement scenario
with license plate covered. The former is to verify the speed measurement accuracy of the
proposed system, while the latter is to verify the speed measurement robustness of the
proposed system.

Table 13 shows the speed measurement results of two contrast experiments in the
scenario with license plate not covered, in which the vehicle drives in a straight line at
a constant speed of 32 km/h. Figure 13 is the corresponding speed measurement curve.
As shown in Table 13, in the scenario with license plate not covered, the speed measurement
error rate range of the proposed system is [−2.23%, 3.61%] and the maximum absolute
error rate is 3.61%, while the speed measurement error rate range of the system in [14] is
[−3.91%, 4.53%] and the maximum absolute error rate is 4.53%. Both meet the 6% error rate
limit specified by the China national standard GB/T21255-2007 [59]. However, both the
error rate range and the maximum absolute error rate of the proposed system are smaller
than those of the system in [14]. As can be seen from the speed measurement curve in
Figure 13, the proposed system has a smaller error fluctuation range, which is closer to the
satellite ground truth, and has higher speed measurement accuracy.

Meanwhile, the speed measurement performances are compared between the pro-
posed system and the various existing speed measurement methods. Table 14 shows a
comparison of the speed measurement error between the proposed system and the other
four methods in the scenario with license plate not covered. It can be seen that the root
mean square error (RMSE) of the proposed system is smaller than that of the other four
methods, and the maximum error is also smaller than that of the other four methods.
Therefore, in the scenario with license plate not covered, the speed measurement accuracy
of the proposed method is superior to that of the other four methods, that is, the speed
measurement accuracy of the system is improved.
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Table 13. Speed measurement results of two contrast experiments in the scenario with license plate not covered.

Number
Proposed System (km/h) System in [14] (km/h)

Satellite Speed (km/h)Speed
(km/h)

Error
(km/h)

Error Rate
(%)

Speed
(km/h)

Error
(km/h)

Error Rate
(%)

1 32.39 0.01 −0.03 32.10 −0.30 −0.94 32.4

2 33.00 0.60 1.84 32.07 −0.33 −1.02 32.4

3 33.34 0.90 2.77 33.91 1.47 4.53 32.44

4 32.75 0.28 0.87 32.98 0.51 1.56 32.47

5 33.61 1.17 3.61 33.72 1.28 3.94 32.44

6 33.11 0.71 2.20 33.24 0.84 2.61 32.4

7 31.59 −0.72 −2.23 31.05 −1.26 −3.91 32.31

8 32.42 0.11 0.33 32.36 0.05 0.15 32.31

9 32.74 0.40 1.25 32.27 −0.07 −0.21 32.34

10 32.23 −0.08 −0.24 31.27 −1.04 −3.21 32.31

Error rate
range [−2.23%, 3.61%] [−3.91%, 4.53%]
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Figure 13. Speed measurement curve of two contrast experiments in the scenario with license plate
not covered.

Table 14. Error comparison among different speed measurement methods in the scenario with license
plate not covered.

RMSE (km/h) Max Error (km/h)

Luvizon et al. [8] 1.36 [−4.68, +6.00]

Tang et al. [60] 6.59 NA

VSS-SURF [61] 1.29 [−2.0, +2.0]

System in [14] 0.65 [−1.6, +1.1]

Proposed System 0.43 [−0.72, +1.17]

Table 15 shows the speed measurement results of two contrast experiments in the
scenario with license plate covered, in which the vehicle drives in a straight line at a
constant speed of 33 km/h. As shown in Table 15, in the scenario with license plate covered,
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the speed measurement error rate range of the proposed system is [−2.50%, 4.99%] and
the maximum absolute error rate is 4.99%, which meets the 6% error rate limit specified
by the China national standard GB/T21255-2007 [59], while the system in [14] fails in the
speed measurement. The proposed system can still measure the vehicle speed accurately
in the scenario with license plate covered.

Table 15. Speed measurement results of two contrast experiments in the scenario with license plate covered.

Number
Proposed System (km/h) System in [14] (km/h)

Satellite Speed (km/h)Speed
(km/h)

Error
(km/h)

Error Rate
(%)

Speed
(km/h)

Error
(km/h)

Error Rate
(%)

1 32.96 −0.84 −2.50 Invalid Invalid Invalid 33.8

2 33.79 0.22 0.67 Invalid Invalid Invalid 33.56

3 34.57 0.81 2.38 Invalid Invalid Invalid 33.76

4 33.39 −0.37 −1.11 Invalid Invalid Invalid 33.76

5 34.61 0.85 2.52 Invalid Invalid Invalid 33.76

6 33.24 −0.42 −1.26 Invalid Invalid Invalid 33.66

7 33.36 −0.20 −0.61 Invalid Invalid Invalid 33.56

8 33.48 0.08 0.22 Invalid Invalid Invalid 33.4

9 33.70 0.34 1.02 Invalid Invalid Invalid 33.36

10 34.91 1.66 4.99 Invalid Invalid Invalid 33.25

Error rate
range [−2.50%, 4.99%] NA

Meanwhile, the speed measurement performances are compared between the pro-
posed system and the various existing speed measurement methods. Table 16 shows a
comparison of the speed measurement error between the proposed system and the other
four methods in the scenario with license plate covered. It can be seen that the meth-
ods in [8,14] fail, and the RMSE and maximum error of the proposed system are smaller
than that of the other two methods. Therefore, in the scenario with license plate covered,
the speed measurement robustness of the proposed method is superior to that of the other
two invalid methods, and the speed measurement accuracy of the proposed method is
superior to that of the other two valid methods, that is, the speed measurement robustness
of the system is improved.

Table 16. Error comparison among different speed measurement methods in the scenario with license
plate covered.

RMSE (km/h) Max Error (km/h)

Luvizon et al. [8] Invalid Invalid

Tang et al. [60] 6.59 NA

VSS-SURF [61] 1.29 [−2.0, +2.0]

System in [14] Invalid Invalid

Proposed System 0.48 [−0.84, +1.66]



Entropy 2021, 23, 910 21 of 23

5. Conclusions

In this study, we solved the problem of effectively measuring the vehicle speed
based on binocular stereovision system in case of license plate violation. We proposed
a robust binocular stereovision-based vehicle speed measurement system with vehicle
multi-characteristic detection. We optimized the object detection algorithm for vehicle
multi-characteristic detection, and thus optimized the whole vehicle speed measurement
system. The FPN-based YOLOv4 object detection algorithm was selected for the vehicle
multi-characteristic detection, and the ECA channel attention mechanism was combined to
improve YOLOv4. An improved ECA-YOLOv4 object detection algorithm was proposed
for the vehicle multi-characteristic detection, which was trained and verified by our con-
structed vehicle multi-characteristic dataset. The experimental results showed that the
proposed ECA-YOLOv4 object detection algorithm can efficiently improve the detection
accuracy of multiple characteristics of the vehicle and minimize the network model param-
eter size. Three vehicle characteristics, that is, license plate, logo, and light, were chosen
to design the corresponding speed measurement system for vehicle multi-characteristic
detection. Many experiments were carried out in different speed measurement scenarios.
Experimental results show that the proposed speed measurement system improves the
speed measurement accuracy efficiently and effectively solve the problems in robustness of
the system in [14].
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