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Abstract: In a secret communication system using chaotic synchronization, the communication
information is embedded in a signal that behaves as chaos and is sent to the receiver to retrieve the
information. In a previous study, a chaotic synchronous system was developed by integrating the
wave equation with the van der Pol boundary condition, of which the number of the parameters
are only three, which is not enough for security. In this study, we replace the nonlinear boundary
condition with an artificial neural network, thereby making the transmitted information difficult to
leak. The neural network is divided into two parts; the first half is used as the left boundary condition
of the wave equation and the second half is used as that on the right boundary, thus replacing the
original nonlinear boundary condition. We also show the results for both monochrome and color
images and evaluate the security performance. In particular, it is shown that the encrypted images are
almost identical regardless of the input images. The learning performance of the neural network is
also investigated. The calculated Lyapunov exponent shows that the learned neural network causes
some chaotic vibration effect. The information in the original image is completely invisible when
viewed through the image obtained after being concealed by the proposed system. Some security
tests are also performed. The proposed method is designed in such a way that the transmitted
images are encrypted into almost identical images of waves, thereby preventing the retrieval of
information from the original image. The numerical results show that the encrypted images are
certainly almost identical, which supports the security of the proposed method. Some security tests
are also performed. The proposed method is designed in such a way that the transmitted images
are encrypted into almost identical images of waves, thereby preventing the retrieval of information
from the original image. The numerical results show that the encrypted images are certainly almost
identical, which supports the security of the proposed method.

Keywords: chaotic synchronization; secret communication system; van der Pol boundary condition;
deep learning

1. Introduction

Innovations in information processing technology have led to the rapid development
of technologies for accessing and transmitting information in recent years, which has
greatly improved the convenience of our daily lives. On the other hand, a wide variety of
information is exchanged in public through the Internet and other media, so encryption
technology has become increasingly important to protect this information.

In this paper, we consider confidential communication methods using chaos synchro-
nization as one of the encryption techniques. Applying the diversity of chaotic series,
pseudo-random series can be generated with statistical properties close to those of ideal
random series, which can hide the original information. The problem of designing confi-
dential communication systems using chaotic synchronization has been studied since the
1990s. The core idea of the method is to embed communication information into a signal
that behaves chaotically. The method accomplishes the steganography and the recovery of
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communication information [1–5]. For example, by applying the Hénon mapping, a chaotic
synchronous control method for discrete-time nonlinear systems can be designed with
significant results [4]. A Hénon map (Hénon–Pomeau attractor/map) is a discrete-time
dynamical system that can generate chaotic phenomena, with an iterative expression of:{

xn+1 = 1− ax2
n + yn

yn+1 = bxn,
(1)

where a, b are parameter values. When they are set to appropriate values, the system
will exhibit chaotic behaviors. In [6], the color image encryption algorithms applying
scrambling-diffusion are improved by introducing the transforming-scrambling-diffusing
model so that the methods have better security and cryptography characteristics. In [7], a
SystemC implementation of a chaos-based crypto-processor for the AES algorithm is pre-
sented, where the properties of chaotic systems are employed to cope with the parameters
of the AES algorithm. An image encryption algorithm is proposed in [8], where the Arnold
chaos sequence and the modified AES algorithm are combined. In [9], a method to encrypt
multiple images is proposed by a combination of a fast chaotic encryption algorithm and
the AES algorithm. A family of complex variable chaotic systems are used to develop an
image encryption algorithm in [10]. In [11], hyper-chaos systems and DNA sequences
are combined for encrypting images, where the pseudo-random sequence generated by a
hyper-chaos system is transformed into a DNA sequence to diffuse the image blocks.

However, in most of the above methods, the information on the chaotic systems must
be shared for encryption and decryption to generate the chaotic sequences. In other words,
the parameters of the system and the initial conditions for defining the state of the system
essentially played the role of the keys. Although the algorithms are quite secure under the
assumption that the information on the chaotic system can be shared safely, there remains a
risk of information leakage if this is not the case. Several papers have proposed methods to
address this problem by using chaotic synchronization [3,12–17]. The chaotic systems have
positive Lyapunov exponents, which means that small differences in the initial conditions
will grow exponentially. Therefore, the phenomenon of synchronization of such systems
is surprising; however, it is known that such synchronization can actually occur [18]
and much attention has been focused on this phenomenon. If the chaotic systems of the
receiver and the sender can be synchronized by introducing appropriate control signals,
the sharing of the parameters and the initial conditions becomes unnecessary. In particular,
in [3], chaos-based synchronized dynamic keys are designed and an improved chaos-based
advanced encryption standard (AES) algorithm is developed so that a powerful method
is proposed that solves the problem of using a static key for AES, while retaining the
advantages of the chaos synchronization-based method.

We employ a different approach to these methods, in which, while the problem of
having to share the initial conditions is addressed by the chaos synchronization technique,
that of having to share the parameters of the systems is overcome by introducing extremely
complex parameterization of the chaotic systems, that is, neural networks. More precisely,
we use certain chaotic phenomena in distributed systems with nonlinear boundary con-
ditions represented by a certain neural network. The neural network is pre-trained so
that it defines a chaotic function. As far as the networks are chaotic, neural networks
with arbitrary architectures can be used. Therefore, the number of the neural networks,
and hence the size of the key space, can be arbitrarily large by enlarging the network
architecture.

The construction of a confidential communication system using chaotic phenomena in
distributed systems has also been studied before but without the neural-network boundary
condition. In this paper, we focus on the system proposed in [19], in which a certain initial
boundary value problem of the linear wave equation is employed on a one-dimensional
bounded interval, with a linear homogeneous boundary condition at the left end and
the nonlinear boundary condition, which has a cubic nonlinearity of the van der Pol



Entropy 2021, 23, 904 3 of 33

type [20,21]. The interaction of these linear and nonlinear boundary conditions leads to
chaos in the Riemann invariants (u, v) of the wave equation when the parameters satisfy
certain requirements. By constructing an observer by applying the method of characteristics,
the appropriate range of the feedback gain is obtained so that the convergence of the
dynamics that describes the synchronization error between two mappings is ensured.
Through the numerical computation, it is also confirmed that the one-dimensional wave
equation with the van der Pol type boundary conditions exhibits a spatio-temporal chaotic
behavior in its dynamics [22]. In [19], this chaotic vibration of the wave equation under
the van der Pol boundary condition is specifically used to construct the synchronous
system. There are two features of this approach—firstly, the synchronization system is easy
to construct and secondly, it transmits vector-valued signals in a secure communication
system [19].

On the other hand, many information security techniques are based on artificial in-
telligence. As the problem of image recognition is a specialty of neural networks, neural
networks are often used in information security technologies to solve problems of image
recognition and image analysis. Biometric technologies, such as face recognition systems
and fingerprint authentication, are examples of this [23]. Meanwhile, in terms of security
performance, deep learning also does not have the complete capability to guarantee abso-
lute security and privacy. There are many types of attacks that are made on deep learning,
such as Causative Attacks, Exploratory Attacks and Indiscriminate Attacks [24]. With these
attacks, the model information or the knowledge of the training data can be extracted;
these are known as model inversion, model extraction and membership inference, where
the attackers steal the training data and produce the expected results, or provide incorrect
training data. This means that the attackers may have the ability to change the inputs to
the training data, which becomes the reason for parameter changes in the learning model,
leading to a significant decrease in the performance of the subsequent classification tasks.
To address these leakage risks, privacy-preserving learning, such as Defensive Distillation,
has been developed for defending against poisoning attacks; however, these approaches
cannot eliminate all security risks [24] at this time.

In this paper, we combine chaos theory and deep learning to construct a model that
makes it difficult to steal information and that has a stronger secrecy effect, and apply it to
a confidential communication system for color images.

This research aims to provide an information communication system with high secrecy
performance, which uses the wave equation with chaotic behaviors and also deep neural
networks. More precisely, the proposed approach is to apply a synchronous pair of chaotic
distribution systems to encrypt the transmitted object, while applying a deep neural
network as a black box to encrypt and decrypt color image information. The following is a
brief description of the proposed approach.

Firstly, the proposed approach employs the chaotic wave equation, which is an evolu-
tional partial differential equation and hence has two axes (space and time). This feature
of the equation enables the method to transmit images. Secondly, the proposed secret
communication system consists of two parts, the sender and the receiver, as shown in
Figure 1. First, the wave equation on the sender side is under the van der Pol boundary
conditions that can cause chaotic phenomena, and a deep neural network is trained so
that it has the same chaotic effect. Then, the color images are encrypted by applying a
certain nonlinear transformation together with the solutions to the wave equations. The
nonlinear transformation is designed so that the inverse of it is computable if the solutions
to the wave equations, which are essentially the secret keys, are known. Second, a chaotic
synchronization system is established at the receiver side to obtain the decrypted recovered
images by inverting the function.

The innovation of this study is to use a deep neural network that approximates the
boundary conditions yielding the chaotic vibrations, which addresses the problem that the
previous system is easier to be cracked and makes it easier for the information to be stolen
due to too few parameters of the van der Pol boundary condition when the original chaotic
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synchronization system is used alone. In fact, in the wave equation with the van der Pol
boundary conditions, the three parameters required are a, β and η (see Section 2 for the
specific expressions). Suppose that a hacker now steals the specific value of β, and the other
two (a and η) still exist in a hidden state. Suppose also that that person makes an effort to
guess the values of a and η and tries to break the encrypted information. In Figure 2, we can
see that the possibility exists that the whole information of the portrait can be seen to some
extent. Although it was mentioned in the above that deep learning techniques are also
under threat from security attacks, a stealer will face greater implementation difficulties
than a brute force attack when parameters are partially compromised. More notably, the
way the proposed approach corresponds the neural network structure with the boundary
conditions at the left end and the right end will also increase the difficulty for the stealer
to crack.

Figure 1. A diagrammatic representation of the research ideas and methods used in this study. It
succinctly shows the overall structure of the confidential communication system as well as the design
principles, in which the input portrait was created manually by the author and is only used here as
an example to assist in illustration.

Figure 2. The modulated secrecy image and the restored image after the leakage of some of the
parameters of the confidential communication system. The figure on the left is the confidential
information after it has been encrypted, and we can see that we have no way of knowing the
information about the original image, so we can say that it was a successful secret communication.
The figure on the right is the restored image after the leakage of some of the parameters of the
confidential communication system; we can almost see that it is a picture of a woman wearing a hat,
that is to say, the hacker can restore the transmitted information to some extent after breaking some
of the parameters.

This paper is organized as follows. First, in Section 2, the proposed method for
grayscale images is described in detail along with some numerical examples. In Section 3,
the method is applied to color images. In Section 4, the encryption effects of the proposed
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method and the AES are tested, respectively, and the results are analyzed. Concluding
remarks are shown in Section 5.

2. Grayscale Images as Transmission Objects

Before talking about the system for color images, we will explain the distributed
system with chaotic vibrations and synchronization systems using grayscale images as
transmitted objects, and numerically test it to obtain the encoded images and the restored
images, and compare them with the original images, thereby investigating the feasibility of
the proposed approach. Since grayscale images do not involve RGB, the system becomes
simpler and hence it is somewhat easier to understand than with color images.

2.1. Wave Equation with the van der Pol Boundary Conditions

The system we consider here is a linear PDE but with a nonlinear boundary condition,
which is from the van der Pol equation without forcing,{

ẍ + (−αẋ + βẋ3) + ω2
0x = 0, α, β, ω2 > 0

x(0) = x0, ẋ(0) = x1, x0, x1 ∈ R,
(2)

where ω0 is the fixed frequency of the corresponding linear harmonic oscillator. The energy
of this system is given by

E(t) =
1
2
[ẋ(t)2 + ω2

0x(t)2], (3)

and the time rate of change of energy is

d
dt

E(t) = ẋ(t)[ẍ(t) + ω2
0x(t)]

= αẋ(t)2 − βẋ4(t), (4)

so we get 
≥ 0, if |ẋ| ≤

(
α

β

) 1
2

≤ 0, if |ẋ| >
(

α

β

) 1
2
,

(5)

which shows the self-regulation effect, as the energy will increase when |ẋ| is small, and
the energy will decrease when |ẋ| is large. Therefore, unless the initial condition satisfies
x0 = x1 = 0 in (2), causing E(t) = 0 for all t > 0, we can know that E(t) will rise and fall
between a certain interval of the (B1, B2). The bounds B1 and B2 can be determined by the
parameters α and β.

Let us describe a wave equation below as

1
c2 ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0, (6)

which defines the linear PDE that describes a vibrating string on the unit interval (0, 1),
where c > 0 denotes the speed of wave propagation. Because the speed of wave c is not an
essential parameter, we set c = 1. Thus, in this paper, we consider

ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0. (7)

At the left-end x = 0, we choose the following boundary condition:

yt(0, t) = −ηyx(0, t), t > 0, η > 0, η 6= 1. (8)
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At the right-end x = 1, we assume a nonlinear boundary condition,

yx(1, t) = αyt(1, t)− βy3
t (1, t), t > 0, α, β > 0. (9)

The initial conditions are:

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 ≤ x ≤ 1 (10)

for two given smooth functions y0 and y1.
As a summary, the wave equation with the van der Pol boundary condition is given by

ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0
yx(1, t) = αyt(1, t)− βy3

t (1, t), t > 0
yt(0, t) = −ηyx(0, t), t > 0
y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 ≤ x ≤ 1,

(11)

where we set α, β, η > 0 and η 6= 1. We use the method of characteristics to rewrite (11).
Let u and v be the Riemann invariants [25] of (11){

u(x, t) = 1
2{yx(x, t) + yt(x, t)}

v(x, t) = 1
2{yx(x, t)− yt(x, t)},

(12)

with initial conditions{
u(x, 0) = u0(x) = 1

2 [y
′
0(x) + y1(x)]

v(x, 0) = v0(x) = 1
2 [y
′
0(x)− y1(x)]

0 ≤ x ≤ 1. (13)

Then, the substitution of u and v into the boundary condition (9) gives

u(1, t) = Fα,β(v(1, t)), t > 0. (14)

Besides, since yx(1, t) = u(1, t) + v(1, t), yt(1, t) = u(1, t)− v(1, t) at the right end
x = 1, the relationship (14) becomes

β(u− v)3 + (1− α)(u− v) + 2v = 0. (15)

Thus, let us summarize what the 1st order hyperbolic equation of (13) looks like after
using Riemann invariants u and v.

Σ0 :



ut(x, t) = ux(x, t), x ∈ (0, 1), t > 0
vt(x, t) = −vx(x, t), x ∈ (0, 1), t > 0
u(1, t) = Fα,β(v(1, t)), t > 0
v(0, t) = qu(0, t), t > 0
u(x, 0) = 1

2 [y
′
0(x) + y1(x)] = u0(x), x ∈ [0, 1]

v(x, 0) = 1
2 [y
′
0(x)− y1(x)] = v0(x), x ∈ [0, 1],

(16)

where q = 1+η
1−η by (12), from which follows

v(0, t) = q(u(0, t)) =
1 + η

1− η
u(0, t), t > 0. (17)

(15) and (17) represent the boundary conditions of the two boundaries at which the waves
are reflected, respectively, as shown in Figure 3. When the wave reaches the right end
x = 1, it is reflected to the left via (15) changing direction; when it reaches the left end, it is
transmitted to the right via (17).
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Figure 3. Reflection of the characteristic lines. The waves are reflected at x = 0 and x = 1, where the
two functions v = qu and u = Fα,β(v) are applied.

For (15), with 0 < α ≤ 1, there exists a unique u ∈ R corresponding to each v ∈ R [20].
On the other hand, when α > 1, for each v ∈ R, in general there exist two or three distinct
u ∈ R, satisfying (15). Thus, in the latter case, u = Fα,β(v) is not well-defined, and hence
the original PDE system (11) is not unique.

For parameters, for example, α = 0.5, β = 1 and η = 0.625 are used, but special atten-
tion should be paid to the setting of η, which has theoretically been shown to exponentially
increase the total variation of the system if it is chosen as an appropriate value. Since total
variation is one of the indicators of the severity of the function change, its increase means
that the system behaves chaotically.

So far, we have obtained a system of PDEs, which is a wave equation that can cause
chaotic vibrations. This system allows us to chaoticize the transmitted image, and in order
to restore the chaotic image in a later step, we need to construct a synchronization system.
This system is designed so that the system exhibits exactly the same chaotic vibrations of
the original system. In the next section, we will construct such a synchronization system.

2.2. Synchronization System

The construction of a synchronization system requires a portion of the original sys-
tem’s information. Hence, the sender sends two signals to the receiver: one is a secret,
coded image, and the other is the signal needed for the synchronized system to restore the
original system’s state. For the system ∑0 (16), consider the following system ∑1:

Σ1 :



ût(x, t) = ûx(x, t), x ∈ (0, 1), t > 0
v̂t(x, t) = −v̂x(x, t), x ∈ (0, 1), t > 0
û(1, t) = Fα,β(v(1, t)), t > 0
v̂(0, t) = qu(0, t), t > 0
û(x, 0) = û0(x), x ∈ [0, 1]
v̂(x, 0) = v̂0(x), x ∈ [0, 1],

(18)

with two signals, u(0, t), v(1, t), as inputs. The relationship between the two systems is
shown in Figure 4. We set variables ũ = u − û, ṽ = v − v̂ to obtain the error system
as follows: 

ũt(x, t) = ũx(x, t), x ∈ (0, 1), t > 0
ṽt(x, t) = −ṽx(x, t), x ∈ (0, 1), t > 0
ũ(1, t) = 0, t > 0
ṽ(0, t) = 0, t > 0
ũ(x, 0) = ũ0(x), x ∈ [0, 1]
ṽ(x, 0) = ṽ0(x), x ∈ [0, 1].

(19)
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Solving the system using the method of characteristics, we can see that, at any initial
value ũ0, ṽ0, the solution ũ(·, t) and ṽ(·, t) is completely zero at moment t = 2. In other
words, at moment t = 0, there is no error between system (18) and system (16) and they
reach a synchronized state.

Figure 4. Synchronization system ∑1.

In the previous study [19], it was assumed that the parameters of the system and
information about the boundary conditions necessary to define (18) are shared in advance.
The sender then sends the modulated information using the states of the chaotic system
for secret communication, while the receiver sends the values u(0, t) and v(1, t) at the
boundary required for synchronization at the sender to the synchronization system to
evolve and demodulate the information by using the system state used during modulation.

2.3. Proposed Secret Communication System

In this study, we use neural networks to improve the security of the method by
black-boxing the boundary conditions. Since the experimental objects in this section are
grayscale images, the images can be transmitted as a single signal through the secure
communication system. In the paper [19], in particular, the modulation and demodulation
of the (M + 1) × (L + 1) pixel image data are studied by extending the method of the
paper [4] to the distribution system. For this purpose, system (16) and synchronization
system (18) must be discretized in both spatial and temporal directions.

Divide the interval [0, 1] equally into L parts and set the division points
xi = i∆x(i = 0, 1, . . . , L). Here, the interval is given by ∆x = 1

L . The time step size is
set to ∆t and we write tk = k∆t(k = 0, 1, . . . ). For the system (16) u(x, t), v(x, t) de-
note the states, ui(k), vi(k) denote the approximation values of u(xi, tk), v(xi, tk) on the
grid points (xi, tk). For simplicity, we introduce the (L + 1) dimension vectors
u(k) = [u0(k), u1(k), . . . , uL(k)]T , v(k) = [v0(k), v1(k), . . . , vL(k)]T . Denote ûi(k) = û(xi, tk),
v̂i = v̂(xi, tk) for system (18) as well, and denote the (L+ 1) dimension vector û(k) = [û0(k),
û1(k), . . . , ûL(k)]T , v̂(k) = [v̂0(k), v̂1(k), . . . , v̂L(k)]T . Thus, for example, in Figure 4, the sig-
nals u(0, t), v(1, t) sent from ∑0 to ∑1 for synchronization are discretized to u0(k), vL(k),
respectively. The time evolution of the vector u(k), v(k) is shown in Figure 5. We approxi-
mate the ∑0 and ∑1 by the upwind difference using the same step sizes in the spatial and
temporal directions so that the CFL number is 1. As a result, we obtain an algorithm where
ui(k) is transported to ui−1(k + 1) and vi−1(k) is to vi(k + 1). More precisely, the system
after discretization is

ui(k+1)−ui(k)
∆t =

ui+1(k)−ui(k)
∆x , k > 0, i ∈ {1, 2, . . . , L− 1}

vi(k+1)−vi(k)
∆t = − vi(k)−vi−1(k)

∆x , k > 0, i ∈ {1, 2, . . . , L− 1}
uL(k) = Fα,β(vL(k)), k > 0,
v0(k) = qu0(k), k > 0.

(20)

Here, we set ∆t = ∆x = 1
L as the time and space step sizes, which gives

ui(k + 1) = ui+1(k), k > 0, i ∈ {1, 2, . . . , L− 1}
vi(k + 1) = vi−1(k), k > 0, i ∈ {1, 2, . . . , L− 1}. (21)
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∑1 is discretized in the same manner. Henceforth, the systems ∑i(i = 0, 1) after
discretization are denoted by ∑i(i = 0, 1).

Figure 5. Time evolution of u(k) and v(k) in the discretized systems with the boundary conditions
given by the neural networks.

As we mentioned earlier, due to the risk of theft due to the small number of parameters
of the wave Equation (16) with the van der Pol boundary condition, in this study we
propose a way to enhance security by approximating the van der Pol boundary condition
with a neural network instead of the original boundary condition. The first half of this
section describes how the u, v evolve over time, and the two systems ∑0, ∑1 are discretized.
As shown in Figure 5, in the previous method, the waves at the boundaries are updated
by v0(k + 1) = qu0(k) and uL(k + 1) = Fα,β(vL(k)), respectively. In the proposed method,
which uses a neural network instead of these boundary conditions, we need two functions,
F1 and F0, in order to simulate the boundary conditions.

One of the properties about neural networks is that they can approximate any contin-
uous functions defined on compact sets. That is, neural networks can be a complicated,
wiggly function, f (x), as in Figure 6.

Figure 6. A complex continuous function f (x).

For every possible input x, no matter what function it is, there is a neural network
whose output value is close to f (x). This property holds for functions with multiple in-
puts f = f (x1, ..., xm) and multiple outputs. This property of neural networks is called
the universal approximation property. Moreover, this universality theorem holds even
for neural networks that have only one hidden layer between the input and output lay-
ers. In other words, the expressive power is extremely high even for extremely simple
network structures.
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The neural network applied here is composed of seven layers of perceptrons, as shown
in Figure 7, and is approximated to qFα,β by training. Since in this section we suppose
that the images are of grayscale, both the input and output layers of the neural network
have a single neuron. In this proposed approach, the fourth layer is also designed as a
single neuron. The whole neural network is divided into two parts; the first part is the
first to fourth layers, which is assumed to represent a function F0, and the second part
is the fifth to seventh layers, which is assumed to represent a function F1. As shown in
Figure 5, using the learned neural network, the left boundary condition is replaced, from
v0(k + 1) = qu0(k) to the front half of the neural network F0, while the right boundary
condition is replaced, from uL(k + 1) = Fα,β(vL(k)) to the back half of the neural network
F1. In this way, the boundary conditions are black-boxed and the information becomes
difficult to leak.

Figure 7. Relationship between the structure of neural networks and boundary conditions.

After approximating the van der Pol boundary condition, we tested the resulting new
neural network by computing its Lyapunov exponent. In fact, when dealing with actual
chaotic phenomena, instead of providing a clear mathematical definition of chaos, whether
the system is chaotic or not is checked by a practical condition, which is determined by
a certain criterion that is numerically computable. A dynamical system F is chaotic if it
satisfies at least one of the following conditions:

(1) F has a sensitive dependence on initial conditions within the defined region.
(2) F has positive Lyapunov exponents at all points in the definite domain excluding the

final immobile point [26,27].

In this study, we use the method of calculating the Lyapunov exponents, that is,
condition (2). Lyapunov exponents are used to quantify the separation rate between
infinitely close trajectories in a dynamical system. Specifically, under the assumption that
linearization is feasible, the separation rate of the two trajectories with an initial interval of
σZ0 is

|σZ(t)| ≈ eλt|σZ0|, (22)

where λ is the Lyapunov exponents. In this section, where the images are assumed to
be grayscale, since no color issues are involved, it can be viewed as a one-dimensional
discrete-time system, in which case the Lyapunov exponent λ for a one-dimensional map
xn+1 = L(xn) is defined by

λ = lim
N→∞

1
N

N−1

∑
i=1

log |L′(xi)|, (23)

where x ∈ R is the state variable of the system and n ∈ N is the discrete time. If the value
of the Lyapunov exponent computed in (23) is positive, then the system F is considered
to be chaotic. Therefore, we use this method to judge whether the trained neural network
successfully approximates the chaotic functions.
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As shown in Figure 8, the specific components of the whole secret communication
system are the system ∑0, synchronization system ∑1, modulation M and demodulation
D, where modulation and demodulation, respectively, are represented by the following
equations:

Figure 8. Secure communication system.

Modulation

M :

{
w(k + 1) = G(u(k), v(k), w(k), s1(k + 1))
c12 = w(k),

(24)

Demodulation

D : t2(k + 1) = G−1(û(k− 1), v̂(k− 1), c12(k− 1), c12(k)), (25)

where G is the map G : RL+1 ×RL+1 ×RL+1 ×RL+1 → RL+1 and, for an arbitrarily fixed
a, b, c ∈ RL+1, G(a, b, c, ·) is assumed to have an inverse map G−1(a, b, c, ·). In addition, the
following conditions are also assumed to be satisfied:
(Condition 1:) For any positive number ε, there exists δ such that if

‖ξ1 − ξ2‖RL+1 < δ (ξ1, ξ2 ∈ RL+1),

then the following inequality holds:

sup
a,b,c∈RL+1

‖G−1(a, b, c, ξ1)− G−1(a, b, c, ξ2)‖RL+1 < ε.

Using the synchronization system ∑1, after the k = L step, û and v̂ are synchronized
to u and v, respectively, so that after the same time, under Condition 1, the restored signal
t2(k + 1) is synchronized to the transmitted signal s1(k). If the original image is encrypted
to (M + 1) × (L + 1) pixel image data and is sent from subsystem S1 to subsystem S2.
After the running time needed for the synchronization has passed, the original image data
are sliced to s1(k) ∈ RL+1 (one row at a time), hence the transmission operation should
be performed M times. At the reception side, the image of (M + 1)× (L + 1) pixels is
obtained by storing the restored data t2(k) ∈ RL+1 in sequence.

Remark 1. Although the chaotic neural network in the above has the seven layers and is constructed
by learning the van der Pol equation, in the proposed method, any neural network can be used as
long as it is chaotic. The information required for decryption is the parameters of the neural network
representing the boundary conditions. More specifically, the parameters are the matrices and the
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bias vectors that represent the linear transformations performed in each layer. If the numbers of
input and output variables in a certain layer are nin and nout, then the number of parameters in
this layer is nin × nout + nout. The sum of this number for each layer is the total number of the
parameters, which represents the size of the key space. Since the number of the layers and that of the
parameters can be changed freely, the size of the key space can be arbitrarily large. However, the
larger the neural network becomes, the more difficult it is to be trained. Therefore, there is a trade-off
between the security performance and the computational complexity of training.

Remark 2. The computational cost of the proposed method is as follows. First, the neural network
needs to be trained in advance. The time required for this is difficult to estimate because it depends
on the quality of the actual data; however, for example, in the following numerical experiments, the
average computation time was 1 min and 48 s for the five trials when using Google Colaboratory
and Tesla P100. In addition, this pre-training has to be performed once before encryption and
decryption. The time required for encryption is the same as the time required to compute a solution
of the wave equation. The solution of the wave equation at each position and time can be obtained
in a constant time. Hence, the computational cost is proportional to the image size. However, in
reality, the computation is much more efficient than this estimation because the computation of
the solution to the wave equation can be parallelized in the spatial direction, and the number of
processors, especially in GPUs, typically exceeds the numbers of vertical and horizontal pixels in
the image. Therefore, actually, encryption can be expected to be possible within a computation time
that is several times shorter for the vertical and horizontal sizes of the image. The same is true
for decryption.

2.4. Numerical Experiments

To evaluate the proposed method, numerical experiments were conducted using the
neural networks, the training data and the parameters with the following structure.

For the training data in the experiment, the input x was chosen at equal intervals from
the interval (−2, 2), and Equation (15),

β(u− v)3 + (1− α)(u− v) + 2v = 0,

was solved using the Newton method, with the target y of the neural network being the
solution to the equation. The number of data Nd was set to 20,000. The scatter plot of x
and the solutions y for the equation are shown in Figure 9. To reduce the bias of the input
data N = {x1, x2, ..., xNd} for training, we split the dataset randomly using the train test
split function of the Python library Scikit-learn to select the training data and the test data.
Here, we use 20% of all data as a test set, so the number of data in the training set is 16,000
and the number of test sets is 4000. The neural network was implemented using PyTorch,
and it was executed on a Tesla K80 on Google Colaboratory.

Figure 9. Scatter plot of the relationship between x and y.
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The neural network used in this study was a seven layer perceptron with batch
normalization layers (the reasons why the batch normalization layers are used are explained
later with data in Tables 1 and 2).

Each layer has a weight W and a bias b and performs a nonlinear calculation as follows:

ŷ = g(Wx + b). (26)

As the training depth of the neural network increases, we apply a batch normalization
(BN) to each layer of the neural network as shown in Figure 10. This is to keep the overall
distribution of each layer from biasing towards the upper and lower limits of the interval
of the nonlinear function, which leads to the disappearance of the gradient. BN forces
the distribution of the input values to follow a standard normal distribution, making the
overall learning process more stable. Therefore, each mini-batch for learning should be
normalized. For each mini-batch B = {x1, x2, . . . , xm}, consisting of m data, the average µB
and variance σ2

B of the mini-batch are:

µB =
1

Nd

Nd

∑
i=1

xi, (27)

σ2
B =

1
Nd

Nd

∑
i=1

(xi − µB)
2. (28)

Figure 10. Structure of neural networks in numerical experiments.

Batch normalization transforms each data xi in the mini-batch as follows:

x̂i =
xi − µB√

σ2
B + ε

, (29)

yi = γx̂i + β, (30)

where γ and β are the parameters of the model so that the output of each layer is normalized.
In nonlinear calculations (24), g(·) is the activation function. Since we assumed that the
images are grayscale, the first and fourth layers are set as neural network layers with only
one node. In these layers, the hyperbolic function (tanh),

g(r) = tanh(r) =
er − e−r

er + e−r , (31)

is the activation function so that the output converts the input value to a number in the
range of −1.0 to 1.0. For layers 2, 3, 5 and 6, 50 nodes were set up and computed using the
rectified linear unit (ReLU)
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g(r) =

{
0, f or r < 0
r, f or r ≥ 0.

(32)

Training error, which indicates learning accuracy, and test error, which determines
generalization performance, were evaluated using the mean square error (MSE),

J =
1
N

N

∑
i=1

(yi − ŷi)
2, (33)

where ŷi is the output value and yi is the target value. We used Adam as the optimization
algorithm for parameter updates in training [28]. The learning rate was set to 0.001 and the
number of learning epochs was set to 1000. The training and testing errors, for example,
are shown in Figures 11 and 12. Since the training results depend on the random numbers
used for parameter initialization, we ran the training ten times while changing the seed
of the random numbers, and evaluated the performance of the neural network using the
mean and standard deviation of the results. Here, we performed two sets of experiments,
one in which each layer of the neural network was nonlinearly transformed using the
activation function only, and the other in which batch normalization (refer to BN) layers
were added to each layer while performing the nonlinear transformation. The performance
results of these two groups are shown in Tables 1 and 2, respectively.

Table 1. Mean ± standard deviation of results performed 10 times without BN.

Epoch Data Set Mean ± Standard

1000 times
train set 0.000005 ± 0.000001

test set 0.000005 ± 0.000001

Lyapunov exponent −0.067282 ± 0.102745

Table 2. Mean ± standard deviation of results performed 10 times with BN.

Epoch Data Set Mean ± Standard

1000 times
train set 0.000002 ± 0.000001

test set 0.000275 ± 0.000394

Lyapunov exponent 0.024377 ± 0.148675

Figure 11. Examples of training error (blue line) and testing error (red line) of the neural network
during the learning process. The figure on the left is the result of error training without using BN; the
figure on the right is the result of error training using BN.
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Figure 12. Examples of training error drop and test error drop.The 1st figure is training error without
BN; the 2nd figure is testing error without BN; the 3rd figure is training error with BN; the 4th figure
is testing error with BN.

As can be seen from Figure 11, neither the addition of the batch normalization layers
nor the absence of the batch normalization layer affects the speed of the descent, and
from the given illustration alone, it can also be said that the descent of the experimental
group without the batch normalization layers is slightly better. Then, in terms of the values
used for evaluation, the training and testing errors of the experimental group without
batch normalization layers were 0.000005 ± 0.000001 and 0.000005 ± 0.000001, while the
group with batch normalization layers had an error drop of 0.000002 ± 0.000001 and
0.000275± 0.000394, so we can say that the neural network with batch normalization layers
was slightly better than the one without batch normalization layers. This is one reason why
we used batch normalization.

Another important reason is the Lyapunov exponent. Introduced at the beginning of
this section, the Lyapunov exponent is a numerical value used to judge whether a system
is chaotic. Therefore, we also computed the corresponding Lyapunov exponent for the
ten experiments, also taking the mean and standard deviation values for the numerical
evaluation. From the results presented in Table 2, the average value of the Lyapunov
exponent for the neural network without batch normalization layers is −0.067282, which is
less than 0, indicating that this set of trained neural nets does not approximate the chaotic
vibrations well. However, the average value of the Lyapunov exponent for the neural
network containing the batch normalization layers is 0.024377, which is greater than 0.
From this point of view, it can be said that the neural network successfully approximates the
boundary conditions, thereby equipping the chaotic behaviors, and hence being suitable
for the secret communication system.

We applied the proposed secret communication system to the image shown in Figure 13
with size 512 × 512 pixels, i.e., M = 512, L = 512.
Modulation

w(k + 1) = C(w(k)){0.03m|u(k)|V + 0.03m|v(k)|V}+ {0.5C(w(k)) + 0.1I}
× {0.08m|u(k)|V + 0.08m|v(k)|V + s1(k + 1)},
c12(k) = w(k). (34)
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Figure 13. Original grayscale image.

The detailed formulas for modulation and demodulation are shown below, respectively.
Demodulation

t2(k + 1) =
1
m
{0.5C(c12(k− 1)) + 0.1I}−1

× {c12(k)− C(c12(k− 1))× {0.03m|û(k− 1)|V + 0.03m|v̂(k− 1)|V}]
− 0.08|û(k− 1)|V − 0.08|v̂(k− 1)|V , (35)

where w(k) ∈ RL+1, s1(k) ∈ RL+1, I is the (L + 1) order unit matrix, and m ∈ R is the
parameter. We also denote C( f ) = diag(| f0(1− f0)|, . . . , | fL(1− fL)|) for a vector f =
[ f0, f1, . . . , fL]

T , and | f |V = [| f0|, | f1|, . . . , | fL|]T . s1 represents the information to be sent.
c12 = w is the information sent and received between the systems during communication,
and t2 is the information retrieved by demodulation and corresponds to s1 if the two
systems are synchronized.

Figure 14 shows the results of numerical experiments using a system with boundary
conditions set by the learned neural network, with the parameters m = 6 in the modulation
and demodulation sections. The transmitted image is shown in Figure 13. Figure 14 (left)
shows the modulated image after passing through the secret communication system, and
Figure 14 (right) shows the image recovered by the synchronous system. In addition,
m = 6 is a parameter value obtained after numerous attempts, and the size of m affects the
outcome of the entire modulation and demodulation operations (see Figure 15).

Figure 14. Encrypted grayscale images and restored images in the proposed method of this study.
The figure on the left is the encrypted grayscale image; the figure on the right is the restored image.
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As shown in Figure 13, the original image is almost unrecognizable from the encrypted
image. Figure 14 (right) shows the reconstructed image after the demodulation section.
There is little distinction between the transmitted image and the reconstructed image.

Figure 15. The effect of changing the m value in the modulation and demodulation portions on the
image encryption effect. Six different values of m (m = 0.8, 1.25, 2.5, 3.0, 4.5, 6.0) were tried, and the
corresponding encryption effects were observed for each, where the larger the value of m, the better
the secrecy performance of the image, within the computable range.
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3. Numerical Experiments with Color Images

In the previous section, we explained the wave equations with van der Pol boundary
conditions and the corresponding synchronization systems. We then improved the security
of the confidential communication system by approximating the chaotic phenomena with
a neural network; however, relatively simple grayscale images are used as input objects.
Next, we will replace the input images with colored ones and conduct experiments to see if
the proposed approach is still applicable to those images. The biggest difference between a
color image and a grayscle image is that each pixel of a color image is usually represented
by three components, red (R), green (G) and blue (B), of which intensities are represented
by numerics between, for example, (0, 255), while a pixel of a grayscale image has a single
component. This results in three differences: one being the structure of the neural network
itself, the second being that the training method for each pixel is also optional, which means
the three components (R, G and B) of each pixel can be trained separately by themselves or
mixed together, and the third being the Lyapunov exponent for testing chaotic phenomena.

Color images in the neural network can be computed, one by one, as

xr → f (xr) (36)

xg → f (xg) (37)

xb → f (xb). (38)

The neural network structure in this approach is still one input neuron and one output
neuron; they are represented by (36)–(38) and are trained separately. However, the security
of this approach is not very high and there remains a risk of theft. Therefore, in this study,
after R, G and B are fed into the neural network, we will mix and disrupt them, adopting
a structure that has three input neurons and three output neurons, thus improving the
security of the confidential communication system.

The composition diagram of applying RGB to the neural network is shown in Figure 16,
where the data from three neurons are used as inputs to the input layer and then sent to the
hidden layer. First, since color images are involved, ∑0 and ∑1 correspond to each color in
RGB, and the dependent variables u and v are expanded to three dimensions. The u and v
are then discretized according to the upwind difference method to obtain the values of u, v
at the next time step. (For this part of the process we can refer to Figure 5 in Section 2.3).
Because the number of inputs is increased from one to three, the number of the nodes of the
first, middle and the last layers are also increased accordingly. By using the input image,
the xr, xg, and xb are computed by using chaotic maps as follows:

xr ↘
xg → gi(xr, xg, xb)→ f (gi(xr, xg, xb)) (i = 1, 2, . . . , hn), (39)

xb ↗

where hn is the number of neurons in the hidden layer. The former half of the neural
network, F0, is treated as the left boundary condition, and the latter half, F1, is treated as
the right boundary condition:

u(1, t) = F1(v(1, t))

v(0, t) = F0(u(0, t)). (40)

We know that the existence of chaos can be determined by calculating the Lyapunov
exponent of the dynamical system. If the images are grayscale, the Lyapunov exponent has
just one value, hence whether the system is chaotic or not can be determined by examining
the exponent. When confronted with color images, the Lyapunov exponent is no longer
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1-dimensional due to dimensional growth. k-dimensional space has k Lyapunov exponents.
In fact, the Lyapunov exponent {λ1, λ2, . . . , λk} is defined as

(e, eλ1 , eλ2 , . . . , eλk ) = lim
N→∞

[magnitude of the eigenvalues of
N−1

∏
n=0

J(xn)
1/N ], (41)

and

J(xn) = (
∂Gi
∂xi

) (42)

is the Jacobian matrix of the map G(xn). Normally, if the maximum Lyapunov exponent λ1
is positive, the system can be regarded as chaos, but even if λ1 < 0, there may be a latent
chaotic case which cannot be observed [27]. In this study, as long as one of the Lyapunov
exponents is positive, we conclude that the neural network contains chaotic vibrations,
which means that the approximation of the chaotic boundary condition is successful.

Figure 16. Relationship between the structure of Neural Networks and boundary conditions
with RGB.

For the numerical experiments, we first trained the neural networks so that the chaotic
boundary condition is approximated. We choose training data, from which input data
are sampled from (−2, 2). Since a pixel has three components, the total amount of data
should preferably be a multiple of 3; we choose Nd = 30,000 and (15) is again solved by the
Newton method. The data are randomly divided into a training set and a test set in the
ratio of 8:2. The neural network was implemented using PyTorch, and it was executed on a
Tesla T4 from Google Colaboratory.

The structure of the neural network is still a seven layer multilayer perceptron with
three neurons in the first, fourth and seventh layers, and 50 neurons in the other hidden
layers. Each layer is nonlinearly transformed by ŷ = g(Wx + b) and accompanied by BN,
where the activation functions of the first and fourth layers are tanh functions and the
others are ReLU functions. The mean squared error is still used for the error function. The
entire training process was updated with the Adam algorithm with a learning rate of 0.001.
The training was completed after 1000 training runs.

Table 3 shows the numerical evaluation of the training results and the test results of the
neural network. A total of ten experiments were conducted, and each time the seed value
was changed so that the initial values of the parameters of the neural networks are changed.
The mean and standard deviation are computed for the experimental results. We can see
that the results of training and testing are 0.000694 ± 0.000035 and 0.000919 ± 0.000033,
respectively, and Figure 17 shows the error decrease of one of the trainings, from which
we can clearly see that the training error and the testing error both decrease rapidly, and
there is almost no error rebound. Then, we calculated the Lyapunov exponent, respectively,
λ1 = 0.1144± 0.1469, λ2 = 0.0038± 0.0917 and λ3 = −0.1717± 0.2333, where λ1 and
λ2 are positive, so we can conclude that the neural networks are in fact chaotic, which
somehow approximates the van der Pol boundary condition.
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Figure 17. Examples of training error (blue line) and testing error (red line) of the neural network
during the learning process.

Table 3. Mean ± standard deviation of results performed at 10 times with RGB.

Epoch Data Set Mean ± Standard

1000 times
train set 0.000694 ± 0.000035

test set 0.000919 ± 0.000033

Lyapunov exponent

0.1144 ± 0.1469

0.0038 ± 0.0917

−0.1717 ± 0.2333

A color image of size 512 × 512, as shown in Figure 18, is put into the whole system
as the input. The modulation and demodulation are shown below.

Figure 18. Original color image.

Modulation

w(k + 1) = C(w(k)){0.03m|u(k)|V + 0.03m|v(k)|V}+ {0.5C(w(k)) + 0.1I}
× {0.08m|u(k)|V + 0.08m|v(k)|V + s1(k + 1)},
c12(k) = w(k). (43)
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Demodulation

t2(k + 1) =
1
m
{0.5C(c12(k− 1)) + 0.1I}−1

× {c12(k)− C(c12(k− 1))× {0.03m|û(k− 1)|V + 0.03m|v̂(k− 1)|V}]
− 0.08|û(k− 1)|V − 0.08|v̂(k− 1)|V . (44)

With (43) and (44), we can modulate and recover the images; however, the parameter
m still needs to be tried. In Figure 19, we have tried six different values of m. It can be seen
that the greater the value of m, the better the secrecy of the image. Figure 18 shows the
experimental results when the value of m = 8.8. Figure 20 (left) is the image that has been
secreted by the proposed system, from which we can conclude that the proposed method is
successfully applied to the transmission of color images. In fact, it is very difficult to know
the original image from the transmitted one while the restored image shown in Figure 20
(right) is almost identical to the original color image.

Figure 19. The effect of changing the m value in the modulation and demodulation portions on the
image encryption effect. Six different values of m (m = 1.0, 2.0, 5.0, 6.0, 7.5, 8.8) were tried, and the
corresponding encryption effects were observed for each, where the larger the value of m, the better
the secrecy performance of the image, within the computable range.
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Figure 20. Encrypted color image and restored image in the proposed method of this study. The
figure on the left is the encrypted color image; the figure on the right is the restored color image.

4. Security Evaluation of the Encrypted Images by the Proposed Method

In the previous section, we numerically examined the proposed method in which
the chaotic synchronization system and the artificial neural network are combined. In
particular, we tested different values of m to observe the efficiency of the encryption and
decryption of the images. In this section, we test the security of the encrypted images. For
some different images and the values of m, we investigate whether the encrypted images
are secure or not by computing several numerical security measures and color histograms.

Based on traditional evaluation ideas, we first test the randomness of encrypted
images: the correlation coefficient and the UACI value [29]. We compare the proposed
method with Advanced Encryption Standard (AES) as a reference method. AES is a
traditional encryption method, which is a group cipher, where the plaintext is divided into
groups of equal length and each group is encrypted until the entire plaintext is encrypted.
We used AES in the ECB mode.

Although these are standard measures of security, note that the above measures are
not suitable for the proposed approach. In fact, in order to choose suitable measures, the
term of “ideal encrypted image” needs to be specified [30]. In typical statistical measures,
encrypted images are considered to be secure for, for example, differential attacks when
it exhibits randomness. On the other hand, the proposed approach is not designed to
generate pseudo-random sequences because a different criterion is used for the term “ideal
encrypted image”. The proposed approach aims to encrypt the images into almost identical
wave images, which are considered to be “ideal” in this study. The idea behind this is that
because, for example, the differential attacks essentially try to find how differences in the
original images affect the encrypted images, if the encrypted images are almost identical,
then the attacks should fail and the information on the original image cannot be retrieved
from them.

Although the statistical measures are not necessarily suitable for the proposed method,
to a certain extent, the method has a good statistical property as shown below. In addition,
we also performed more appropriate tests, in which the distinguishability of two encrypted
images is checked.

4.1. Randomness Testing of Encrypted Images

Firstly, we computed the correlation coefficients between adjacent pixels for the
encrypted image in three different directions: horizontal, vertical and diagonal. Suppose
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that the image has N × N pixels (xi, yj), i = 1, . . . , N, j = 1, . . . , N. We calculate the
correlation coefficients for R, G and B values, respectively:

rxy =
1
N ∑N

i=1 ∑N
j (xi − E(x))× (yi − E(y))√

1
N ∑N

i=1(xi − E(x))2
√

1
N ∑N

j=1(yj − E(y))2
, (45)

where E(x) = 1
N ∑N

i xi, E(y) = 1
N ∑N

j yj. The correlation coefficients are between −1 and 1.
For example, when the value is close to 1, it means a high correlation between pixels. When
it is close to 0, there is no correlation; hence the image is considered pseudo-random. The
results are shown in Table 4 for the grayscale images and in Table 5 for the color images.
The images encrypted by the proposed method all present a high inter-pixel correlation,
while the traditional AES encryption has an ideal value of around 0. This is because the
encrypted images of the proposed method have a certain regularity that is caused by the
fact that the images represent the trajectories of waves. Note that this regularity does not
imply the recognizability of the original images.

Secondly, we computed UACI values, which measure how much the encrypted image
differs from the original image. For two different images, I1 and I2, of the same size N× N,
the UACI values between them is defined by:

UACI =
1

N2

N

∑
i=1

N

∑
j=1

I1(i, j)− I2(i, j)
tonal range

× 100%. (46)

Considering the color range and gray value distribution of images, the ideal value is
found to be 33.3. The closer the UACI of the encrypted image is to this ideal value, the
better the security.

The computed values are shown in Table 4 for the grayscale images and in Table 6
for the color images. All the results for AES are about 50.0, while those for the proposed
method depend on the target images. AES performs better for the images of vegetables;
however, the values of the proposed method for the images of the woman are better than
those of AES.

Thirdly, we observed the histograms, which are graphical representations of the
intensity distribution of pixels in an image. For gray images, the grayscale histogram
reflects the grayscale statistical information of the image. For example, each grayscale
image of the previous numerical tests has 256 intensity levels with values from 0 to 255.
We store the number of pixels corresponding to each gray level in a 256 capacity array.
Similarly, for color images, we can compute the histograms for each of the three different
channels, R, G and B, respectively.

The results are shown in Figure 21 for the grayscale images and in Figure 22 for the
color images. We can see that the histograms of the images encrypted by AES show a
uniform distribution, both in color and grayscale, which to some extent indicates that the
encrypted images are disordered and hence in a secure state.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 21. The grayscale images and the histograms of the encrypted images. The first row shows three different grayscale
images (a–c). In the second, third and fourth rows, the three figures in each row represent the histograms of the grayscale
values of the three original images encrypted by the proposed approach under the settings of T = 1, 2, 3 and m = 6.0,
respectively (d–l). The last row shows the histogram after encryption by the AES. The horizontal coordinate represents the
tonal range and the vertical coordinate represents the absolute frequency (m–o).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 22. The color images and the histogram of the encrypted image. The first row shows three different color images (a–c).
In the second, third and fourth rows, the three figures in each row represent the histograms of the three original images
encrypted by the proposed approach under the settings of T = 1, 2, 3 and m = 6.0, respectively. The last row shows the
histogram after encryption by the AES. The red, green and blue colors correspond to the histograms of each channel of R,
G and B, respectively (d–l). The last row shows the histograms after encryption by the AES. The horizontal coordinates
represent the tonal range and the vertical coordinates represent the absolute frequency (m–o).
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Table 4. Correlation test in horizontal, vertical and diagonal directions and UACI test for different
grayscale images. Different m (m = 6, 7.5) and T (T = 1, 2, 3) were tried respectively, where “lena” is
Figure 21a, “boat” is Figure 21b, and “clock” is Figure 21c.

Object
Correlation

UACI
Horizontal Vertical Diagonal

lena

m = 6

T = 1 0.972642 0.972993 0.922492 36.141486

T = 2 0.962627 0.962568 0.890740 39.410799

T = 3 0.968880 0.969089 0.915038 35.114740

m = 7.5

T = 1 0.968823 0.969244 0.908995 39.877836

T = 2 0.954396 0.954471 0.874803 39.730604

T = 3 0.976311 0.976517 0.940879 35.622222

AES 0.002630 0.008785 0.000658 49.996347

boat

m = 6

T = 1 0.980538 0.980823 0.943327 36.728787

T = 2 0.961264 0.961193 0.885866 41.783973

T = 3 0.973791 0.973994 0.930897 39.928194

m = 7.5

T = 1 0.972897 0.973300 0.923706 36.761638

T = 2 0.957479 0.957473 0.874213 41.551513

T = 3 0.973904 0.974118 0.936444 40.359627

AES 0.000163 0.000445 0.000502 50.000055

clock

m = 6

T = 1 0.921742 0.922687 0.806450 48.089881

T = 2 0.858309 0.858372 0.664064 58.067992

T = 3 0.888560 0.889011 0.722784 58.823428

m = 7.5

T = 1 0.899274 0.900966 0.770316 47.179087

T = 2 0.853312 0.957473 0.874213 56.637741

T = 3 0.880133 0.881703 0.754349 57.388910

AES 0.005367 0.004363 0.003360 49.929277

Table 5. Correlation test in horizontal, vertical and diagonal directions with different color images. Different values of
m (m = 7.5, 8.8) and T (T = 1, 2, 3) were tried respectively, where “lena” is Figure 22a, “boat” is Figure 22b, and “veg” is
Figure 22c.

Object

Correlation

Horizontal Vertical Diagonal

R G B R G B R G B

lena

m = 7.5

T = 1 0.97 0.99 0.98 0.97 0.99 0.98 0.95 0.99 0.96

T = 2 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.97

T = 3 0.93 0.94 0.81 0.93 0.94 0.81 0.82 0.89 0.59

m = 8.8

T = 1 0.96 0.99 0.97 0.96 0.99 0.97 0.88 0.88 0.88

T = 2 0.98 0.99 0.98 0.98 0.99 0.97 0.96 0.98 0.96

T = 3 0.89 0.95 0.82 0.90 0.95 0.83 0.75 0.88 0.57

AES 5 ×
10−3

1 ×
10−3

−1 ×
10−3

1 ×
10−2

6 ×
10−3

8 ×
10−3

1 ×
10−3

−8 ×
10−5

3 ×
10−3
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Table 5. Cont.

Object

Correlation

Horizontal Vertical Diagonal

R G B R G B R G B

boat

m = 7.5

T = 1 0.96 1.00 0.98 0.97 1.00 0.98 0.94 0.99 0.96

T = 2 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.98

T = 3 0.92 0.97 0.92 0.93 0.97 0.92 0.82 0.94 0.86

m = 8.8

T = 1 0.96 0.99 0.97 0.96 0.99 0.97 0.93 0.99 0.95

T = 2 0.98 0.99 0.97 0.98 0.99 0.97 0.96 0.98 0.96

T = 3 0.92 0.96 0.92 0.93 0.97 0.93 0.82 0.93 0.87

AES 6 ×
10−4

−1 ×
10−3

−1 ×
10−4

−3 ×
10−3

−1 ×
10−3

−3 ×
10−3

1 ×
10−3

−2 ×
10−3

−3 ×
10−3

veg

m = 7.5

T = 1 0.97 0.99 0.98 0.97 0.99 0.98 0.94 0.99 0.96

T = 2 0.99 0.99 0.98 0.99 0.99 0.88 0.98 0.98 0.97

T = 3 0.92 0.97 0.92 0.93 0.97 0.92 0.82 0.94 0.86

m = 8.8

T = 1 0.96 0.99 0.97 0.97 0.99 0.98 0.94 0.99 0.96

T = 2 0.98 0.99 0.97 0.98 0.99 0.97 0.96 0.98 0.96

T = 3 0.92 0.96 0.92 0.93 0.96 0.92 0.82 0.96 0.86

AES 2 ×
10−4

2 ×
10−3

5 ×
10−3

−8 ×
10−4

2 ×
10−3

6 ×
10−4

4 ×
10−4

4 ×
10−3

7 ×
10−4

Table 6. UACI test for different color images. Different values of m (m = 7.5, 8.8) and T (T = 1, 2, 3)
were tried respectively, where “lena” is Figure 22a, “boat” is Figure 22b, and “veg” is Figure 22c.

Object
UACI

R G B

lena

m = 7.5

T = 1 46.293217 40.515568 24.708355

T = 2 43.678409 43.262431 37.007906

T = 3 41.407206 42.583560 29.628579

m = 8.8

T = 1 46.454520 41.186064 24.949227

T = 2 44.341227 43.377668 33.920451

T = 3 43.072341 40.273322 40.672362

AES 50.133255 50.047464 49.936812

boat

m = 7.5

T = 1 35.143726 48.660561 52.421603

T = 2 39.571601 55.066602 56.038358

T = 3 47.716444 53.135069 53.060568

m = 8.8

T = 1 35.245613 50.609906 55.037498

T = 2 38.337034 56.456049 58.441035

T = 3 42.331758 55.305545 56.647502

AES 49.953939 50.052023 50.175874

veg m = 7.5

T = 1 37.751291 54.587069 54.226224

T = 2 45.768913 47.626056 62.656476

T = 3 37.213291 48.628576 69.999379
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Table 6. Cont.

Object
UACI

R G B

m = 8.8

T = 1 37.915899 54.778044 55.353727

T = 2 62.202183 48.556424 40.446628

T = 3 33.298991 51.570749 69.901463

AES 49.956022 50.026667 49.943955

Meanwhile, the histogram of the encrypted image in the mode of the proposed method
presents an unbalanced state with a high concentration in a certain region. The reason for
this phenomenon is as follows. The proposal method uses the reflection of waves, and even
though the initial conditions are random values, they are propagated to the left and right
sides along straight lines. In fact, as shown in Figure 23, the images encrypted by AES and
the images encrypted by the proposed method are apparently different from each other.
The former has almost no structure, and the latter a visible structure that corresponds to
the trajectories of the waves. The above mentioned concentration is observed because the
intensity of a trajectory takes the same value.

Figure 23. The grayscale encrypted image (left) and the color encrypted image (right) obtained by
using the AES on the grayscale image (Figure 13) and the color image (Figure 20).

From this consideration, we deduce that the difference in the position of the highest
point of the histogram reflects the difference in the lengths of the straight lines, which in
turn depend on the waiting time for synchronization. To confirm this, we computed the
histograms changing the waiting time as T × (the vertical size of the target image) with
T = 1, 2, 3. For grayscale images, the highest point of the histogram increases with the
waiting time, and for color images, R, G and B have multiple peaks and the position and
the number of the peaks depend on the waiting time. This implies that although the
histograms of the encrypted images have some peaks, from these peaks only the waiting
time for synchronization can be estimated, and at least in a naive way, no information on
the original images can.

4.2. Distinguishability of Encrypted Images

From the above security tests, we can say that AES has higher security from the per-
spective of randomness; however, the AES and the proposed approach are fundamentally
different in the definition of “ideal encrypted images”. Hence, it is important to investigate
the security issue from another perspective.



Entropy 2021, 23, 904 29 of 33

Since the ideal encrypted images of the proposed approach are “the indistinguishable
images of waves”, we calculated the similarity of encrypted images of two different images.
If there is a high correlation between the two, it indicates that the proposed method encrypts
different images into almost identical encryption results. In addition, if two encrypted
images have high similarity, there is a very low probability of leaking the original image
information.

We evaluated three inter-image-similarity criteria [31,32] for color and grayscale
images. Firstly we use the averaging pixel values,√

(I1R − I2R)2 + (I1G − I2G)2 + (I1B − I2B)2√
3× (255− 0)2

, (47)

where I1, I2 are images and the averaging value, for example, IR, for the image I is

IR =
1

Npixel

Npixel

∑
i=0

IRi , IR = {IR0 , IR1 , . . . , IRNpixel
}.

Npixel is the number of pixels and IRi is the red value of the ith pixel of the image I.
Secondly, we use the histogram for pixel values,√

∑Nint
i=0 (I1RHi − I2RHi )

2 +
√

∑Nint
i=0 (I1GHi − I2GHi )

2 +
√

∑Nint
i=0 (I1BHi − I2BHi )

2

3×
√

2× (1− 0)2
,

IRH = {IRH0 , IRH1 , · · · , IRHNint
}, (48)

where I1, I2 are images and Nint is the number of the levels of intensity, and IRHi is the
relative degree of the ith bin of the histogram of the red values of the image I. Thirdly, we
use the correlation coefficients:

1−
∣∣∣∣ rI1I2R + rI1I2G + rI1I2B

3

∣∣∣∣, (49)

where

rI1I2R =
∑

Npixel
i=0 (I1Ri − I1R)(I2Ri − I2R)

∑
Npixel
i=0 (I1Ri − I1R)2 ∑

Npixel
i=0 (I2Ri − I2R)2

.

In the experiments, the resolutions of the two images are unified into the same value.
We computed these values changing the value of m and the waiting time for synchronization.

From the results of the grayscale and color images shown in Tables 7 and 8, it can
be seen that the correlation coefficients between the encrypted images of different images
are significantly large. The values are indeed almost close to one; when ten decimal
places are used, the values of correlation coefficients are, for example, 0.9999999977 for
the grayscale image of “boat” with m = 7.5, T = 1 and that of “lena” with m = 6.0, T = 1
and 0.9999999865 for the color image of “boat” with m = 7.5, T = 1 and that of “lena”
with m = 8.8, T = 2. The other two measures are very small in all cases, indicating high
indistinguishability between the encrypted images, hence the high security of the proposed
approach.
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Table 7. Similarity comparison between the grayscale encrypted images I1 and I2 with the proposed
approach. Six different encrypted images are taken, the similarity is calculated between each two,
and no comparison is made between encrypted images of the same original image. The result column
has three values, from top to bottom, corresponding to (47)–(49). In particular, “lena” is Figure 21a,
“boat” is Figure 21b, and “clock” is Figure 21c.

I1
I2 Lena

(m = 6, T = 1)
Boat

(m = 7.5, T = 2)
Clock

(m = 6, T = 2)

lena
(m = 7.5, T = 1)

0.068396 0.0898650

0.112057 0.119775

0.999999 0.999999

boat
(m = 7.5, T = 1)

0.042764 0.099446

0.077088 0.143051

0.999999 ∗ 0.999999

clock
(m = 6, T = 3)

0.106253 0.071040

0.107990 0.081516

0.999999 0.999999

∗: The value is 0.9999999977 when 10 decimal places are used.

Table 8. Similarity comparison between the color encrypted images I1 and I2 with the proposed
approach. Six different encrypted images are taken, the similarity is calculated between each two,
and no comparison is made between encrypted images of the same original image. The result column
has three values, from top to bottom, corresponding to (47)–(49). In particular, “lena” is Figure 21a,
“boat” is Figure 21b, and “veg” is Figure 21c.

I1
I2 Lena

(m = 8.8, T = 2)
Boat

(m = 7.5, T = 2)
Veg

(m = 8.8, T = 1)

lena
(m = 8.8, T = 3)

0.047194 0.070985

0.103503 0.184824

0.999999 0.999999

boat
(m = 7.5, T = 1)

0.084080 0.008566

0.185896 0.037862

0.999999 ∗ 0.999999

veg
(m = 7.5, T = 1)

0.092913 0.106315

0.191360 0.210313

0.999999 0.999999

∗: The value is 0.9999999865 when 10 decimal places are used.

5. Conclusions

The purpose of this study is to establish a more stable and secure communication
system by improving the method reported in [19]. The reason for this is that the number
of parameters in a confidential communication system, using the chaotic synchronization
system from [19], is too small, and the image information can be easily stolen so that
even if only one parameter is attacked, there is a certain chance that the original image
can be seen in its entirety. In order to improve the security of the system based on the
original concept, the development of a new method that includes a chaotic system with
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a larger number of independent parameters is necessary. Therefore, this study proposes
a confidential communication system for color image communication using a chaotic
synchronous distribution system and deep learning. Deep neural networks have properties
that satisfy both conditions; on the one hand, they can approximate any function, and
on the other hand, they have a complicated structure so that it is difficult to steal all the
information. Therefore, we use a neural network to approximate the van der Pol boundary
condition, so that the learned neural network can exhibit chaotic behavior instead of the
original boundary condition. In the construction of the neural network, we consider the
middle layer of the hidden layer as an output layer as well, and the number of neurons in
the input and output layers is related to the input image, so that the network can be divided
into two parts, corresponding to the left and right boundary conditions, respectively.

We first used grayscale images as experimental objects to test whether the proposed
approach is practically applicable. The neural network has one input neuron and one
output neuron, and the intermediate layer is also set to one neuron, and two different acti-
vation functions, Tanh and ReLU, are used for nonlinear transformation. The experimental
results are analyzed from two aspects: first, during the training and testing of the neural
network itself, the error decreases very quickly and there is no error rebound, and the
value of the Lyapunov exponent is also positive, which shows that the neural network can
learn the van der Pol boundary conditions well to obtain the chaotic phenomenon; second,
the modulated image can well mask the information of the original grayscale image, and
the recovered image is the same as the original grayscale image. After confirming that the
proposed approach can be applied to simpler grayscale images, we further experimented
with color images. Since the pixels are expanded from one dimension to three dimensions,
a three-input, three-output neural network structure is adopted for a better stealth effect.
The experimental results are very close to those of the grayscale images, the neural network
still learns the chaotic phenomena, and it can hide the images and restore the images well.

Several security tests were also performed. The proposed method is not designed to
generate pseudo-random sequences as the encrypted images. Therefore, statistical tests
were not appropriate, and in many cases AES produced images that were closer to random
numbers. However, in terms of the UACI value, the proposed method was superior in
some cases. On the other hand, if the encrypted images are identical regardless of the
original image, then it becomes difficult to infer the original image from the encrypted
image. We performed some tests from this perspective as well. The results imply that the
encrypted images from the proposed method are almost the same regardless of the original
images, thereby showing that the proposed method is certainly secure.

Although we have confirmed to some extent that the techniques used in this study
can be applied to color images, there is still room for improvement. In particular, the
neural network in this study learns chaotic phenomena by approximating qFα,β, which is
still somewhat risky. In the future, instead of approximating a function, new activation
functions will be created to make the network behave in a chaotic manner.

In conclusion, it is clear from the research conducted so far that the proposed technique
can be used in a secure communication system for images, and that it has been effective
and has further increased the difficulty of theft. However, the need to improve on the
details to make the technique more perfect is definitely a future issue.
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Y.C., H.S., M.W. and T.Y.; data curation, Y.C. and T.Y.; writing—original draft preparation, Y.C., H.S.,
M.W. and T.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This study is supported by JSPS KAKENHI Grant Number JP 21K03370 and JST CREST
JPMJCR1914.

Institutional Review Board Statement: Not applicatble.

Informed Consent Statement: Not applicable.

Data Availability Statement: The details of the data are described in Sections 2.4 and 3.



Entropy 2021, 23, 904 32 of 33

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cuomo, K.M.; Oppenheim, A.V. Circuit Implementation of Synchronized Chaos with Applications to Communications. Phys.

Rev. Lett. 1993, 1, 65–68. [CrossRef]
2. Kocarev, L.; Parlitz, U. General Approach for Chaotic Synchronization with Applications to Communication. Phys. Rev. Lett.

1995, 25, 5028–5031. [CrossRef]
3. Lin, C.H.; Hu, G.H.; Chan, C.Y.; Yan, J.J. Chaos-Based Synchronized Dynamic Keys and Their Application to Image Encryption

with an Improved AES Algorithm. Appl. Sci. 2021, 11, 1329. [CrossRef]
4. Ushio, T. Chaotically Synchronizing Control and Its Application to Secure Communication. Trans. Inf. Process. Soc. Jpn. 1995, 3,

525–530.
5. Yoshimura, K. Multichannel Digital Communications by the Synchronization of Globally Coupled Chaotic Systems. Phys. Rev. E

1999, 2, 1648–1657. [CrossRef]
6. Li, C.; Zhao, F.; Liu, C.; Lei, L.; Zhang, J. A Hyperchaotic Color Image Encryption Algorithm and Security Analysis. Secur.

Commun. Netw. 2019, 2019, 8132547. [CrossRef]
7. Sbiaa, F.; Kotel, S.; Zeghid, M.; Tourki, R.; Machhout, M.; Baganne, A. High-Level Implementation of a Chaotic and AES Based

Crypto-System. J. Circuits, Syst. Comput. 2017, 26, 1750122. [CrossRef]
8. Arab, A.; Rostami, M.J.; Ghavami, B. An image encryption method based on chaos system and AES algorithm. J. Supercomput.

2019, 75, 6663–6682. [CrossRef]
9. Suri, S.; Vijay, R. An AES–CHAOS-Based Hybrid Approach to Encrypt Multiple Images. In Recent Developments in Intelligent

Computing, Communication and Devices; Springer: Singapore, 2017; pp. 3–43.
10. Liu, Y.; Tong, X.; Hu, S. A family of new complex number chaotic maps based image encryption algorithm. Signal Process. Image

Commun. 2013, 28, 1548–1559. [CrossRef]
11. Huang, X.; Ye, G. An image encryption algorithm based on hyper-chaos system and DNA plane. Multimed. Tools Appl. 2014, 72,

57–70. [CrossRef]
12. Kuo, C.L. Design of a fuzzy sliding-mode synchronization controller for two different chaos systems. Comput. Math. Appl. 2011,

61, 2090–2095. [CrossRef]
13. Moon, S.; Baik, J.-J.; Seo, J.M. Chaos synchronization in generalized Lorenz systems and an application to image encryption.

Commun. Nonlinear Sci. Numer. Simul. 2021, 96, 105708. [CrossRef]
14. Njah, A.N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear

Dyn. 2010, 61, 1–9. [CrossRef]
15. Pai, M.C. Global synchronization of uncertain chaotic systems via discrete-time sliding mode control. Appl. Math. Comput. 2014,

228, 663–671. [CrossRef]
16. Yau, H.T.; Kuo, C.L.; Yan, J.J. Fuzzy sliding mode control for a class of chaos synchronization with uncertainties. Int. J. Nonlinear

Sci. Numer. Simul. 2006, 7, 333–338. [CrossRef]
17. Yu, Y.; Li, H.X. Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear

Anal. Real World Appl. 2011, 12, 388–393. [CrossRef]
18. Pecora, L.M.; Carroll, T.L. Synchronization of chaotic systems. Chaos 2015, 25, 097611. [CrossRef] [PubMed]
19. Sano, H.; Wakaiki, M.; Yaguchi, T. Secure Communication Systems Using Distributed Parameter Chaotic Synchronization. Trans.

Soc. Instrum. Control. Eng. 2021, 2, 78–85. [CrossRef]
20. Chen, G.; Hsu, S.B.; Zhou, J. Chaotic Vibrations of the One-Dimensional Wave Equation due to a Self-Excitation Boundary

Condition. Part I: Controlled Hysteresis, Appendix C by G.R. Chen and G. Crosta. Trans. Am. Math. Soc. 1998, 11, 4265–4311.
[CrossRef]

21. Chen, G.; Hsu, S.B.; Zhou, J. Chaotic Vibration of the Wave Equation with Nonlinear Feedback Boundary Control: Progress and
Open Questions. In Chaos Control: Theory and Applications; Chen, G.R., Yu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2003;
pp. 25–50.

22. Li, L.; Huang, Y.; Xiao, M. Observer Design for Wave Equations with Van Der Pol Type Boundary Conditions. SIAM J. Control.
Optim. 2012, 3, 1200–1219. [CrossRef]

23. Naoe, H.K. Tanaka and Y. Takefuji, Information Security Techniques Based on Artificial Neural Network. J. Jpn. Soc. Artif. Intell.
1995, 5, 577–585.

24. Tariq, M.I.; Memon, N.A.; Ahmed, S. A Review of Deep Learning Security and Privacy Defensive Techniques. Mob. Inf. Syst.
2020, 2020, 6535834. [CrossRef]

25. Evans, L.C. Partial Differential Equations; Amer Mathematical Society: Providence, RI, USA, 2010.
26. Guan, K. Important Notes on Lyapunov Exponents. arXiv 2014, arXiv:1401.3315.
27. Inoue, Y. Chaos:Definition and Characterization. Jpn. J. Multiph. Flow 1997, 2, 157–162. [CrossRef]
28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
29. Preishuber, M.; Hütter, T.; Katzenbeisser, S.; Uhl, A. Depreciating Motivation and Empirical Security Analysis of Chaos-Based

Image and Video Encryption. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2137–2150. [CrossRef]

http://doi.org/10.1103/PhysRevLett.71.65
http://dx.doi.org/10.1103/PhysRevLett.74.5028
http://dx.doi.org/10.3390/app11031329
http://dx.doi.org/10.1103/PhysRevE.60.1648
http://dx.doi.org/10.1155/2019/8132547
http://dx.doi.org/10.1142/S0218126617501225
http://dx.doi.org/10.1007/s11227-019-02878-7
http://dx.doi.org/10.1016/j.image.2013.07.009
http://dx.doi.org/10.1007/s11042-012-1331-6
http://dx.doi.org/10.1016/j.camwa.2010.08.080
http://dx.doi.org/10.1016/j.cnsns.2021.105708
http://dx.doi.org/10.1007/s11071-009-9626-5
http://dx.doi.org/10.1016/j.amc.2013.11.075
http://dx.doi.org/10.1515/IJNSNS.2006.7.3.333
http://dx.doi.org/10.1016/j.nonrwa.2010.06.024
http://dx.doi.org/10.1063/1.4917383
http://www.ncbi.nlm.nih.gov/pubmed/26428564
http://dx.doi.org/10.9746/sicetr.57.78
http://dx.doi.org/10.1090/S0002-9947-98-02022-4
http://dx.doi.org/10.1137/11083037X
http://dx.doi.org/10.1155/2020/6535834
http://dx.doi.org/10.3811/jjmf.11.157
http://dx.doi.org/10.1109/TIFS.2018.2812080


Entropy 2021, 23, 904 33 of 33

30. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI Randomness Tests for Image Encryption. Cyber J. Multidiscip. J. Sci. Technol.
2011, 1, 31–38.

31. Ali, F.; Mohammed, A.H. Content Based Image Retrieval (CBIR) by Statistical Methods. Baghdad Sci. J. 2020, 17, 694–700.
[CrossRef]

32. Seetharaman, K.; Jeyakarthic, M. Statistical distributional approach for scale and rotation invariant color image retrieval using
multivariate parametric tests and orthogonality condition. J. Vis. Commun. Image Represent. 2014, 25, 727–739. [CrossRef]

http://dx.doi.org/10.21123/bsj.2020.17.2(SI).0694
http://dx.doi.org/10.1016/j.jvcir.2014.01.004

	Introduction
	Grayscale Images as Transmission Objects
	Wave Equation with the van der Pol Boundary Conditions
	Synchronization System
	Proposed Secret Communication System
	Numerical Experiments

	Numerical Experiments with Color Images
	Security Evaluation of the Encrypted Images by the Proposed Method
	Randomness Testing of Encrypted Images
	Distinguishability of Encrypted Images

	Conclusions
	References

