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Abstract: We analyze the price return distributions of currency exchange rates, cryptocurrencies, and
contracts for differences (CFDs) representing stock indices, stock shares, and commodities. Based
on recent data from the years 2017–2020, we model tails of the return distributions at different time
scales by using power-law, stretched exponential, and q-Gaussian functions. We focus on the fitted
function parameters and how they change over the years by comparing our results with those from
earlier studies and find that, on the time horizons of up to a few minutes, the so-called “inverse-cubic
power-law” still constitutes an appropriate global reference. However, we no longer observe the
hypothesized universal constant acceleration of the market time flow that was manifested before in an
ever faster convergence of empirical return distributions towards the normal distribution. Our results
do not exclude such a scenario but, rather, suggest that some other short-term processes related to a
current market situation alter market dynamics and may mask this scenario. Real market dynamics
is associated with a continuous alternation of different regimes with different statistical properties.
An example is the COVID-19 pandemic outburst, which had an enormous yet short-time impact on
financial markets. We also point out that two factors—speed of the market time flow and the asset
cross-correlation magnitude—while related (the larger the speed, the larger the cross-correlations on
a given time scale), act in opposite directions with regard to the return distribution tails, which can
affect the expected distribution convergence to the normal distribution.

Keywords: return distributions; power-law tails; stretched exponentials; q-Gaussians; financial
markets; COVID-19

1. Introduction

A proper risk assessment is one of the key prerequisites of any prospective financial
investment. Even for an asset of moderate volatility, underestimating the probability of
occurrence of an event of a given magnitude can lead to severe outcomes. Among the
methods of dealing with risk assessment is the determination of a correct probability dis-
tribution function for asset price fluctuations in order to construct an adequate model of
that asset’s price dynamics. This issue has been of central interest since the early years of
econometrics. It was Bachelier who proposed a model of the stock option price dynamics
based on an uncorrelated random walk with a Gaussian distribution of fluctuations [1].
Later, it was found that the Gaussian noise hypothesis was only a poor approximation of
the empirical data, which shows non-vanishing higher moments of the fluctuation distri-
butions, i.e., skewness and positive excess kurtosis. Based on an observation of the cotton
price dynamics, Mandelbrot proposed to model the logarithmic price increments (returns)
with a process of Lévy flights, which is described by a heavy-tailed probability distribution
function that is stable [2,3]. These distributions are defined by their characteristic function
as they do not have a closed analytic form. However, their tails decrease as a power law in
the limit of large x:

Lα(x) ∼ 1
|x|1+α

, x → ±∞, (1)
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where 0 < α < 2.
According to Mandelbrot [4], such a process can account for the absence of a con-

vergence of the aggregated return distribution to the normal distribution as expected by
the central limit theorem (CLT). The heavy tails are thus viewed as a natural limit of the
aggregated independent or weakly dependent factors provided they are described by the
stable distributions. However, this hypothesis has a weak point because the empirical data
cannot exhibit the infinite variance required to maintain the distribution stability under
aggregation. After the pioneering work of Mandelbrot, many researchers investigated
financial time series in order to verify his outcomes. For example, Fama reported that the
daily returns of stocks are better approximated by the infinite-variance distribution than
the normal distribution or a mixture of the normal distributions [5]. The Lévy stability
of the return pdfs in their central parts was also confirmed, among others, by Blume
(α ≈ 1.7− 1.8) [6], Teichmoeller (α ≈ 1.6) [7], and Blattberg and Gonedes (α ≈ 1.6) [8].
Some reports pointed out that, although central parts of the return distribution can be
approximated by the stable distributions, the same cannot be said about the distant parts
of their tails, which decay faster than expected. Officer found that the tails of the daily
and monthly return distributions are no doubt thicker than Gaussian but at the same time
thinner than Lévy-stable [9]. Barnea et al. observed that the daily return distributions
for some stocks are well approximated by stable distributions, while for other stocks,
they are not [10]. Much later, Young and Graff reported that the real-estate annual return
distribution can be fitted by a stable function using α ≈ 1.5 [11].

Along with the research on empirical data, much effort was devoted to developing
models that could mimic the market dynamics. Among such models, the subordinated
stochastic processes do not require an assumption of the Lévy-stable character of the
underlying dynamics and assume that the price movement is a Brownian motion that takes
place in time, which itself is a stochastic process with positive increments and finite variance
(e.g., a lognormal process) [12]. In practice, the subordinating process is assumed to be
volume or transaction number. As an alternative, Engle proposed that the distribution tails
are heavy because of the heteroskedasticity of the return-generating process, in which large
returns are caused by a locally large variance of the process [13]. Mantegna and Stanley
found a dual structure of the stock index return distribution (S&P500 index during the
years 1984–1989), with its central part being in agreement with a Lévy-stable distribution
and with exponentially decaying distant tails [14]:

Ltr
α,γ(x) ∼ 1

|x|1+α
e−γ|x|, γ > 0. (2)

While considering the aggregated returns at different time horizons, they did not
find any trace of a convergence to the normal distribution. Based on these findings, they
proposed a new model for the price return dynamics: a truncated Lévy flight process. They
also showed that the heteroskedastic model (GARCH) does not fit the data well [14]. This
type of distribution (α ≈ 1.6–1.7) was also reported from an analysis of the same S&P500
index recorded over a longer interval (1986–2000). In contrast, the aggregated returns
showed a crossover to a CLT regime around a time scale of 20 days [15].

Plerou et al. and Gopikrishnan et al. presented two parallel, comprehensive studies of
the stock market high-frequency data representing stock price returns for 1000 American
companies and S&P500 index returns [16,17], in which they observed the cumulative
distribution function tails obtained from aggregated returns over a substantial spectrum of
time scales from 5 min (stocks) and 1 min (index) to 4 years. They found that the return
distributions have power law tails, with the exponent 2.5 < α < 4 depending on a stock.
However, despite the fact that they did not fit the Lévy-stable domain (α < 2), these
distributions were invariant under a change in the time scale up to ∆t = 16 days. Only for
the sampling intervals longer than 16 days, a slow transition to a normal distribution was
observed [16]. An analogous invariance of the return distribution shape with the power
exponent α ≈ 3 under the time-scale change was observed for the S&P500 index, but in
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that case, the crossover occurred earlier at ∆t = 4 days. Only for the time scales longer than
4 days, a slow convergence to a Gaussian distribution was seen. A similar behavior was
found in the indices from other stock markets (Nikkei & Hang-Seng) [17]. This surprising
behavior of the stock markets led the authors to formulate the so-called “inverse cubic
law”—a conjecture that the power-law tails of the return distributions with the scaling
exponent α ≈ 3 are a universal property of all stock markets at short and medium time
scales [18]. Indeed, similar statistical characteristics were found by other researchers in
data collected from other stock markets [19–35], Forex [36], commodity markets [36,37],
and the cryptocurrency market [36,38–40].

The only possible explanation of this result is that the analyzed data violated the
assumptions of the central limit theorem, i.e., the returns were significantly correlated.
Indeed, the cross-correlations among the stock returns representing different companies
are an obvious characteristics of all stock markets [34,41–45]. It was shown that the inter-
stock cross-correlation strength has a strong impact on the index return distributions and
can even modify their tail behavior, leading to a kind of alternation between different
power-law regimes: stable and unstable [43]. On the other hand, the cross-correlations
between different stock markets can also induce a significant regime change [21,22]. The
existence of autocorrelation in returns is a more delicate issue: while the returns reveal
some short-term memory lasting for a few minutes, the existence of long-term memory
is doubtful [16,17,24,46,47], even though there were reports stating that the returns can
show some autocorrelation or persistence over long terms [48–52]. On the other hand,
there is consensus over a fact that the long-term autocorrelation is present in absolute
returns (volatility) and in some more fundamental observables such as fluctuations in
stock market orders, transaction size, and market liquidity [53–55]. The existence of a
return autocorrelation can be considered an important factor that can destroy market
efficiency [56,57]. These ubiquitous manifestations of the inverse cubic scaling in the
financial data encouraged Gabaix et al. to propose a model that was able to account for
this phenomenon [58]. According to this model, the inverse-cubic return fluctuations were
a result of two processes: the volume fluctuation that forms a probability distribution
function with the tail index 1.5 and a specific square-root form of the price impact function,
which together produce a tail index equal to 3 [58]. However, Farmer and Lillo pointed out
that the price impact function is specific to individual markets and even to individual stocks;
thus, it cannot produce any universal behavior. Also, the dependence on transactions is
slower than the square root and the volumes are not power-law distributed, so they cannot
lead to a power-law behavior of the returns with α ≈ 3 [59]. The price changes are driven
by more factors than simply volume and transaction number fluctuations—it can be the
order book structure, for example [60,61]. Moreover, there is plenty of published evidence
that various financial assets either do not have the power-law distribution tails [29,62–67]
or their scaling exponent α differs from 3 even for the short time scales [36,68–73]. Given
these results together, the inverse cubic scaling cannot be considered a universal property of
financial returns and, thus, cannot be called “a law”. However, it manifests itself sufficiently
often to allow us to view it as one of the possible reference models describing the empirical
return distribution tails (there is a plethora of volatility models, which takes into account
various factors; a review of such models can be found in Poon and Granger [74]).

The power law tails of the return distributions, which are among the financial stylized
facts, can be reproduced with a broad range of the scaling exponent by means of various
models based on stochastic processes [63,75–83], including multiplicative processes [84–86],
the minority game and other agent-related dynamics [87–91], as well as spin dynam-
ics [23,92].

Apart from power-law functions, the tail behavior of the return distributions can also
be approximated by exponential functions and stretched exponential functions [93]. The
latter are defined by the following expression:

f (x) ∼ exp x−β, 0 < β < 1. (3)
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Such a functional form allows for the stretched exponents to locally resemble the
power laws. There were many published studies in which the return distributions were
approximated successfully by the exponents, and some researchers advocate using these
functions instead of the power laws [23,29,31,63–67,69,80,94,95]. Another type of exponen-
tial function that is sometimes considered in the context of financial data is the Laplace
distribution function p(x) ∼ exp(−|x|). This function can also demonstrate heavy tails.
It was observed that some empirical return distributions can be approximated by this
function [62,96].

The functions that have been discussed so far do not exhaust the possible models
that can be used to approximate the empirical return distributions. In a financial context,
a particularly important class is the q-Gaussian functions. They were derived as a part
of the formalism of nonextensive statistical mechanics based on the Tsallis nonadditive
entropy [97]:

Sq = kB
1−

∫
[p(x)]qdx

q− 1
, (4)

where p(x) is some probability distribution and kB is a positive constant. Under certain
conditions, this entropy is maximized by a family of q-Gaussian distributions given by

Gq(x) ∼ expq[−Bq(x− µq)
2], (5)

where
expq x = [1 + (1− qx]

1
1−q , Bq = [(3− q)σ2

q ]
−1, (6)

provided that 0 < q < 3 and that µq and σ2
q are q-mean and q-variance, respectively. The

q-Gaussians generalize both the normal distribution (q = 1) and the Lévy distributions
(5/3 < q < 3). Their attractiveness comes from the fact that, for the correlated random
variables, the q-Gaussians become stable distributions. Moreover, their tail behavior can
also resemble the power laws [98]. As the price returns are correlated, one can expect
that these functions can describe the statistical properties of returns. Indeed, there is a
growing evidence that the q-Gaussian distributions can approximate the empirical return
distributions [30,32,66,99–101].

The q-Gaussians are among the functions borrowed from the nonextensive statistical
mechanics that were exploited in this context. Another example is the q-exponent given by
Equation (6), which was also reported to fit the empirical returns from a stock market [102].
Finally, some researchers consider the normal-inverse Gaussian function to be a prospective
model that can successfully be fitted to the data [71].

This short review of the return distribution modeling approaches shows that there
is a cornucopia of the reported results that were even contradictory sometimes. The
only firm observation that is shared by all the studies is that the return distributions
reveal heavy tails, at least at short time scales. On medium and long time scales, the
situation depends strongly on a data set, a market, and a financial instrument. Drożdż
et al. attempted to resolve this problem by noticing that the most well-known results
regarding the return distributions, i.e., Mandelbrot’s Lévy stability (α < 2) [4]; Mantegna
and Stanley’s truncated Lévy flights [14]; Plerou and Gopikrishnan’s unstable power-law
tails (α ≈ 3), which are persistent under aggregation of the returns until the time scales
of days or even a month [16,17]; and their own results with the α ≈ 3 regime already
breaking at the time scale of hours [24], were based on the data covering different epochs:
1816–1958 (Mandelbrot), 1984–1989 (Mantegna), 1926–1995 (Plerou and Gopikrishnan),
and 1998–1999 (Drożdż). One can follow the whole historical process of the financial
market development, introduction of new financial instruments, technological innovations,
transition from the classic “floor-based” markets to the digital markets, computing power
increase, telecommunication revolution, etc. from past to present. This inevitably leads
to the constantly increasing number of investors, transactions, and pieces of information
that arrive at the market. These are accompanied by the increasing amount of money and
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information processing speed, which, if taken together, result in an overall acceleration of
the market time flow. Any unit of time nowadays corresponds to a much longer interval in
the past. From this perspective, the market properties once observed, say, at a daily scale,
now can be observed at scales of hours, minutes, or even seconds. This may be the very
reason why Mandelbrot observed the Lévy-stable distributions that are hardly seen today
and why Plerou and Gopikrishnan reported the crossover to the CLT-related convergence
of distribution tails at the time scale of many days, while today, such a behavior is observed
within hours or minutes. This hypothesis formulated by Drożdż et al. was later supported
by other analyses as well [24,30,32,69,72].

However, based on data covering a given time interval, one can observe an analogous
phenomenon by considering, e.g., the stocks representing companies with different capital-
ization. Since there is statistically a relation between the capitalization of a company and the
number of transactions involving its stock shares, the highly capitalized stocks “feel” that
time flows faster than their lower-capitalized counterparts. In consequence, the properties
of the corresponding return distributions substantially differ between both groups, with
the former displaying thicker tails than the latter [24,34,35,100,103]. Qualitatively similar
observation can be made by comparing the distributions for the data from the markets of
different developmental stage, e.g., the mature markets and the emerging markets. The
former are characterized by higher liquidity and a higher transaction number than the
latter; therefore, generally, the situation is parallel to the previous cases. Studies of the data
from the emerging markets report thick tails with small scaling exponents more frequently
than the mature markets [25,26,28,52,66,94,104–110].

Another issue related to return distributions is their asymmetry between positive and
negative parts. It was investigated in various works as it is also an important factor in
investment risk assessments (the gain–loss asymmetry). Typically, this property was tested
by means of the third moment (skewness) of return distributions, in which a negative
value means a higher probability of a significant gain with respect to a significant loss
while a positive value means the opposite. The negative skewness is associated, thus, with
a positive tail of the distribution being heavier than the negative tail. There are mixed
outcomes of the empirical data reported in the literature, including indications of either
positive, negative, or neutral skewness as well as the scaling exponent difference between
the left and the right tails (in the case of power-law tails) dependent on the analyzed time
intervals, markets, and securities (e.g., References [14,16,17,20,28,31,36,62,71,94,111–119]).
However, even though a difference between the positive and negative tails exists in the
data, it has a much weaker impact on the distribution shape and the related investment risk
than the heavy tails. Therefore, in many studies reported in the literature, only absolute
returns are considered, neglecting their actual signs (e.g., References [16,17,24,30,32,39]).
As our study is focused on an investigation of the tail exponent stability with respect to the
time scale ∆t and, based on literature and our previous experience, we expect larger effects
due to the time-scale change than due to the left–right tail asymmetry, we neglect the return
sign and consider both tails together by analyzing the absolute return values. In fact, our
major new finding is that, in recent years, the market’s “internal” time stopped accelerating
with respect to our ordinary “clock” time. Other factors also affect the convergence of
return distributions to the Gaussian with increasing ∆t, especially those that cause extreme
volatility and strong cross-correlations between assets such as COVID-19. We discuss the
interplay of these two factors in the following sections.

The remainder of our paper is organized as follows: in Section 2, we present the data
sets that were analyzed; in Section 3, we discuss the results; and in Section 4, we collect the
main conclusions of our study.

2. Data

We analyzed recent tick-by-tick recordings of the contracts for differences (CFDs)
representing (1) six major stock market indices, CAC40 (Euronext), DAX30 (Deutsche
Börse), FTSE100 (London SE), DJIA (New York SE), S&P500 (New York SE & NASDAQ),
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and NASDAQ100 (NASDAQ); (2) 240 U.S. stock shares and 30 stock shares with the highest
capitalization from Germany, France, and the U.K. (see Appendix A for their list); (3) four
commodities, U.S. crude oil (CL), high grade copper (HG), silver (XAG), and gold (XAU);
(4) the currency exchange rates (not CFDs) involving five major currencies, USD, EUR, GBP,
CHF, and JPY; and (5) two cryptocurrencies, bitcoin (BTC) [120] and ethereum (ETH) [121].
The commodity CFD prices are expressed in U.S. dollars. The data comes from Dukascopy
(the index, stock share, commodity CFDs, and currency exchange rates) [122] and Kraken
exchange (cryptocurrencies) [123] and covers 4 years from January 2017 to December 2020
(except for the stock share CFDs that cover a shorter interval starting from January 2018).
Different instrument types have different trading hours, with the stock market index and
commodity CFDs quoted from Monday to Friday (00:00–23:00 hours CET, daylight saving
time-adjusted), the stock share CFDs quoted from Monday to Friday (U.S.: 15:30–22:00
CET, European: 09:00–17:30 CET), the currency exchange rates quoted around the clock
from Monday to Friday, and the cryptocurrency exchange rates quoted continuously 24/7.

Price P(t) of an asset is defined at the moment of transaction only and remains
undefined otherwise. Therefore, in order to construct an evenly sampled time series of
the price quotations, we assume that the price remains constant between the consecutive
transactions, which is standard practice. The quotations of all the instruments were sampled
with ∆t= 1 s, 10 s, 1 min, 10 min, and 1 h frequency and transformed into the normalized
logarithmic returns r∆t according to

r∆t = (R∆t − µR)/σR, R∆t(t) = log(P(t + ∆t))− log(P(t)), (7)

where µR and σR are the mean and standard deviation of R∆t(t), respectively, and ∆t is a
sampling interval. For each asset, we obtained five time series representing the returns for
different time scales ∆t. Figure 1 shows the evolution of P(t) for various assets that are
analyzed in our work. The COVID-19 outburst in the U.S. in March and April 2020 that
had a strong impact on all financial markets has been distinguished by vertical lines. A few
corresponding time series of the normalized returns r∆t(t) with ∆t = 1 min are shown in
Figure 2 together with a simulated Gaussian noise of the same length.
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Figure 1. Evolution of the CFD price and exchange rate quotations of various assets over the 4 year
interval 2017–2020 (data source: Dukascopy [122]) and the cryptocurrency prices (data source:
Kraken [123]). The quotations have been standardized in order to facilitate comparison. The vertical
dashed lines indicate the COVID-19 outburst in March–April 2020.

Figure 2. Time series of the standardized 1-min returns of sample financial instruments, S&P500
CFDs, gold CFDs (XAU/USD), and EUR/USD, together with a Gaussian noise of the same length.
Note the leptokurtic character of the empirical data.
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3. Results

For each individual time series of the absolute normalized returns, we created a
cumulative distribution function and investigated how fast its tail decays. In order to
quantify the tail behavior, we fit the empirical histograms with selected models that are of
the highest significance in this context: the power-law function, the stretched exponential
function, and the q-Gaussian function. Figure 3 shows sample return distributions with
the three best-fitted models of interest. We refer the reader to the specific subsections for
a discussion on the asset statistical properties; here, we consider only the fits. In each
panel, it is evident that the power-law function (dashed line) is able to reproduce the
empirical histograms in their far-tail region while it fails to describe the central part of
the distributions completely. The stretched exponential and q-Gaussian functions perform
much better in the central parts, while only the latter works well in the tails. However, as
the q-Gaussian and power-law functions converge to the same behavior in the tail regions
and as both the parameters α and q are related with each other via a relation,

q =
3 + α

1 + α
, (8)

henceforth, we omit the q-Gaussian fit parameter q and explicitly give the fitted values of α
and β only. For simplicity, we also omit the acronym “CFD” and use the asset names only,
but one has to realize that the CFD contracts and the assets they refer to are not the same
financial entities and that the statistical properties of the former may not necessarily reflect
the properties of the latter.

Figure 3. The least-square best fits of the power-law function (red dashed), the stretched exponential (green dotted), and
the q-Gaussian function (blue dash-dotted). Sample cumulative distribution functions of the returns for the EUR/USD
exchange rate (top) and the S&P500 index CFDs (bottom) are shown with different sampling intervals ∆t from 1 s to 1 h.
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3.1. Stock Market Indices

Let us start with the cumulative return distributions of the stock market index CFDs
representing six principal indices, NASDAQ100, DJIA, S&P500, DAX30, FTSE100, and
CAC40, and the five time scales, 1 s, 10 s, 1 min, 10 min, and 1 h. Figure 4 shows that the
return distribution for the three U.S. indices (NASDAQ100, S&P500, and DJIA) does not
show an inverse cubic decay. Dow Jones is the closest, but this may be due to the fact that
this index has the least number of aggregated stocks (30 vs. 100 and 500). As the time scale
∆t increases, we observe a gradual decrease in the thickness of the distribution tails, but
this decrease is not so large that a convergence to the normal distribution could firmly be
involved. The best power-law fits for ∆t = 1 s are α ≈ 3.9 (S&P500), 3.8 (NASDAQ100),
and 3.6 (DJIA). For a complete record of the fitted power-law and stretched exponential
function parameters, see Table 1. For longer time scales, the tails appear to be significantly
thinner only for NASDAQ100, and for ∆t = 1 h, they reach α ≈ 4.6. For DJIA and S&P500,
we do not observe any convergence to the normal distribution, and therefore, we assume
that there is no such convergence for the scales up to 1 h. A strong discrepancy between
the inverse cubic and the empirical distribution is also visible in the case of DAX30. For the
returns with ∆t = 1 s, we obtain the power law with α ≈ 3.5, and for the higher scales, we
have a trace of α→ 4; however, this is by no means a monotonous increase.

Table 1. Estimated tail exponent α and stretched exponent parameter β for the aggregated distributions of the CFD returns
for select stock market indices.

Index Param. ∆t = 1 s ∆t = 10 s ∆t = 1 min ∆t = 10 min ∆t = 1 h

DAX30 α 3.5 3.7 3.9 3.7 2.7
β 0.37 0.64 0.63 0.45 0.38

CAC40 α 3.6 3.8 3.7 3.6 4.8
β 0.38 0.62 0.40 0.42 0.63

FTSE100 α 2.8 3.4 3.7 3.5 4.6
β 0.51 0.39 0.81 0.68 0.52

DJIA α 3.6 3.7 3.3 3.3 3.0
β 0.37 0.41 0.68 0.41 0.37

S&P500 α 3.9 3.9 3.6 3.5 3.0
β 0.4 0.47 0.39 0.56 0.37

NASDAQ100 α 3.8 4.0 3.8 3.6 4.5
β 0.41 0.44 0.36 0.42 0.47

The return distribution for the FTSE100 and CAC40 indices are different. Especially in
the case of the latter, we observe an approximate inverse cubic decay α ≈ 3 for ∆t = 1 s. It
is also clearer than in the previous cases that the tails become much thinner with increasing
scale, and for ∆t = 1 h, we see α → 5. In the case of FTSE100, we do not deal with a
homogeneous distribution but, rather, with two or more different distributions imposed.
This is visible especially for the shortest time scale, where α < 3. As the scale increases, we
see a behavior similar to that of CAC40, although it is even more pronounced due to the
thicker tail at 1 s.

These results can be compared to those obtained for the high-frequency data from
1998–1999, which included both DJIA and DAX30 [24]. The distributions for the shortest
scale analyzed (∆t = 5 min) displayed tails close to those of the inverse cubic ones (even
more in the case of DJIA than DAX30), but a crossover was visible for the scales ∆t > 2 h
for DJIA and ∆t > 30 min for DAX30. Due to the limited maximum scale considered
in the present study, we cannot conclude what the DJIA distributions for the 2 h scale
look like, but it seems that, for the shorter scales, these distributions are slightly thinner
than before. With regards to the results for the S&P500 and DAX30 data from the years
2004–2006 [32], the tail slope decrease was power-law starting from α ≈ 4 for ∆t = 1 min to
α ≈ 6 for ∆t = 1 h for the American index and from α ≈ 3.5 to α ≈ 5 for the German index,
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respectively. These results differ from what we obtained here for the years 2017–2020.
It seems that the tendency of the inverse cubic scaling regime to shift towards shorter
time scales has at least stopped. The distribution tails also scale worse now than before.
However, one has to notice that the years 2004–2006 were characterized by much lower
volatility than the years 2017–2020, with a lack of comparably significant, dramatic events,
which can have some impact on the results.

Figure 4. Cumulative distribution functions of the CFD returns for stock market indices NQ100 (NASDAQ), DJIA (New York
SE), S&P500 (both New York SE and NASDAQ), DAX30 (Deutsche Börse), FTSE100 (London SE), and CAC40 (Euronext).
Different sampling intervals (time scales) are shown from 1 s to 1 h. The inverse cubic scaling α = 3 (dashed line) and the
stretched exponential with β = 0.5 (dotted line) are shown in each panel to serve as a guide.

3.2. Individual Stocks

The return distributions for all individual stocks collected from four mature markets:
the U.S., German, British, and French ones are shown in Figure 5. For the shortest time
scale analyzed, three markets display approximate inverse cubic scaling of their tails:
α ≈ 3.2 (U.K. and France) and α ≈ 3.3 (Germany), while the U.S. market shows a larger
exponent: α ≈ 3.6 (see Table 2). With increasing ∆t, the distribution tail becomes thinner,
and already for ∆t = 10 s, the exponent reaches ≈3.5 (the European markets) and ≈4.0 (the
U.S. market). This seems to be the quickest departure from the α ≈ 3 behavior observed
so far for individual stocks. The scaling index increases gradually up to ∆t = 10 min, but
for 1 h, this picture is altered and only the U.S. stocks show a further increase (α ≈ 5.0),
while the exponent either stops—Germany—or even decreases—the U.K. and France (for
these two longest scales, the stretched exponential function fits the empirical distribution
better). This makes the situation less clear, but such a non-monotonous behavior was also
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observed for some scales in [16] despite a much larger set of stocks considered there (1000).
In that study (the years 1994–1995), α ≈ 5.0 was observed for the returns sampled every
50–70 trading days. Later studies reported that the scaling regime with α ≈ 3 already
broke at ∆t = 2 h for 30 DJIA stocks and at ∆t = 5 min for 30 DAX stocks [24] (1998–1999)
and then that α ≈ 3 was valid up to ∆t = 1 min and α ≈ 5 was reached for ∆t = 2 h [32]
(1000 U.S. stocks, 1998–1999). In fact, even though in Table 2 we do not observe a convincing
convergence of the empirical distributions for the European stocks towards the normal
distribution, our results show that contemporary stocks experienced an accelerated time
flow compared with the past. Of course, since we analyzed the CFD contracts instead of
the stock share spot quotations as in [16,24,32], we have to be careful in drawing decisive
conclusions from the comparison between these two asset types.

Figure 5. Cumulative distribution functions of the CFD returns for the stock shares representing different markets: the U.S.
market (USA), the German market (GER), the U.K. market (UK), and the French market (FR). In each case, the aggregated
distributions for 30 stocks with the largest capitalization are shown. Different time scales are shown from 1 s to 1 h. The
inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5 (dotted line) are shown in each panel to
serve as a guide.

The faster convergence of aggregated returns nowadays, compared with a more or less
distant past, is among others a consequence of a decreasing autocorrelation time [16,24,32].
On the other hand, somehow, an opposite process is the increase in the cross-correlation
magnitude among different stocks, which leads to stronger violation of the CLT assumption
about random variable independence and thickening of distribution tails for the stock
market indices, which can cause a later crossover to the CLT regime. For the shortest
scales available for analysis of the order of an inter-trade interval, the cross-correlations are
relatively weak due to strong noise and a longer time needed for information to spread over
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the market. However, by increasing ∆t, we also increase the cross-correlation magnitude,
which can eventually reach a saturation level with a magnitude dependent on the stocks
considered (the same industrial sector vs. different sectors, whether the stocks are included
in the same index, etc.) [34,41,44,124]. If we review the available results on this problem,
we can see that, in 1971, the saturation of the cross-correlation coefficient for the stocks of
the largest capitalization was reached at ∆t ≈ 1 day [41], while it was 1/2 h for 1998–1999
for the largest companies and a few hours for the medium-sized companies [44]. In order to
learn how much time is needed for the cross-correlation magnitude to saturate nowadays,
we calculated the Pearson cross-correlation coefficients Cij(∆t) (i, j = 1, . . . , 30) for all pairs
of stocks within each of the markets studied here. Figure 6 shows the results for the mean
coefficient 〈Cij〉 together with a mean length of the zero-return sequences in the analyzed
time series and the largest eigenvalue of the 30× 30 correlation matrix C(∆t) in which the
elements are Cij for a given ∆t and a given market. We also added two sets of U.S. stocks
that represent medium-sized and small capitalization stocks. For all sets of stocks, a trace
of saturation is observed already at the time scales of a few minutes, which is much less
than the numbers presented above that from earlier works. This validates our statement
that the market time “felt” by the assets accelerates. There is also a clear dependence of the
mean cross-correlation coefficient on stock capitalization: the larger the capitalization, the
stronger the correlation Figure 6.

Table 2. Estimated tail exponent α for the aggregated distributions of the CFD returns for 30 U.S. stocks with the largest,
medium, and small capitalizations and 30 stocks representing selected European markets.

Market Param. ∆t = 1 s ∆t = 10 s ∆t = 1 min ∆t = 10 min ∆t = 10 h

U.S. large α 3.7 4.0 3.9 4.0 5.0
β 0.47 0.54

U.S. medium α 3.7 4.1 3.8 4.0 4.0
β 0.41 0.48

U.S. small α 3.5 3.7 3.8 3.9 4.5
β 0.46 0.56

Germany α 3.3 3.6 3.8 4.2 4.2
β 0.49 0.56

U.K. α 3.2 3.5 3.9 4.2 3.6
β 0.51 0.48

France α 3.2 3.4 3.5 3.7 3.5
β 0.50 0.44

It is well-known that the cross-correlations are not stationary and that they strongly
fluctuate across time [34,125,126]. Figure 7 displays the evolution of 〈Cij(t)〉 calculated
in 30-day windows over the years 2018–2020. Two time scales are considered: 1 s and
1 h. 〈Cij(t)〉 fluctuates with a larger amplitude for ∆t = 1 h than for ∆t = 1 s. One of the
periods associated with the largest values of 〈Cij(t)〉 is 9–27 March 2020 (the COVID-19
pandemic outburst in the U.S.), when the markets underwent strong turbulence [39]. As
the cross-correlations were particularly strong during that period, we suspect that it could
contribute substantially to the tail shape of the stock return distributions.

To verify this hypothesis, we removed this period from the time series and constructed
artificial stock indices by aggregating the returns for all stocks belonging to the same set.
Figure 8 shows both the complete distributions and the resultant no-COVID ones. After
removing the COVID-19 outburst period, the distribution tails became substantially thinner,
which is particularly evident for ∆t = 1 h (see Table 3). This supports our hypothesis
that strong cross-correlations among the stocks can prevent stock indices from showing
CLT convergence for short time scales. In this case, the stretched exponential function fits
the empirical distribution better than the power-law function (Table 3). The numbers in
this table illustrate how the stock-stock correlation strength can influence the stock index
returns. While the stretching parameter β is comparable for each group of the U.S. stocks
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at ∆t = 1 s, it becomes significantly different at ∆t = 1 h, where the medium and small
companies have thinner tails than the large companies. This is because the former are less
cross-correlated than the latter and the distributions can more easily converge towards a
Gaussian in this case, even though the medium and small companies should experience
a slower time flow than the large ones, which acts towards tail thickening. From this
example, we can see that both effects compete against each other and that the actual tail
behavior depends on the interplay of both factors.

Figure 6. (Top) The mean Pearson cross-correlation coefficient 〈Cij〉(∆t) for the CFD returns as a function of time scale ∆t
for 30 companies, with the largest capitalization representing four stock markets, French (FR), German (GER), British (UK),
and American (US), and for 30 companies with medium and small capitalization from the American market. Averaging was
carried out over all pairs i, j with i > j and i, j = 1, . . . , 30. (Middle) The same was performed as above, but here, the zero
returns were filtered out before calculating the correlation coefficients. (Bottom) The largest eigenvalue of the correlation
matrix C(s) constructed from the Pearson cross-correlation coefficients Cij(s) for the same sets of stock share CFDs.
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Figure 7. Evolution of the mean Pearson cross-correlation coefficient 〈Cij〉(∆t)(t) for the CFD returns of 30 companies, with
the largest capitalization representing four stock markets, French (FR), German (GER), British (UK), and American (US),
and for 30 companies with medium and small capitalization from the American market. The coefficient was calculated in a
moving window of length of 30 days, and averaging was carried out over all pairs i, j with i > j and i, j = 1, . . . , 30. Two
time scales with ∆t = 1 s and ∆t = 1 h are shown in each case.

Table 3. Estimated tail exponent α and stretched exponent parameter β for the aggregated distributions of the CFDs returns
for 30 artificial stock indices representing different markets and different stock capitalization groups from the U.S. market.
The results for the complete data and the data without the COVID-19 outburst in March 2020 (denoted nC) are shown
for comparison.

Market # Stocks Param. ∆t = 1 s ∆t = 1 s (nC) ∆t = 1 h ∆t = 1 h (nC)

U.S. large 30 α 5.5 5.1 3.0 5.7
β 0.51 0.49 0.49 0.56

U.S. mid 30 α 4.7 4.4 2.7 6.6
β 0.43 0.41 0.48 0.72

U.S. small 30 α 4.4 4.4 5.2 5.5
β 0.43 0.41 0.74 0.76

Germany 30 α 3.7 3.8 2.3 3.9
β 0.45 0.43 0.32 0.50

U.K. 30 α 4.0 4.6 2.7 4.7
β 0.41 0.42 0.46 0.66

France 30 α 3.9 4.0 2.7 6.2
β 0.41 0.42 0.41 0.74
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Figure 8. Cumulative distribution functions of the returns of an artificial index constructed as a sum of the stock share CFD
quotes I(t) = ∑i Pi(t) for the 30 largest companies representing four stock markets, the U.S. market (USA), the German
market (GER), the U.K. market (UK), and the French market (FR). Two time scales with ∆t = 1 s and ∆t = 1 h are shown and
denoted by solid lines. In addition, the analogous distributions constructed from the CFD return time series after removing
the COVID-19 outburst period corresponding to the strongest cross-correlations among the stock shares (9–27 March 2020)
are denoted by dashed lines. The inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5
(dotted line) are shown in each panel to serve as a guide to the eye.

3.3. Currencies

Unlike the stock indices, the return distributions for the exchange rates show the
presence of increasingly thinner tails if the time scales increase, and hence, a faster con-
vergence towards the normal distribution (Figure 9). If fitted by a power function, the
differences between the individual exchange rates are smaller than those of the indices
and generally exhibit an inverse cubic decay for smaller ∆ts: for ∆t = 1 s, they vary from
α ≈ 3.0 (USD/JPY, GBP/USD) to α ≈ 3.4 (EUR/USD) and, for ∆t = 1 h, from α ≈ 4.2
(EUR/JPY) to α ≈ 5.5 (GBP/CHF) with the exception of GBP/JPY (α ≈ 2.8). The numbers
are collected in Table 4. The scaling exponent α ≈ 3 was observed in many studies of the
Forex data, including References [39,116,124,127,128]. If the stretched exponential function
is used, the best-fitted parameter β reads for ∆t = 1 s from β = 0.37 (EUR/JPY) to β = 0.48
(GBP/JPY, USD/CHF) and, for ∆t = 1 h, from β = 0.49 (EUR/USD, USD/JPY) to β = 0.87
(GBP/USD). The mean values of the scaling exponent for the analyzed time scales are
ᾱ = 3.2 (1 s), ᾱ = 3.1 (10 s), ᾱ = 3.2 (1 min), ᾱ = 3.7 (10 min), and ᾱ = 5.0 (1 h). The inverse
cubic scaling can therefore now be identified for scales shorter than 10 min. These scale
are longer than those in the years 2004–2008 for the 1-min scale ᾱ = 3.9 [124]. (It has to be
noted, however, that those earlier results were obtained by fitting the q-Gaussian functions
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instead of the power-law functions, which may make it difficult to compare the results
properly even though the relation given by Equation (8) holds). We thus observe a slower
convergence to the normal distribution now than before for ∆t = 1 h: ᾱ = 5.9 (2004–2008)
vs. ᾱ = 4.8 (2017–2020). However, if the obtained results are compared with those from the
study [116] for the years 1987–1993, the acceleration becomes visible: ᾱ = 3.9 (1987–1993)
vs. ᾱ = 4.8 (2017–2020). In that case, the inverse cubic scaling was still visible for the
30-min scale, which is much longer than both in 2004–2008 and 2017–2020. This can be
interpreted as the acceleration of the market time resulting in a faster convergence to the
normal distribution in the 2000s, but later, this phenomenon of the effective time scale
shortening disappeared.

Figure 9. Cumulative distribution functions of the major currency exchange rate returns: Swiss franc (CHF), euro (EUR),
British pound (GBP), Japanese yen (JPY), and the U.S. dollar (USD). Different time scales are shown from 1 s to 1 h. The
inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5 (dotted line) are shown in each panel to
serve as a guide.
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Table 4. Estimated tail exponent α and stretched exponent parameter β for the aggregated return distributions for the
selected currency exchange rates and the cryptocurrency prices: BTC/USD and ETH/USD.

Exchange Rate Param. ∆t = 1 s ∆t = 10 s ∆t = 1 min ∆t = 10 min ∆t = 1 h

CHF/JPY α 3.2 3.3 3.4 3.6 5.2
β 0.48 0.37 0.51 0.41 0.61

EUR/CHF α 3.3 3.6 4.0 3.9 5.2
β 0.40 0.39 0.41 0.40 0.78

EUR/GBP α 3.1 2.9 2.9 3.6 5.1
β 0.42 0.34 0.33 0.48 0.75

EUR/JPY α 3.3 3.1 3.1 4.0 4.2
β 0.37 0.29 0.39 0.64 0.58

EUR/USD α 3.4 3.2 3.4 4.4 5.2
β 0.39 0.35 0.37 0.55 0.65

GBP/CHF α 3.1 2.9 2.9 3.5 5.5
β 0.40 0.36 0.40 0.42 0.50

GBP/JPY α 3.1 2.9 3.0 3.4 2.8
β 0.48 0.34 0.36 0.54 0.37

GBP/USD α 3.0 2.9 2.9 3.3 5.1
β 0.40 0.33 0.34 0.39 0.87

USD/CHF α 3.2 3.1 3.3 4.1 5.2
β 0.45 0.52 0.38 0.48 0.62

USD/JPY α 3.0 2.9 3.0 3.5 5.2
β 0.40 0.34 0.36 0.56 0.54

BTC/USD α 2.9 3.1 3.2 3.2 3.7
β

ETH/USD α 2.8 3.1 3.2 3.3 4.3
β 0.50

3.4. Cryptocurrencies

The cryptocurrency market is strongly related to Forex and its significance has risen
steadily since its beginning [38,39]. The most important assets traded on this market in
terms of their capitalization and volume are bitcoin (BTC) and ethereum (ETH). Their
return distributions are shown in Figure 10. For ∆t up to 10 min, the power-law function
approximates the data well, with the tail exponent displaying the same inverse cubic
scaling for BTC and ETH: α ≈ 2.8 (1 s), α ≈ 3.1 (10 s), α ≈ 3.2 (1 min), α ≈ 3.3 (10 min).
In contrast, for ∆t = 1 h, the crossover is observed and the tail exponent rises to α ≈ 3.7
for BTC and to 4.2 for ETH. (The stretched exponential function does not fit the data in
the tail region, except on the 1 h scale for ETH) A good agreement between the empirical
distributions of the cryptocurrency price returns expressed in major regular currencies
and the inverse cubic scaling paradigm has already been reported [38–40,128], and it was
interpreted as a sign of maturation (it used to be even more heavy-tailed with α ≈ 2.2
before 2014 [38,73]). A crossover for the same scale ∆t = 1 h has also been reported [128].

A more time-resolution-oriented analysis [129] showed that the BTC dynamics can
actually be compounded with alternating phases of fluctuations with different statistical
properties. For example, during the COVID-19 outburst in March 2020, the BTC returns
were characterized by α ≈ 1.8, which corresponds to the Lévy stability, but typically, the
scaling index resided between 2.0 and 3.5 during the years 2019–2020 [129]. In contrast,
the Lévy-stable distribution of daily returns with α ≈ 1.3 was reported to fit the BTC
empirical data (the years 2011–2017) in [130], but there, the model was fitted to the whole
distributions, not only the tails, and the analyzed period also covered the early years of the
cryptocurrency market when it was immature. These may be a source of the discrepancy
mentioned above.
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Figure 10. Cumulative distribution functions of the bitcoin-dollar exchange rate returns (BTC/USD) and the ethereum-
dollar exchange rate returns (ETH/USD). Different time scales are shown from 1 s to 1 h. The inverse cubic scaling α = 3
(dashed line) and the stretched exponential with β = 0.5 (dotted line) are shown in each panel to serve as a guide.

3.5. Commodities

Figure 11 shows the return distributions for the commodity CFDs (see also Table 5).
Out of the commodities considered in our study, gold (XAU) has the strongest decay with
increasing ∆t: α ≈ 2.6 (1 s), α ≈ 3.1 (10 s), α ≈ 3.6 (1 min), α ≈ 3.6 (10 min), and α ≈ 4.2
(1 h). This has to be compared to α ≈ 2.5 for daily returns covering the years 1969-1999 [37]
and 5-min returns covering the years 2012–2018 [36]. It is instructive to address why the
tail for ∆t = 1 s is so thick that α falls significantly below 3. We therefore identified a period
of the largest gold price fluctuations, which occurred at the COVID-19 outburst in the U.S.
during March and April, and removed it from the time series. The resulting distributions
are shown in Figure 12 (left panel) for ∆t = 1 s, 1 min, and 1 h (dashed lines) together
with the complete ones (solid lines). It is evident that, for ∆t = 1 s, the thickest part of the
tail becomes thinner α ≈ 3.2, while no significant alternation is observed for ∆t = 1 min
(α ≈ 3.6) and 1 h (α ≈ 4.2). The distribution tails roughly agree in this case with the inverse
cubic scaling on time scales that become increasingly short with time.

Compared to gold, silver (XAG) shows stronger invariance under the time scale
change: α increases from 2.8 (1 s) to 3.0 (1 h), while it was 2.5 (positive tail) and 2.8 (neg-
ative tail) for the daily returns over the years 1969–1999 [37]. High-grade copper return
distributions (HG) reveal the most wandering behavior: its scaling exponent goes from
α ≈ 3.7 (1 s) through α ≈ 3.6 (10 s), α ≈ 3.1 (1 min), and α ≈ 3.9 (10 min) to α ≈ 2.7 (1 h)
compared to α ≈ 2.6 (negative tail; daily data) and α ≈ 2.8 (positive tail) for the years
1971–1999 [37].
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Table 5. Estimated tail exponent α and stretched exponent parameter β for the aggregated distributions of the CFDs returns
for the selected commodities: high-grade copper (HG), crude oil (CL), silver (XAG), and gold (XAU).

Commodity Param. ∆t = 1 s ∆t = 10 s ∆t = 1 min ∆t = 10 min ∆t = 1 h

HG α 3.8 3.6 3.1 3.9 2.7
β 0.42 0.49 0.36 0.45 0.25

CL α 2.6 2.3 2.3 2.0 2.5
β 0.48 0.29 0.28 0.41 0.43

XAG α 2.8 2.9 2.9 3.0 3.0
β 0.47 0.36 0.37 0.38 0.43

XAU α 2.6 3.1 3.6 3.6 4.2
β 0.49 0.62 0.42 0.51 0.85

Figure 11. Cumulative distribution functions of the CFD returns for commodities: high-grade copper
(HG), the U.S. crude oil (CL), silver (XAG), and gold (XAU). Different time scales are shown from
1 s to 1 h. The inverse cubic scaling α = 3 (dashed line) and the stretched exponential with β = 0.5
(dotted line) are shown in each panel to serve as a guide.

Crude oil return distributions (CL) have the thickest tails with the scaling exponent
2.0 ≤ α ≤ 2.6 and with no signature of the CLT convergence. In parallel to what was
observed for gold, we removed the COVID-19 outburst period from the time series and
calculated the distributions again—see Figure 12 (right panel). Such incomplete signals
are characterized by α = 3.0 for ∆t = 1 s and α ≈ 2.7 for ∆t = 1 h. These numbers
have to be compared with α ≈ 2.9 (negative tail) and α ≈ 3.1 (positive tail) reported
for the WTI oil daily returns covering the years 1988–1998, with α ≈ 2.0 (negative tail)
and α ≈ 2.8 (positive tail) reported for the crude oil daily returns covering the years
1983–1999 [37], and with α ≈ 3.0 (negative tail) and α ≈ 3.1 (positive tail) for the WTI oil
5-min returns covering the years 2012–2018 [36]. As those values do not differ much from
each other, there is no evidence that the crude oil returns change their global dynamics
over time. However, during the market turbulence that happened during the COVID-19
pandemic, the dynamics did change considerably, which was manifested by thickening the
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distribution tail for all considered time scales. It is noteworthy that the crude oil was the
asset that was affected the strongest by the pandemic: in April 2020, the price of the May
series of WTI oil futures even dropped below 0.

Figure 12. Cumulative distribution functions of the CFD returns for gold (XAU) and the U.S. crude
oil (CL) after removing the COVID-19 outburst period (March–April 2020). Different time scales are
shown from 1 s to 1 h. The inverse cubic scaling α = 3 (dashed line) and the stretched exponential
with β = 0.5 (dotted line) are shown in each panel to serve as a guide.

4. Summary

In this study, we analyzed high-frequency quotations of the CFD contracts associated
with the stock market indices, the stocks themselves, and the selected commodities as
well as with the most frequently traded currency exchange rates and the cryptocurrency
prices. All of the data sets covered the years 2017–2020 except for the stock share CFDs,
which covered the years 2018–2020. We analyzed the returns at a few different time scales
from 1 s to 1 h and constructed the return distributions in order to investigate their tails.
Our principal objective was to compare the tail behavior of the distributions derived from
contemporary data with the behavior of the distribution tails in the past for the same
assets. We applied the power-law function and the stretched exponential one to model the
empirical distributions. A hypothesis that we planned to verify was the one formulated
in [24,32,34], which states that, together with the acceleration of the information flow and
processing across the financial markets, we can observe a significant change in the statistical
properties of the returns at a particular time scale related to an effective acceleration of the
market time with all of the possible consequences of this fact.

The results are mixed. On the one hand, the stock market indices (DJIA, DAX30,
and S&P500, for which the present results can be compared directly with earlier works)
do not show any further signatures of the time acceleration compared with the data
from 1998–1999 and 2004–2006. It seems that the acceleration that was reported in [24,32]
stopped or was only a temporary effect. Such effects were already reported before for
Asian markets [35,69] as well as in this work regarding the stocks, so they may be a source
of the observed behavior. On the other hand, the results for the individual stock groups
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show that the market time acceleration can still be ongoing, but it is masked at the level
of indices owing to the cross-correlations among the stocks that are now stronger and
developing faster than even during the years 2004–2006 [32]. That particular time interval
(2004–2006) was characterized by a volatility much smaller than in recent years, which
witnessed large market events such as the flash crash on 5 February 2018, the coronavirus-
related unsteadiness in early 2020 and the subsequent rally ending with new record highs
of S&P500 in August, the oil price drop in April 2020, etc. Large events, especially large
falls, elevate the market correlation level, which can influence the statistical properties of
data, including the distribution of returns. The auto- and cross-correlations are involved in
an interesting interplay between two opposite-acting factors. The first factor is the market
time flow speed, which works for market efficiency by shortening the period when the
market autocorrelations are admissible. This factor shifts gradually the low-α behavior and
the central limit theorem’s realm to ever shorter time scales. The second factor is the asset
cross-correlation strength, which causes thickening of the tails and decreases in α and β.
It also violates the assumption of random variable independence and prevents the CLT
from affecting the aggregated returns. This interplay and its consequences are interesting
enough to be worthy of some more attention in future analyses. In particular, they can be
responsible for the reported behavior of the return distributions in different time periods
and suppressing the effects of the market time acceleration.

Currency exchange rates also no longer feel the market time acceleration such as that
during 2004–2006 [32], but now, not only is there no further time scale shortening but
also a moderate step backwards is observed: the inverse cubic scaling is seen at longer
time scales than in 2004–2006 but is still significantly shorter than that during the years
1987–1993 [116]. The cryptocurrencies (BTC and ETH) show the same crossover scale as
before—equal to 1 h [131]. Since this market is relatively young, it underwent a phase of
strong market time acceleration after 2013, and now, it seems to be stabilized. It is still
the market that shows the most exemplary inverse cubic scaling behavior across different
scales out of all the markets analyzed in this work. Gold price CFDs show a clear difference
between the present results and the distribution tails over the years 1969–1999 [37] and
2012–2018 [36] with increased tail slope during the recent years. In contrast, there is no
clear change in the tail slope regarding silver, high-grade copper, and crude oil.

It should be noted, however, that the CFD contract price quotations analyzed here
are not precisely the same as the related asset spot price quotations, which the authors
of other works dealt with. This difference may partially account for the difference in the
outcomes. Finally, the COVID-19 pandemic outburst that took place in March–April 2020
in the U.S. constituted a strong perturbation to all the markets, caused large-amplitude
price fluctuations, and led to a strong increase in the cross-correlations among many assets.
For example, it resulted in decreasing distribution tail slopes for the CFD returns for crude
oil and gold. Even more significant were the bitcoin fluctuations, which become Lévy
stable for the pandemic-outburst period.

In general, our results indicate that the monotonous shift in the time scales at which
different types of dynamics can be observed in the financial data as well as the related
continuously accelerating market time from past to present are oversimplified. In fact, there
can be an underlying long-term trend of this type, but it is “decorated” with short-term
phases of abrupt acceleration and, then, deceleration and stagnation. Our results indicate
that the real market dynamics consists of continuous alternation of different regimes with
different statistical properties that can form the overall impression of the market evolution
direction. Together with the aforementioned problem of how the asset cross-correlations
and the shortening autocorrelations compete against each other in shaping the statistical
properties of data, it opens an intriguing direction for future work.
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Appendix A

Table A1. List of stocks that are included in the stock sets considered in Section 3.2. Capitalization is given in billions (109)
of currency units.

U.S. Large U.S. Medium U.S. Small U.K. Large German Large French Large

Ticker USD Ticker USD Ticker USD Ticker GBP Ticker EUR Ticker EUR

AAPL 2000 BIDU 68.6 CAG 18.7 RDSB 107.4 VOW3 140.6 VK 330.9
MSFT 1784 NSC 68.1 MGM 18.4 ULVR 105.7 SAP 126 MC 288

AMZN 1537 CL 67.7 CAH 18.3 AZN 94.2 SIE 112.5 OR 181.3
GOOGL 1378 SHW 67 CTL 18.1 RIO 88.7 ALV 89.5 SAN 105.2

FB 805 SO 65.9 ULTA 17.6 HSBA 86.4 DTE 81.8 FP 102.8
BABA 625 APD 63.1 OMC 16.3 DGE 70.4 DAI 80.6 AIR 78.9
BRKB 593 ICE 62.6 TIF 16 BATS 62.3 BAS 65.3 KER 74.8
TSM 592.8 D 60.9 DVN 14.8 BP 59 MRK 62.3 SU 73.8
TSLA 582 ADSK 59.5 AAL 14.7 RB 46.3 DPW 57.6 AI 65.9
JPM 473 ADI 56.6 WYNN 14.5 BLT 44.2 BMW 57.3 BNP 65.1

V 458 ILMN 56.2 WHR 14.1 PRU 40.6 VNA 56.7 CS 54.9
JNJ 438.5 PGR 55.9 L 13.8 AAL 39.5 ADS 52.8 SAF 51

WMT 383.5 VRTX 55.8 SJM 13.7 GLEN 38.1 BAYN 52.3 DG 50.8
MA 360 BSX 54.8 TEVA 12.7 VOD 37.7 IFX 47.6 RI 42.1

UNH 358.2 EMR 54.7 IPG 11.5 REL 35.5 HEN3 38.5 BN 37.8
DIS 337 NOC 53.7 DVA 11.5 LSE 35.3 MUV2 37 ACA 36.3
PG 336 HUM 53.3 NWL 11.4 BARC 31.7 PAH3 28.7 EDF 35.4

BAC 331 MET 53.1 GPS 11.3 NG 30.7 DB1 26 VIV 30.4
HD 324 PBR 53 TAP 11.3 LLOY 30.3 EOAN 26 ENGI 29.3

NVDA 318 REGN 51 CF 9.7 CPG 26.7 RWE 23.2 ORA 27.8
PYPL 277 TWTR 50 NRG 9.2 CRH 26.3 CON 22.8 SGO 26.8
INTC 261 KHC 49.9 KSS 9.1 EXPN 23.4 DBK 21.2 CAP 24.9

CMCSA 252.6 NEM 49.8 MRO 8.7 RBS 22.4 FRE 20.9 LR 21.3
XOM 243 F 49 X 6.9 AHT 20.1 BEI 20.5 UG 19.4

VZ 243 DG 48.6 MAT 6.9 WOS 20.1 FME 18.4 GLE 19.2
KO 231.6 ITUB 48.4 APA 6.8 ABF 19.4 HEI 15.3 ALO 16.2

NFLX 228 MAR 48 AA 6.1 CCL 18.1 TKA 7.1 EN 13
ADBE 224 FCX 47.7 JWN 6 TSCO 17.6 CBK 6.6 PUB 12.7
CSCO 222 KMB 47 M 5.1 LGEN 16.9 LHA 6.6 VIE 12.6

T 217.9 LVS 46.8 EQT 5.1 ANTO 16.7 LXS 5.5 CA 12.3
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21. Drożdż, S.; Kwapień, J.; Grümmer, F.; Ruf, F.; Speth, J. Quantifying the dynamics of financial correlations. Phys. A Stat. Mech.

Its Appl. 2001, 299, 144–153. [CrossRef]
22. Lillo, F.; Bonanno, G.; Mantegna, R.N. Variety of stock returns in normal and extreme market days: The August 1998 crisis.

In Empirical Science of Financial Fluctuations; Takayasu, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 77–89.
23. Kaizoji, T.; Bornholdt, S.; Fujiwara, Y. Dynamics of price and trading volume in a spin model of stock markets with heterogeneous

agents. Phys. A Stat. Mech. Its Appl. 2002, 316, 441–452. [CrossRef]
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44. Kwapień, J; Drożdż, S.; Speth, J. Time scales involved in emergent market coherence. Phys. A Stat. Mech. Its Appl. 2004,

337, 231–242. [CrossRef]
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127. Gębarowski, R.; Oświęcimka, P.; Wątorek, M.; Drożdż, S. Detecting correlations and triangular arbitrage opportunities in the

Forex by means of multifractal detrended cross-correlations analysis. Nonlinear Dyn. 2019, 98, 2349–2364. [CrossRef]
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131. Drożdż, S.; Minati, L.; Oświęcimka, P.; Stanuszek, M.; Wątorek, M. Competition of noise and collectivity in global cryptocurrency

trading: Route to a self-contained market. Chaos 2020, 30, 023122. [CrossRef]

http://dx.doi.org/10.1016/j.physa.2005.06.095
http://dx.doi.org/10.1016/j.physa.2005.06.095
http://dx.doi.org/10.1016/j.physa.2012.01.023
http://dx.doi.org/10.5506/APhysPolB.43.2021
http://dx.doi.org/10.2307/2296483
http://dx.doi.org/10.2307/2330926
http://dx.doi.org/10.1111/j.1540-6261.1980.tb03508.x
http://dx.doi.org/10.1016/0378-4266(90)90009-Q
http://dx.doi.org/10.1007/s007800050018
https://git.dhimmel.com/bitcoin-whitepaper/
https://git.dhimmel.com/bitcoin-whitepaper/
http://dx.doi.org/10.1016/j.physa.2007.04.122
http://www.ethereum.org
https://www.dukascopy.com
http://dx.doi.org/10.3390/e23030352
http://www.kraken.com
http://dx.doi.org/10.1088/1367-2630/12/10/105003
http://dx.doi.org/10.1016/S0378-4371(01)00119-4
http://dx.doi.org/10.1007/s11071-019-05335-5
http://dx.doi.org/10.3390/fi11070154

	Introduction
	Data
	Results
	Stock Market Indices
	Individual Stocks
	Currencies
	Cryptocurrencies
	Commodities

	Summary
	
	References

