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A. Supplementary Material
A.1. External Validity of Data Collected

In Table S1, we summarize information about the asset prices predicted and the various
measures of accuracy. Overall, our participants are collectively accurate — in agreement
with past Wisdom of the Crowd studies [23,24] — indicating that their predictions are
being thoughtfully elicited. This is evidenced by the fact that

• The crowd’s mean prediction error is much less than the overall price change of the
assets for the 3-week prediction period.

• The crowd is generally doing more than just linear extrapolation as their error is
smaller than than from a linear extrapolation model (using a first order price momen-
tum prediction).

• The crowd’s collective prediction error over each round tracks (and sometimes out-
performs) the futures of each asset being predicted (we calculate the futures error as
the difference between the futures price and the asset price). Because futures prices
are commonly used a measure of the global market’s prediction of the price asset
[115,116], the fact that the crowd’s performance is on-par with the futures prices
indicates that our dataset is externally valid.

Note that the higher relative errors in round 2 are an artifact of the fact that a few
dollars’ error on the lower price (about $45 per share) of WTI Oil seems like a higher error
compared to same absolute error on the higher prices of the other assets ($1300 per gold
share and $2100 per S&P 500 share).

Table S1: Summary of data collected. Our crowd is accurate, and sometimes even outper-
forms the futures underlying the asset.

Prediction Round
1 2 3 4 5 6 7

Asset S&P 500 WTI Oil Gold S&P 500 S&P 500 S&P 500 S&P 500
Grounth Truth 2037.41 45.95 1335.80 2153.74 2126.41 2191.95 2262.53
Num. Prediction Sets 284 207 134 1174 925 1441 469
Price Change (%) 4.01 11.03 3.63 1.77 1.75 2.24 3.56
Linear Extrapolation Error (%) 6.66 16.4 1.26 1.62 2.75 0.75 3.10
Crowd Mean Error (%) 2.22 4.95 0.46 0.84 0.58 3.20 2.40
Futures Mean Error (%) 2.03 3.05 0.94 0.38 0.40 0.48 1.50

Additionally, whenever we predict a final closing price, we only use participant
prediction data up to the week before the day of prediction (i.e., we don’t use any data
during the last week of the round) so that our predictions are not too easy. We use each
asset’s futures price as a proxy for the prediction of the entire market to test the external
validity of our crowd’s predictions. To do so, we chose the start and end dates of each
round so that the expiry dates of the asset’s underlying futures would not affect the price of
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both the asset and its futures. Financial data (asset and futures prices) is obtained through
Barchart.com’s API.

A.2. Momentum Transformation of Price History

When using price history BT , the time-series of prices needs to first be transformed
into a cognitively-interpretable likelihood distribution [65]. A number of methodologies
and approaches exist, and here we use a simple, interpretable, and theoretically-motivated
approach from prior work [66,67] where it has been shown that people process time-series
as a distribution of changes as opposed to a distribution of the quantity itself. In our case,
this means that we cannot just use the prices from the price history as a histogram, and
should instead create a histogram of daily changes (slopes) in prices. Therefore, for each
day’s price Bt, a daily rate, rt, of asset price change is calculated for each day t during the
6-month interval that a participant is shown, rt =

Bt−Bt−1
Bt

. Then these rates are used to
create a histogram (similar to the histogram of social information) and this rate histogram
is utilized for both the simple Gaussian models and the numerical models.

In the simple Gaussian models the mean of this histogram (which is the mean rate r̄t
over the 6 month period) is multiplied by the number of days between the pre-exposure
prediction and the final day of the prediction round (for when the asset’s price is being
predicted) to obtain the post-exposure prediction, Bpred

post = Bpre + Bpre.r̄t.ndays. The same
calculation is done for the numerical model, but for each bin in the rates histogram.

A.3. Modeling Belief Update

Here we formally describe the derivation of the simple Gaussian models and the
numerical models and how the posterior is estimated.

A.3.1. Approximate Gaussian Approach:

We describe GaussianSocial here. GaussianPrice follows the same derivation, sub-
stituting the social histogram BH with the price history BT .

Our notation here follows that of [117]. We assume that people’s estimate of the
future price before information exposure, Bpre, is being sampled from an internal prior
distribution [80], and that the sample we obtain is indicative of the mean of the prior
distribution following the results of [118].

We suppose that people think each asset has a true value, V∗, which people are trying
to estimate to predict the future asset value, V (the ground truth); that prior beliefs about
V∗ follow a Normal (Gaussian) prior distribution, V∗ ∼ Normal(µprior, σprior); and that
evidence about V∗ can be understood as being generated from a Normal distribution,
Normal(V∗, σdata). In this case the posterior beliefs people have follows a simple form.
Letting information content be defined as the inverse of the Normal distribution’s variance
I = 1

σ , we have that

µposterior =
µprior · Iprior + µdata · Idata

Iprior + Idata
. (1)

Additionally, the social histogram is treated as representing the information content
of data about V∗, then we have:

µposterior =
Bpre · Iprior + BH · Idata

Iprior + Idata
. (2)

The GaussianSocial rule therefore can be viewed as reflecting an assumption of a
Normal distribution as a mental model, and assuming private information and social
information have the same information content (Iprior = Idata), which gives:

µposterior =
Bpre + BH

2
. (3)
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Although simple, this belief update approach has been shown to faithfully model
people’s belief update in a variety of domains from predicting movie grossing revenue to
pharaoh reign lengths. [28,29]

A.3.2. Numerical Approach:

Here, we can use a numerical approach by binning the likelihood distributions to esti-
mate the posterior distribution using Monte Carlo methods. Because we do not have access
to the distribution of the prior belief of each participant (as we only have an individual
point estimate for each prediction set), we still have to approximate the prior. We model
the prior to be Gaussian, with the mean set as the pre-exposure prediction of a participant,
Bpre, and the standard deviation set as the standard deviation of the social histogram BH or
the standard deviation of the price history BT , depending on which likelihood distribution
we are modeling with.

We estimate the posterior distribution Pposterior(b) of a participant’s post-exposure
prediction b in the following way: let bj be a unique value in BH, and PBH (bh) be the
probability density of bh in BH. Let Pprior(b) be the density of b in the parametrized prior
distribution. The posterior distribution for the numerical model is defined as Pposterior(b) =

PBH (b)×Pprior(b)
∑bj∈BH

PBH (bj)×Pprior(bj)

when using the social information BH . The distributions is simple enough that sam-
pling was not needed. After computing this posterior distribution, we use the mean of the
distribution as the modeled updated belief of a participant.

A.3.3. Evaluating Model Error

For all models, we compute the residual error between the model’s prediction of the
posterior (µ∼Pposterior(V)) and the actual post-exposure prediction (Bpost) as: (µ∼Pposterior(V) −
Bpost)/Bpost. For the approximate approach, µ∼Pposterior(V) is simply the mean of the normal
distribution representing the posterior, while in the numerical approach, the mean is
estimated through averaging over all bins of the empirical distribution (the distribution is
small enough that sampling was not needed).

For all models, the 95% confidence intervals are calculated as follows: we assume the
data follows Student’s t-distribution since the variance of the true distribution is unknown
and, therefore, we estimate it from the sample data. Let se be the estimated standard error
of the sample mean and te be the t-value for the 95% confidence interval desired, which can
be computed via inverse t-distribution. The lower and upper limits for the 95% confidence
interval are [µe − tese, µe + tese], where µe is the estimated sample mean.

Table S2: Values of the residual for each round for all models. Numbers in parentheses
show the 95% confidence interval.

ROUND

MODEL 1
(S&P 500)

2
WTI Oil

3
Gold

7
(S&P 500)

8
(S&P 500)

9
(S&P 500)

12
(S&P 500)

GaussianSocial 1.53 (0.19) 3.97 (0.48) 1.08 (0.13) 0.92 (0.04) 0.70 (0.04) 1.51 (0.07) 1.23 (0.13)
GaussianSocialModes 1.94 (0.20) 4.85 (0.54) 1.30 (0.19) 1.24 (0.05) 0.98 (0.04) 1.88 (0.08) 1.64 (0.13)

NumericalSocial 2.01 (0.23) 5.24 (0.61) 1.60 (0.25) 1.52 (0.08) 1.07 (0.06) 2.31 (0.10) 2.31 (0.22)
NumericalPrice 2.25 (0.23) 8.70 (0.87) 2.64 (0.19) 1.57 (0.08) 1.09 (0.06) 2.36 (0.10) 2.75 (0.23)
GaussianPrice 2.46 (0.24) 10.3 (0.92) 2.70 (0.22) 1.59 (0.07) 1.13 (0.06) 2.41 (0.10) 2.72 (0.22)

DeGroot 2.04 (0.22) 5.32 (0.60) 1.52 (0.13) 1.71 (0.07) 1.17 (0.06) 2.51 (0.09) 2.27 (0.21)

A.3.4. Boostrapping

Our reported value of improvement (the one in Fig. 4) is over 100 random bootstraps
with replacement.

As defined in section 3.3.3 in the main text, the error of a subset Sαs is

ei,Sαs
=
|∑j∈Sαs

[Bpost,j]−Vi|
Vi

(4)
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and the error for all predictions, the Wisdom of the Crowd is:

ei,Sall =
|∑j∈Sall

[Bpost,j]−Vi|
Vi

(5)

Which means that the improvement of a subset, within a bootstrap b for a particular round
i is

ISαs
b,i = |ei,Sαs

− ei,Sall | (6)

In Fig 4, we report the average improvement in accuracy over rounds i and over boot-

straps b, ∑b[∑i[I
Sαs
b,i ]]. Similarly, the risk of this subset Sαs over rounds i is

√
∑i[(ISαs

b,i −∑i[I
Sαs
b,i ])

2].
We use standard deviation instead of variance as it is the more popular measure of risk in
practice [15]. For both the average improvement and the risk, we obtain the 95% confidence
intervals over the bootstraps.

A.4. Table of Subset Improvement and Risk

Table S3: Improvements achieved by subsetting predictions via αs for all rounds. 95%
confidence intervals are calculated through 100 bootstraps.

αs Improvement Improvement CI Risk Risk CI
-1.00 0.526 0.015 0.914 0.019
-0.92 0.866 0.013 1.584 0.021
-0.84 0.839 0.018 1.463 0.029
-0.76 0.882 0.014 1.552 0.025
-0.68 0.880 0.017 1.467 0.028
-0.60 0.798 0.019 1.408 0.038
-0.52 0.734 0.031 1.254 0.060
-0.44 0.682 0.038 1.186 0.069
-0.36 0.607 0.040 1.060 0.081
-0.28 0.344 0.067 0.941 0.073
-0.20 0.435 0.041 1.744 0.039
-0.12 -0.382 0.079 1.344 0.160
-0.04 0.032 0.044 0.498 0.035
0.04 -0.161 0.093 0.952 0.138
0.12 0.292 0.052 0.882 0.068
0.20 0.274 0.037 1.043 0.067
0.28 0.145 0.041 0.923 0.073
0.36 0.044 0.036 0.891 0.059
0.44 -0.073 0.039 0.793 0.060
0.52 -0.095 0.035 0.858 0.073
0.60 -0.238 0.034 0.605 0.051
0.68 -0.432 0.031 0.493 0.029
0.76 -0.460 0.023 0.606 0.032
0.84 -0.620 0.018 0.692 0.017
0.92 -0.885 0.011 0.742 0.014
1.00 -1.021 0.009 0.963 0.012

Table S4: Improvements achieved by subsetting predictions via αs only for predictions the
week before Brexit. Confidence intervals are calculated through 100 bootstraps.

αs Improvement (%) CI
-1.0 -3.14 0.65
-0.2 -0.61 0.15
0.2 -0.66 0.09
0.6 -1.02 0.07
1.0 -1.03 0.05
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A.5. Brexit Data

We deployed one of our experiments right before the Brexit vote during which there
was a lot of market uncertainty [31]: the prediction round starting on June 1st 2016 ended
on June 24th 2016, the day of the Brexit vote, and participants were predicting the price of
the S&P 500, an asset sensitive to global events [119,120].

We collected 284 prediction sets during the first 2 weeks of the round, and 52 sets in the
last week during which the global financial market first overestimated then underestimated
the final price of the S&P 500 asset leading to a 3.7% crash, as shown in the candlestick plot
in Fig. S1.
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Figure S1. The close, low, and high price of the asset and its underlying futures are shown as
candlestick plots. The asset and futures overestimated the price and then crashed during the last
week.
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