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Abstract: Cyber–physical systems (CPS) have been widely employed as wireless control networks.
There is a special type of CPS which is developed from the wireless networked control systems
(WNCS). They usually include two communication links: Uplink transmission and downlink trans-
mission. Those two links form a closed-loop. When such CPS are deployed for time-sensitive
applications such as remote control, the uplink and downlink propagation delay are non-negligible.
However, existing studies on CPS/WNCS usually ignore the propagation delay of the uplink and
downlink channels. In order to achieve the best balance between uplink and downlink transmissions
under such circumstances, we propose a heuristic framework to obtain the optimal scheduling
strategy that can minimize the long-term average control cost. We model the optimization problem
as a Markov decision process (MDP), and then give the sufficient conditions for the existence of the
optimal scheduling strategy. We propose the semi-predictive framework to eliminate the impact
of the coupling characteristic between the uplink and downlink data packets. Then we obtain the
lookup table-based optimal offline strategy and the neural network-based suboptimal online strategy.
Numerical simulation shows that the scheduling strategies obtained by this framework can bring
significant performance improvements over the existing strategies.

Keywords: cyber–physical system; wireless networked control system; remote control; communica-
tion control co-design; age of information

1. Introduction

In the recent past, applications of the wireless control networks have become more and
more extensive, such as drone formations, autonomous vehicles, automatic factories, etc.
Some of those scenarios implicate new requirements for remote control technology, which
is a sub-topic of communication control co-design. Remote control technology originates
from wireless control systems with long propagation delay such as far-sea monitoring and
high-efficiency satellite IoT. The main cause of long propagation delay is the large-scale
geographic distance. This feature makes it extremely challenging to design CPS under this
scenario. In order to meet the need of remote control with propagation delay, that is, to
maintain stable closed-loop control and reduce control costs, we propose a new framework
to design uplink and downlink scheduling strategies.

As show in Figure 1, a typical CPS deployed under the single closed-loop control
scenario contains a control system and a communication system. In the rest of this article,
we use single-loop CPS to refer to this specific type of CPS. The communication process
of a typical single-loop CPS can be divided into two parts: Uplink sensor transmission
and downlink controller transmission. The uplink transmission is initiated by the sensor
and sends the state update packet from the plant to the controller. The controller first
uses this data to obtain a more accurate estimate of the factory status. Then the downlink
transmission is initiated to send command information from the controller to the actuator
located at the factory. The actuator acts on the factory to maintain the factory’s stability.
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Taking into account the characteristics of a control system, the command can only be
generated with an accurate estimation, which means the downlink transmission must
occur after a successful uplink transmission . Because of this fixed timing relationship,
CPS has to work in half-duplex in most cases: namely, only one of the uplink sensor
transmission and the downlink controller transmission can be activated to send a data
packet in the same time slot. That means there is a problem of how to design a scheduling
strategy between those two transmissions. Note that the uplink and downlink channels
here are not just a single wireless channel, but a simplified modeling of a fixed routing
link with multiple relays. This scenario is for some special remote control systems that
use satellites as relays. Therefore, the propagation delay in our paper is essentially a
collection of various delays contained in the entire relay link, including processing delay,
transmission delay, propagation delay, etc. This unified modeling is used because the link
characteristics of a fixed routing multi-relay link can be described by an equivalent link
with a specific code error rate and propagation delay.

There are many related works about WNCS and CPS [1–4]. Focusing on the conflict
of the accuracy requirements of control systems and the limited quantization level [5],
proposed the application of dynamic quantization technology in the communication control
co-design. Some works designed CPS with the limitation of wireless coding process,
such as code length allocation [6,7], code length design [8,9] and adaptive code length
adjustment [10]. Considering the fading characteristics of transmission channels, studies
of adaptive transmit power adjustment technology by predicting the fast or slow fading
of transmission channels are proposed in [11,12]. Some of the above studies include the
idea of designing CPS for time-sensitive applications. Nowadays, the most widely used
measure of timeliness is Age of Information (AoI) [13], which is defined as the time elapsed
since a certain data packet was generated:

∆(t) = t− t′ (1)

where t represents the current time, t′ represents the time when the packet was generated.
It used to be very difficult to express the control performance measurement, that is, the
system state mean square error (MSE) [14] when the control system and the communication
system are combined. The proposal of AoI changed this situation. For example, the system
state MSE of a linear time invariant system (LTI) can be simply expressed as a function
of AoI. This improvement greatly reduces the difficulty of describing the overall system
performance in the communication control co-design scenario [15,16].

Figure 1. Cyber–physical system deployed under the single closed-loop control scenario.

Based on AoI, many related studies have been derived, such as the application of
the HARQ mechanism for single-loop CPS to improve the overall timeliness [17,18], and
the scheduling strategy aiming to minimize the long-term average MSE for single-loop



Entropy 2021, 23, 714 3 of 19

CPS without transmission delay [19]. Some studies about the multi-loop scheduling
strategy design aiming at optimizing timeliness have also been proposed. Reference [20]
focuses on the design of the data inter-arrival rate and code length allocation strategy.
References [21,22] proposed the uplink scheduling strategy of multi-loop WNCS under the
ideal assumption of downlink transmission. Furthermore, the authors of [23,24] discuss
the application of data packet transmission result prediction technology in WNCS design.

The scenarios studied above concern mainly short-distance Industrial Internet of
Things (IIoT), so the impact of uplink and downlink propagation delay on the closed-loop
control performance of a CPS is generally ignored. Besides, the above studies only consider
one of the two code error rates of the uplink and the downlink transmission. Under the
remote control scenario, the code error rates and propagation delay of both links are not
only non-negligible, but also have a huge impact on the overall performance of the single-
loop CPS. Some works have studied the design of WNCS optimal control strategy under
time-delay scenarios [25–27]. However, they do not consider the impact of the code error
rate and the scheduling strategy which are issues that cannot be ignored in the design
of communication systems in the field of communication engineering. To this end, we
propose a new framework to obtain the optimal scheduling strategy while considering
both the code error rates and propagation delay. This strategy can minimize the long-term
average control cost.

Firstly, we model the single-loop CPS as an MDP problem and give the sufficient con-
ditions for the stability of CPS. Secondly, we propose a heuristic semi-predictive framework
to eliminate the impact of the coupling characteristic between the uplink and downlink data
packets. Finally, we obtain the lookup table-based optimal offline strategy and the neural
network-based suboptimal online strategy for the single-loop CPS. The whole process can
be expanded according to actual deployment requirements with any fixed propagation
delay as long as the sufficient condition is satisfied.

The rest of this paper is organized as follows: In Section 2, we provide the system
model and formulate the optimization problem. In Section 3, we introduce the semi-
predictive framework and transform the optimization problem into an MDP problem.
In Section 4, we obtain the optimal offline strategy and the suboptimal online strategy.
In Section 5, we show the numerical simulation results. We conclude this work in Section 6.

2. System Model
2.1. The Plant of the Single-Loop CPS

First, we model the plant in the single-loop CPS as a discrete-time LTI system:

Xk+1 = AXk + BUk + Zk, ∀k (2)

where k represents the k-th time slot, Xk ∈ R represents the state of the plant at time slot
k, Uk ∈ R represents the executed control command, Zk ∈ R represents the normally
distributed plant noise whose mean and variance are z̄ and R, respectively. A ∈ R
represents the state transition coefficient, B ∈ R represents the command control coefficient.
We assume that the plant state remains unchanged within a single time slot. The goal of
CPS is to maintain X around 0.

2.2. The Communication Process of the Single-Loop CPS

In the previous subsection, we explained that the entire single-loop CPS works in the
half-duplex mode. Now we will explain the communication process of the single-loop CPS.
The entire system adopts a centralized scheduling scheme because this scheme is more
suitable for single-loop CPS. Under this scheme, the scheduling decision of uplink and
downlink transmission is completely determined by the remote controller. We use ak to
represent the scheduling decision made by the controller in the time slot k. If the controller
schedules uplink transmission in the slot k, ak = 1. If the controller schedules downlink
transmission in the slot k, ak = 2. We assume that the code error rate of the uplink and
downlink transmission channels are ps, pc ∈ (0, 1), respectively. Both code error rates are
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constant which means the uplink and downlink transmission fails with probability (ps, pc)
in any time slot, respectively. Then we use δk to represent the transmission result of the
packet sent in the time slot k. No matter which transmission is scheduled, if it succeeds,
then δk = 1. Otherwise, δk = 0. Since the processing procedures of most actual CPS are
digital, the packets that have experienced a certain delay will start to be processed in the
next processing cycle after it is received; we model the propagation delay of the uplink and
downlink channel integer time slots dup, ddown ∈ R, respectively. To simplify the analysis,
we assume that the transmission of scheduling instructions and feedback information
is ideal.

In addition to the variables described above, we define the following two parameters
to describe the status of each part in a single-loop CPS:

(1) State Estimation Age τk: This is defined as the age of the latest valid uplink state
update packet successfully received by the controller at the end of the time slot k. τk reflects
the accuracy of the estimation maintained by the remote controller. Because of the uplink
propagation delay, the minimum value of state estimation age is dup. When the specific
time slot is not considered, it is abbreviated as τ. Its update rule is as follows:

τk+1 =

{
dup if (aj = 1)& (δj = 1)
τk + 1 otherwise

(3)

where j = k− dup + 1.
(2) State Control Age ϕk: This is defined as the age of the uplink packet used to

generate the latest successfully received downlink packet by the actuator at the end of the
time slot k. This parameter represents the total time it takes for the entire CPS to complete a
closed-loop control process. It reflects the degree of divergence of the plant’s state. Because
of the uplink and downlink propagation delay, the minimum value of the state control
age is dup + ddown. When the specific time slot is not considered, it is abbreviated as ϕ. Its
update rule is as follows:

ϕk+1 =

{
τq + ddown if (aq = 2)& (δq = 1)
ϕk + 1 otherwise

(4)

where q = k− ddown + 1. The abbreviations j and q will be used in the rest of this paper.
Note that we set the initial values of τ0 and ϕ0 to be 2. These values can be arbitrarily
selected within a reasonable range. This is because the long-term average cost we focus on
is not affected by those initial values.

2.3. The Control Process of the Single-Loop CPS

In this subsection, we will explain the control process of the single-loop CPS in detail,
which is mainly completed by the remote controller and the actuator. The task of the remote
controller can be divided into three parts: Maintaining state estimation, generating control
commands, and scheduling uplink and downlink transmissions, while the actuator has
only one task: Executing the received control commands.

(1) Maintaining State Estimation: We assume that the sensor can sample the state of
the plant without distortion. The uplink transmission cannot be scheduled in every time
slot. What is more, the scheduled transmission can fail because of the code error occurring
during its propagation process. So the remote controller cannot receive a new state update
packet in every time slot. Under these circumstances, the remote controller has to update
the estimation X̃k of the plant state Xk through the following process:

X̃k + 1 =

{
gdup(Xj, k) if (aj = 1)& (δj = 1)
AX̃k + BUk otherwise

(5)

where g(X, k) = AX + BUk, gn(X, k) = g(gn−1(X, k − 1), k) ∀n > 1, and g1(X, k) =
g(X, k). In this scenario, this estimation method has been proven to be optimal [28].
When a certain uplink transmission is successful, the remote controller can use the plant
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state Xk−dup+1, which is the exact value for dup − 1 time slots before, to obtain the state
estimation X̃k + 1 of the next time slot. When the current time slot has no successful uplink
transmission, the controller can only update X̃k + 1 with X̃k. According to this process, we
can derive the state estimation MSE of the remote controller as Q̃k:

Q̃k = E[(X̃k − Xk)
2] (6)

Note that the state estimation error of the remote controller is entirely caused by the noise
Zk. By using the state estimation age τk, we can rewrite the state estimation MSE as a
recursive function of the noise variance R:

Q̃k+1 =
{

f (dup) if (aj = 1)& (δj = 1)
f (τk + 1) otherwise

(7)

where f (x) = ∑x
i=1 (A2)

i - 1R. Equation (6) uses the definition of AoI to derive the MSE
of the estimation. This representation greatly reduces the difficulty of calculation. In the
following part, we will use the same idea to derive the single-loop CPS control perfor-
mance metrics.

(2) Control Command Generation and Execution: In each time slot, while the remote
controller maintains the state estimation, it also uses the estimation to generate a control
command Ũk:

Ũk = KX̃k (8)

where K is the command generation coefficient. The goal of this control process is to
maintain the state around 0. Since the downlink transmission has a propagation delay
of ddown time slots, we must ensure BK = −Addown . To simplify the analysis, we set
B = −Addown , K = 1. Due to the code error rate and scheduling decisions, not every
control command Ũ can be received by the actuator. Only those scheduled and successfully
transmitted can be used by the actuator. Therefore, the control command executed by the
actuator is Uk+1:

Uk+1 =

{
Ũq if (aq = 2)& (δq = 1)
0 otherwise

(9)

where q = k− ddown + 1. This control method shown by (8) and (9) is called single-step
control, which is a common form in the field of classic cybernetics. Using this method,
when a control command is successfully delivered to the actuator, the actual state value
will return to a value as close to 0 as possible at one time. Such a process can maximize the
effect of a single instruction.

(3) Single-Loop CPS Control Performance Metrics: Consistent with the estimation
performance metrics, the control performance metrics is defined as the state MSE of the
plant Qk:

Qk = E[X2
k ] (10)

Similar to Q̃k, we can rewrite Qk as a function of noise variance R and state control age ϕ:

Qk+1 =
{

f (τq + ddown) if (aq = 2)&(δq = 1)
f (ϕk + 1) otherwise

(11)

According to the control cost given by Equation (11), we can obtain the long-term average
control cost, that is, the long-term average plant state MSE:

J = lim
K→∞

1
K

K

∑
k=0

Qk (12)
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Equation (12) reflects the state deviation in the field of classic cybernetics which is the core
cost metrics we care about. Please note that this parameter used to be very difficult to
quantify without the introduction of AoI. Under certain conditions, the limit contained
in Equation (12) may not exist, and the problem is unsolvable. In order to prevent such
situations, the sufficient condition for the stability of WNCS with propagation delay will
be given later, namely equation (19). In this paper, the scheduling strategy will be designed
on the premise that equation (19) is satisfied.

(3) Uplink and Downlink Scheduling Process: In the previous subsection, we intro-
duced the control performance measurement of a single-loop CPS. Now we will describe
the scheduling process in detail. It has been explained that a single-loop CPS has two
communication scenarios—the uplink transmission and the downlink transmission—and
we can only choose one of them in each time slot under half-duplex mode. According to
the previous definition, the scheduling decision of time slot k is recorded as ak. The set of
scheduling decisions of all time slots is called a scheduling strategy:

π , (a1, a2, . . . , ak, . . .) ∈ Π (13)

where Π represents the set of all scheduling strategies. Different scheduling strategies can
significantly affect the control performance of a single-loop CPS. Every scheduling strategy
π has its corresponding long-term average control cost Jπ . Among all scheduling strategies,
there is an optimal strategy π∗ ∈ Π, which satisfies:

Jπ∗ 6 Jπ , ∀π ∈ Π (14)

Therefore, we can construct the following optimization problem. The goal of this
problem is to minimize the long-term average plant state MSE to obtain the optimal
scheduling strategy while taking transmission propagation delay and code error rates of
two wireless channels into account, namely

min
π

lim
K→∞

1
K

K

∑
k=0

Qk (15)

3. Semi-Predictive Framework and MDP Modeling

In this section, we will introduce the coupling characteristic between the uplink and
downlink data packets which is caused by their propagation delay. In the following paper,
we will use the coupling characteristic to refer to the coupling characteristic between the
uplink and downlink data packets to save space. We propose a semi-predictive framework
to eliminate the effect of the coupling characteristics on the solution of optimization
problem (15). Based on this framework, we remodel this optimization problem to an MDP
problem. Note that the semi-predictive framework we proposed is suitable for any value of
the uplink and downlink propagation delay. For the generality, we use dup = ddown = 1 as
an example to illustrate the scheduling strategy design process. In the actual applications
with different propagation delay, we only need to modify the value of dup, ddown and adjust
some parameters in the following modeling step to meet specific design requirements.

3.1. The Packet Outdate Problem

Section 2 introduced the control mechanism of a single-loop CPS. Through the above
analysis, it is easy to see that state update packets and control command packets have
strong coupling characteristic for single-step control methods. Actually, such a coupling
characteristic exists in any closed-loop control scenario as long as there exists propaga-
tion delay. This characteristic will cause some successfully delivered packets to become
outdated. As shown in Figure 2, the green and red arrows represent state update packets
up1 (left green arrow), up2 (left red arrow) and the control command packets down1 (right
green arrow), down2 (right red arrow), respectively. The command down1 is generated by
the controller using up1, while down2 is generated by the controller using up2. During the
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period from the slot up2 sent to the slot down2 executed, if down1 is executed successfully,
both up2 and down2 become invalid. In time slot 4, down1 is executed; the result is that the
real state of the plant was returned to a value around 0. This process causes an interruption
in the state estimation process which means the estimation updated by up2 is no longer
accurate, so up2 is outdated. Since up2 is outdated, the control command down2 which
was generated from it is also outdated. This is the main effect of the coupling characteristic
and we named it the packet outdate problem.

As we can see, this problem is mainly caused by the discontinuity in the dynamic
process of the plant. The discontinuity only occurs when a downlink control command is
executed, which means the uplink state update packet will not cause this problem. When
this happens, the outdated uplink and downlink data packets require different processing
methods. For an outdated downlink packet, it only needs to be discarded. However, for
an outdated uplink packet, we have to backtrack the state estimation before this outdated
packet is used. We show the evolution of the state estimation age and state control age in
Figure 2. It can be seen that the state estimation age has been backtracked by changing
from τ(3) = 2 to τ(4) = 4. The state control age will not be updated like this.

Figure 2. Analysis of Packet Outdated Phenomenon.

3.2. Main Idea of the Semi-Predictive Framework

In the previous subsection, we explained that the packet outdate problem has an
impact on the update of the state estimation age, but this problem does not affect the
update of the state control age. Therefore, when we try to construct a theoretical analysis
framework, as long as the state control age is correct, the final analysis result can be
guaranteed to be correct. In other words, the state estimation age of some time slots is
allowed to deviate from the actual physical process. As long as it can be ensured that the
state estimation age is accurate when the downlink data packet arrives at the actuator, the
correct theoretical analysis can be guaranteed. It can be seen that it is possible to skip the
state estimation age backtracking process in the theoretical analysis by using this feature.
This is the main idea of the semi-predictive framework.

In the normal communication process, the decoding result of a data packet can only
be determined after it arrives at the destination. For an uplink data packet, only after
it arrives at the controller can it be known whether the data packet can be successfully
decoded, while for a downlink packet, only after it arrives at the actuator can it be known
whether the data packet can be successfully decoded. However, under the semi-predictive
framework, we assume that the transmission result of a downlink packet is known as soon
as the downlink packet is sent. Note that we do not predict the result of an uplink packet.
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This is because the execution of the downlink command is the root cause of the packet
outdated problem.

Take the case of Figure 2 as an example again; if we can foresee that the downlink
control command packet down1 can be successfully decoded and is not outdated, then
during the period from its sending to its arrival, any packets sent or arrived can be directly
discarded since they will be outdated by down1. Through this process, the impact of the
packet outdated problem is eliminated and state estimation age backtracking is avoided.

While the update process of the state estimation age under the semi-predictive frame-
work is different from the actual physical process, the scheduling strategy obtained based
on this framework can still be directly applied to an actual physical process. In the actual
physical process, if a downlink data packet arrives at the actuator successfully and is not
outdated, then the uplink and downlink transmissions scheduled during its transmission
must be outdated. In other words, no matter what scheduling decision the controller made,
those packets sent during this period will be outdated. In other words, those scheduling
decisions can be arbitrary since they do not affect the final result. Assuming that the
downlink control command packet down1 in Figure 2 can be successfully decoded and not
outdated, we will explain both age update processes under the semi-predictive framework
and the actual physical process in detail.

(1) Semi-Predictive Framework: If down1 can be successfully decoded and not out-
dated, then the controller knows that it does not matter whether it chooses uplink or
downlink during the transmission of down1 because those scheduled packets will be out-
dated anyway. Under these circumstance, a reasonable scheduling strategy is to regularly
schedule one of the uplink and downlink transmissions during this period to consume time.

(2) Non-Predictive Framework (Actual Physical Process): In the actual physical pro-
cess, during the transmission of down1 , the controller continues to schedule uplink or
downlink transmissions according to a certain strategy. However, when down1 is received
and decoded successfully, the previous scheduled transmissions of the controller are all
outdated. So in the end, the scheduled transmissions during this period only consume
time and have no practical effect.

It can be observed that, under the semi-predictive framework and the actual non-
predictive scheduling, the single-loop CPS transmission results are uniform; that is, it is
accurate to use the semi-predictive framework in the theoretical design and directly apply
the results to the real applications. This subsection qualitatively analyzes the unity of the
semi-predictive framework and the actual physical process. In the next subsection, we
will quantitatively illustrate how this framework corresponds to actual physical processes
through MDP modeling.

3.3. MDP Modeling of the Semi-Predictive Framework

Based on the semi-predictive framework, we model the single-loop CPS with uplink
and downlink propagation delay as an MDP process with the following four elements:

(1) State Space: The state space of this MDP is

S , {a′(−dmax + 1), . . . , a′(−1), a′(0), D(0), τ(0), ϕ(0)} (16)

where dmax = max{dup, ddown}, D(n) ∈ {0, 1, · · ·, ddown + 1}. a(n) represents the schedul-
ing decision made in the time slot n. D(n) represents the time interval between the time
slot when the latest valid downlink command packet (successfully transmitted and not
outdated) in the time slot n was generated and the current time slot n. τ(n) and ϕ(n) rep-
resent the state estimation age and the state control age at the time slot n, respectively. The
time slot n is based on the current time slot: The time slot for which scheduling decisions
are being made. Taking a′(−1) as an example: It represents the transmission action taken
in the previous time slot of the current time slot. We set both the uplink and downlink
propagation delay to be 1 for illustration in the rest of this paper, so the corresponding state
space is: S , {a′(0), D(0), τ(0), ϕ(0)}. In the subsequent sections of this paper, the state
space is abbreviated as S , {a′, D, τ, ϕ} to save space.
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(2) Action Space: The action space is A , {0, 1}. This action space corresponds to the
scheduling action ak. If the controller schedules uplink transmission in the slot k, ak = 1. If
the controller schedules downlink transmission in the slot k, ak = 2.

(3) State Transition Probability Matrix: The transition matrix is P(s′|s, a). The state
transition probability is the probability that the next state is s′ by taking action a in the
current state s. The transition probability is determined by the channel code error rate.
According to the different parameter pairs: (a′, D) in the state S, the state transition matrix
can be divided into five parts: (a′, D) = [(1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]. The complete
construction rules are given in Appendix A.

(4) Cost Function: It can be seen from (4) and (11) that the cost function in a specific
state is independent of the action. The cost function can be expressed as a function of the
state control age ϕk:

C(s, a) = Qk(s) = f (ϕk) (17)

In the MDP modeling of the semi-predictive framework, the core parameter is D(n).
We limit its maximum value to ddown + 1 because we only need to track the downlink
transmissions in the past ddown time slots to ensure that we do not miss any possible packet
outdated problems. Besides, such process can help to reduce the scale of the state space.
The update rule of D(n) is as follows:

Dk+1 =

{
0 if (ak = 2)& (δk = 1)
max(ddown + 1, Dk + 1) otherwise

(18)

This updated process reflects the main idea of the semi-predictive framework and guaran-
tees that it will not cause any differences between the state control ages of the theoretical
analysis and the actual physical processes. In the next section, we will use the semi-
predictive framework to design the optimal scheduling strategy.

4. Online and Offline Scheduling Strategies

In this section, we first give the sufficient condition for the existence of the optimal
scheduling strategy. Then we use the relative value iteration algorithm to obtain the
lookup table-based optimal offline strategy. Aiming at reducing the space complexity of
the algorithm and saving space for storing the optimal offline strategy, we further propose
a neural network-based suboptimal online strategy. For different uplink and downlink
propagation delay, the acquisition process of both strategies is universal, which means that
the semi-predictive framework has high practical application value.

4.1. Sufficient Conditions for the Strategies’ Existence

Theorem 1. (Sufficient conditions for the stability of multi-loop half-duplex CPS with fixed uplink
and downlink propagation delay.) Assuming there are K single-loop CPS, all of them share the same
controller and form up a multi-loop CPS. If the controller can only schedule L uplink transmissions
or L downlink transmissions in each time slot, then for each single-loop CPS i, if the code error
probability of its corresponding uplink and downlink channels satisfies

max
{

pi,up, pi,down
}
<

(
1

(Ai)
2

)dK/Le

, i ∈ {1, 2, . . . , K} (19)

then there must exist a stationary deterministic scheduling strategy that can stabilize the multi-loop
CPS. This stability remains as long as the uplink and downlink propagation delay are fixed, but the
long term control performance metrics converge to a larger value with the increase of the propagation
delay. When K = 1, L = 1 the above multi-loop CPS is just a single-loop CPS.The proof is given in
Appendix B.

The essence of this sufficient condition is to link the instability of the control system
with the reliability of the communication system. When the reliability of the communication



Entropy 2021, 23, 714 10 of 19

system is higher than the instability of the control system, an optimal scheduling strategy
can be found for the communication system to meet the needs of the control system. This
condition can effectively guide the design of single- and multi-loop CPS.

4.2. Lookup Table-Based Optimal Offline Strategy

Since there is no theoretical upper limitation for the state estimation age and the state
control age, the scale of the MDP state space is infinite, so it must be truncated before
solving. We select N = max{τ, ϕ} as the truncation condition, and use the relative value
iteration algorithm to solve the MDP problem. When the value of N is appropriate, this
truncation will have no effect on the control performance. Such a suitable N can be obtained
by conducting Monte Carlo experiments. In this section, we take N = 10 as an example to
show the resulting scheduling strategy in Figure 3.

Figure 3. Optimal Off-line Policy with N = 10. Red squares represent action a = 1; yellow squares
represent action a = 2.

In Figure 3, those red squares represent that the controller schedules uplink trans-
mission in the corresponding state, and the yellow squares represent that the controller
schedules downlink transmission in the corresponding state. As shown in Figure 3a,c,d, if
D = {0, 1}, no matter which transmission is scheduled, the related packet will be outdated.
So under this circumstance, the scheduling strategy can choose any action arbitrarily. Since
we chose the relative value iterative algorithm to solve the MDP problem, the strategy
we obtained chooses to use uplink transmission to fill these unnecessary transmissions.
Note that this part corresponds to the description of Section 3 part C. We take down1 as
an example again: In the actual physical process, it is not known that the next two trans-
missions are unnecessary transmissions after down1 is sent. The controller does not know
that D = {0, 1}. Instead, it thinks that D is still equal to 2 at those time slots. Therefore,
the controller continues to schedule according to the scheduling strategy. However, down1
makes those two packets outdated when it is executed, while for those states whose D = 2,
the controller can make a scheduling decision with the right state information. The entire
process makes sure that the actual process is consistent with the theoretical process.

After obtaining this scheduling strategy, it is stored as a lookup table by the controller
and does not require any extra calculation ability from the controller, so we call it an
offline strategy. However, since the iterative algorithm is a model-based algorithm, as
N gradually increases, the scale of the state space NS = 2 · 3 · N · N = 6N2 in the MDP
modeling increases exponentially. This leads to a sharp increase in the space complexity
of the solving process and the lookup table could be too large to be stored. In order to
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solve these problems, we propose an improved scheme based on neural network in the
next subsection.

4.3. Neural Network-Based Suboptimal Online Strategy

In Section 3, we remodeled the optimization problem to an MDP problem, and solved
it to obtain the optimal offline strategy in the previous subsection. The optimal offline
scheduling strategy based on the lookup table has two obvious shortcomings: The size of
the lookup table increases linearly as the total number of states in the state space increases
and the space complexity required in the calculation process increases exponentially as the
total number of states increases. When the optimal offline strategy is actually deployed,
there is no guarantee that the central controller has enough storage space to store the
entire lookup table. It may even be impossible to perform calculations because the state
space is too large. Therefore, here we design a new suboptimal online scheduling strategy
based on neural network. The idea of this strategy is to replace the lookup table in the
previous strategy with a neural network to save storage space. Neural network is a very
ideal approximation function of lookup table, theoretically it can be approximated without
error. That means in the theory of reinforcement learning, this strategy can achieve the
performance of the optimal strategy. We will show that the performance of this suboptimal
online strategy is very close to the performance of the optimal offline strategy in the
next section.

In order to obtain this neural network, we use a the model-free algorithm called
Deep Q Network (DQN). The algorithm continuously learns the hidden laws of the MDP
problem by interacting with the environment and continuously trains the neural network to
obtain better performance. We show the detailed process of the algorithm in Algorithm 1.

Algorithm 1: Deep Q Network Algorithm.

Data: State: S , {a′, D, τ, ϕ}
Result: Action values: A(s, a)
initialization;
Initialize data set M;
Initialize evaluation network Q with random weights: θ;
Initialize target network Q̂ with random weights: θ′;
for E = 1 : 2000 do

Initialize the environment;
Set the origin state s1 ∈ S randomly;
for t = 1 : 1000 do

Choose a random at with probability 1− ε;
Otherwise choose at = arg maxaQ(s, at−1; θ);
Execute at in the environment;
Observe reward rt and get new state st+1;
Store transition data (st, at, rt, st+1) in M;
Sample random mini batch of transitions (sj, aj, rj, sj+1) from M;

Set yj =

{
rj if episode ends at step j + 1

rj + γmaxa′ Q̂(sj+1, a′; θ′) otherwise
;

Perform RMSprop on (yj −Q(sj, aj; θ))2 with θ;
Every 100 steps, set Q̂ = Q

end
end

The structure of the neural network we obtained is shown in Figure 4: Four neurons in
the input layer, fifty neurons in the hidden layer, and two neurons in the output layer. This
neural network-based scheduling strategy is an online strategy which means that, in order
to use this strategy, the current state s must be input to the neural network first. Then the
controller needs to run real-time calculations to obtain the action values A(s, a) for taking
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different actions in the current state. The action value represents how much reward can
be obtained by taking the action, so the scheduling strategy is to select the action with the
largest A(s, a) among all actions.

DQN is a relatively mature reinforcement learning algorithm, so we only give the
parameter settings of this algorithm and briefly introduce its training process. We run
E = 2000 episodes, and each episode contains 1000 steps. In each step, this algorithm
executes the greedy strategy with a probability of ε = 0.7, and the random strategy with a
probability of 1− ε = 0.3. After each step, one state transition datum is stored in the data
set. The scale of this data set is M = 2048, and it is updated in a loop covering manner. A
new episode is automatically initialized every 1000 steps. In the meantime, the training
process is performed every T = 256 steps, the algorithm selects B = 512 data from the data
set for training. The optimizer we used is the Root Mean Square prop optimizer (RMSprop).

With the help of the DQN algorithm, we can obtain the neural network-based subopti-
mal online strategy. The controller only needs to store the node value of this network, and
then calculates the action value in real time according to the current state in each time slot.
In other words, this strategy saves a lot of storage space by consuming a small amount of
computing ability of the controller. Such an advantage makes this strategy very meaningful
in practical applications.

Figure 4. Neural Network Structure.

5. Numerical Simulation

In this section, we run the numerical simulation on those strategies we proposed
and some existing strategies. We illustrate the advantages of the proposed strategies
through comparison. First we introduce two benchmark strategies. The first is the switch
scheduling strategy, that is, alternate uplink and downlink transmissions between each
time slot; the second is the insist scheduling strategy, that is, continuous scheduling of
uplink or downlink transmissions until success, then the transmission is exchanged.

The parameter settings in the numerical simulation are as follows: The state transition
coefficient is A = [1.1, 1.3], the code error rates of the uplink and downlink channels
are ps = pc = [0.1, 0.2], the specific values are marked on the curve obtained from the
simulation. The initial state of the plant is X0 = 1. The noise distribution is N (z̄ = 0,
R = 1). The command control coefficient is B = −A. The initial state control variable is
s0 = (a0, D0, τ0, ϕ0) = (1, 1, 2, 2). The corresponding initial scheduling action is a0 = 1.
The initial state of the controller estimation is X̃o = 1. The range of truncated state space is
N = max{τ, ϕ} = 20. The plant noise follows normal distribution N (z̄ = 0, R = 1). Each
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strategy runs 500 episodes with 10,000 time slots each episode. The final long-term average
plant state MSE is the average of the results of 500 episodes.

Figure 5 show the long-term average MSE of four strategies with A = 1.3 and
ps = pc = [0.1, 0.2]. It can be seen that the MDP strategy, that is, the optimal offline
strategy, has the best performance among all strategies, which also is the best performance
that all possible scheduling strategies can achieve. While the performance of the neural
network-based online strategy has slightly decreased, it is still significantly ahead of the
existing strategies, and the performance gap between the optimal offline strategy and the
suboptimal online strategy is very small. This gap can be eliminated in theory, but due to
the limitations of deep reinforcement learning technology, it is currently difficult to fully
achieve the optimal performance. It is relatively simple to obtain a suboptimal strategy
with very close performance.
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Figure 5. Long-term average plant state MSE of four policies with A = 1.3 and ps = pc = [0.1, 0.2].

Figure 6 show the performance comparison between the optimal offline strategy and
the two existing strategies under different state transition coefficient A. The suboptimal
online strategy is not shown because it has been explained that the suboptimal strategy
can theoretically approach the optimal. The state transition coefficient and the channel
code error rates both reflect the instability of the control system and the reliability of the
communication system in Equation (19). Combined with Figure 5, it can be seen that their
influence on CPS is the same. A larger state transition coefficient or a higher channel code
error rate lead to an increase in the long-term average plant state MSE, and when they
exceed a certain limit and no longer satisfy Equation (19), the long-term average MSE of
the CPS no longer converges, which means the single-loop CPS is unstable.
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Figure 6. Long-term average plant state MSE of three policies with ps = pc = 0.2 and A = {1.1, 1.2}.

6. Conclusions

We proposed the semi-predictive framework to design scheduling strategies for single-
loop CPS with uplink and downlink propagation delay. This framework can obtain the
optimal offline strategy which is the upper bound on the performance among all strategies
and a suboptimal online strategy with more practical application value. By adjusting the
parameters, the semi-predictive framework can meet the need of any practical applications.
We introduced the complete process of designing scheduling strategies under this frame-
work by taking a specific situation as an example. The numerical simulation proved that
the obtained strategies can effectively improve the performance of the existing strategies.
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Appendix A. Construction Rules of the State Transition Probability Matrix

Here we give the complete construction rules of the state transition matrix. Firstly, we
give all the possible new states after a state transition as follows:
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s′1 = (1, 2, τ + 1, ϕ + 1) (A1)

s′2 = (2, 2, τ + 1, ϕ + 1) (A2)

s′3 = (2, 0, τ + 1, ϕ + 1) (A3)

s′4 = (1, 2, 1, ϕ + 1) (A4)

s′5 = (2, 2, 1, ϕ + 1) (A5)

s′6 = (2, 0, 1, ϕ + 1) (A6)

s′7 = (1, 1, τ + 1, τ + 1) (A7)

s′8 = (2, 1, τ + 1, τ + 1) (A8)

Secondly, we use R and R′ to mark the transmission results. R represents the result of
the downlink transmission scheduled in the next time slot. R′ represents the result of the
uplink transmission arrived in the next time slot. Note that R is known by prediction while
R′ is known by normal communication process. These abbreviations can help to simplify
the expression of the rules.

We will give the construction rules in the form of P[s′|s, c] = p which means that
when the condition c is satisfied, the previous state s transfers to the new state s′ with a
probability of p.

When s = (1, 1, τ, ϕ):
P[s′1|s, a = 1] = 1
P[s′2|s, a = 2] = 1

(A9)

When s = (2, 0, τ, ϕ):
P[s′7|s, a = 1] = 1
P[s′8|s, a = 2] = 1

(A10)

When s = (2, 1, τ, ϕ):
P[s′1|s, a = 1] = 1
P[s′2|s, a = 2] = 1

(A11)

When s = (2, 2, τ, ϕ):

P[s′1|s, a = 1] = 1
P[s′2|s, a = 2, R = 0] = pc
P[s′2|s, a = 2, R = 1, τ = ϕ] = ps · (1− pc)
P[s′3|s, a = 2, R = 1, τ 6= ϕ] = ps · (1− pc)

(A12)

When s = (1, 2, τ, ϕ):

P[s′1|s, a = 1] = ps
P[s′2|s, a = 2, R′ = 0, R = 0] = ps · pc
P[s′2|s, a = 2, R′ = 0, R = 1, τ = ϕ] = ps · (1− pc)
P[s′3|s, a = 2, R′ = 0, R = 1, τ 6= ϕ] = ps · (1− pc)
P[s′4|s, a = 1, R′ = 1] = 1− ps
P[s′5|s, a = 2, R′ = 1, R = 0] = (1− ps) · pc
P[s′6|s, a = 2, R′ = 1, R = 1] = (1− ps) · (1− pc)

(A13)

Appendix B. Proof of Theorem 1

Appendix B.1. Scheduling 1 Subsystem per Time Slot without Delay

To prove sufficient conditions, we only need to prove that there exists a stationary
deterministic strategy that can make multi-loop CPS stable. Here we prove that the round-
robin insist scheduling strategy can keep the system stable. We first prove the case of L = 1.
Round-robin means that in every K time slots, the controller schedules each subsystem
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once in turn, and the scheduling sequence is fixed from i = 1 to i = K. Insist refers to when
scheduling each subsystem, continuously scheduling uplink or downlink transmission
until it succeeds, then switch to another transmission. Therefore, the actions of a single
subsystem under the round-robin insist scheduling strategy can be given in the form of the
following time axis:

The time axis between two consecutive successful downlink scheduling is recorded
as a control loop. It can be seen that the AoI evolution process of each control loop of one
subsystem is:

(1) The initial estimation age is equal to the control age: n′K
(2) The current subsystem waits for the completion of the scheduling of other subsystems,

that is, silence (k− 1) time slots, and then schedules the uplink transmission when it
is scheduled again. If the uplink transmission fails, the subsystem waits another (k-1)
time slots and tries again until the uplink transmission is successful. This step takes
mK time slots. At the end of this step, the estimated age is 0, and the control age is
(n′ + m)K;

(3) After the current subsystem silences for (K − 1) time slots, it switches to schedule
downlink transmission continuously until it succeeds. This step takes nK time slots.
At the end of this step, the estimated age is equal to the control age: nK. Then it
finishes a close control loop.

Note that the time slots included in a complete control loop are the time slots marked
in red on the coordinate axis in Figure A1, that is, the control age ranges from n′K to
(n′ + m + n)K. Each control loop has repeatability, so we only need to prove that the
long-term average cost within the range of one control loop converges.

Figure A1. The round-robin insist scheduling strategy.

According to the channel error probability, the M uplink transmissions and N down-
link transmissions in each control loop can be modeled as a geometric distribution with
the probability of success being (1− ps) and (1− pc) respectively. M and N are different
in each control loop, N′ Represents the number of downlink transmissions in the previ-
ous loop of the current control loop. (n′, m, n) are their specific observations. Ci and Ti
represent the total cost and total time of the i-th control loop of the current subsystem
respectively:

Ci =
(m+n)K−1

∑
q=0

f (n′K + q) =
(m+n)K

∑
q=1

f (n′K + q− 1) (A14)

Ti = (m + n)K (A15)

where f (ϕ) = ∑
ϕ
i=1 (A2)

i−1. Next, we can express the long-term average cost as:

J = lim
t→∞

C1 + C2 + · · ·+ Ct

T1 + T2 + · · ·+ Tt
=

E[C]
E[T] (A16)

E[C] =
∞

∑
n′

∞

∑
m

∞

∑
n

(
E[C|N′ = n′, M = m, N = n]

· P[N′ = n′, M = m, N = n]

)
(A17)

E[L] =
∞

∑
n′

∞

∑
m

∞

∑
n

(
(m + n) · K · P[N′ = n′, M = m, N = n]

)
(A18)
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It can be seen that if E[C] is bounded, then J is bounded. According to the definition
of Ci and the three geometrical distributions (N′, M, N), which are independent of each
other, we have:

E[C|N′ = n′, M = m, N = n] =
(m+n)K−1

∑
q=0

f (n′K + q) =
(m+n)K

∑
q=1

f (n′K + q− 1) (A19)

P[N′ = n′, M = m, N = n]

= P[N′ = n′] · P[M = m] · P[N = n]

= (1− pc)pc
n′−1(1− ps)ps

m−1(1− pc)pc
n−1

(A20)

Choose pmax = max{ps, pc}, we can derive that:

E[C] 6 α1 ·
∞

∑
n′

∞

∑
m

∞

∑
n

(
(m+n)K

∑
q=1

f (n′K + q− 1) · pmax
n′+m+n

)
(A21)

where α1 = (1− pc)pc
−1(1− ps)ps

−1(1− pc)pc
−1. Since f (·) is a strictly increasing func-

tion and (n′, m, n) are all greater than 0, we can derive that:

E[C] < α2 ·
∞

∑
n′

∞

∑
m

∞

∑
n

(
(n′ + m + n) · f (n′K + mK + nK) · pmax

n′+m+n
)

(A22)

where α2 = K(1− pc)pc
−1(1− ps)ps

−1(1− pc)pc
−1. We abbreviate n′ + m + n as i, that

is, i = n′ + m + n. Considering i > 3, and when i = n′ + m + n is a fixed value, the
possible combinations of (n′, m, n) > 1 satisfy the mathematical relationship of ∑

n′
∑
m

∑
n
(1) <

(n′ + m + n)3, namely:

∑
n′

∑
m

∑
n
(n′ + m + n) < (n′ + m + n)3 · (n′ + m + n) (A23)

∑
n′

∑
m

∑
n
(i) < (i)4 (A24)

We can derive that:

E[C] < α2 ·
∞

∑
i

(
i4 · f (iK) · pmax

i
)

(A25)

Since there are always exist p > pmax and n < ∞, satisfying i4 pmax
i < pi, ∀i > n. So

we have:

∞

∑
i

(
i4 · f (iK) · pmax

i
)
<

∞

∑
i

(
f (iK) · pi

)
(A26)

So if
∞
∑
i

(
f (iK) · pi) < ∞, then

∞
∑
i

(
i4 · f (iK) · pmax

i) < ∞. Now seeking the conditions for

the stability of the multi-loop CPS subsystem is transformed into seeking the conditions

for the establishment of
∞
∑
i

(
f (iK) · pi) < ∞. For f (iK), we have:

f (iK) =
iK

∑
q=1

(A2)
q−1

= 1 + A2 + A4 + · · ·+ A2(iK−1) =
1− (A2)

iK

1− A2 (A27)

For
∞
∑
i

(
f (iK) · pi), we have:
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∞

∑
i

(
f (iK) · pi

)
=

∞

∑
i

(
1− (A2)

iK

1− A2 · pi

)
=

1
1− A2

∞

∑
i

(
(1− (A2)

iK
) · pi

)
=

1
1− A2

(
∞

∑
i

(
pi − (A2)

iK
pi
))

=
1

1− A2

(
∞

∑
i

(
pi
)
−

∞

∑
i

(
(A2)

iK
pi
)) (A28)

So in order to ensure that 1
1−A2

(
∞
∑
i

(
pi)− ∞

∑
i

(
(A2)

iK pi
))

< ∞ is satisfied, it is obvious

that p < 1 and A2K p < 1 must stand, that is, p <
(

1
A2

)K
. This completes the proof.

Appendix B.2. Scheduling L Subsystems per Time Slot without Delay

When each time slot can schedule L subsystems, the corresponding strategy can be
set to multiple independent round-robin insist scheduling strategies. It can be ensured that
the round-robin cycle of each subsystem does not exceed dK/Le, and the follow-up proof
is consistent with Appendix B.1.

Appendix B.3. Scheduling L Subsystems per Time Slot with Delay

For a specific subsystem, we assume that the fixed delay for each transmission is Di
frames, which is equivalent to the uplink and downlink scheduling in the control lcfoop
must be delayed by DiK time slots for AA reception, so the formula (A19) is modified
as follows :

E[C|N′ = n′, M = m, N = n]

=
(m+n + 2D)K−1

∑
q=0

f (n′K + DK + q)

=
(m+n + 2D)K

∑
q=1

f (n′K + DK + q− 1)

(A29)

Since E[D] = E[Di] = D is a constant which has no effect on the subsequent proof, the
proof process is consistent with Appendix B.1.
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