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Abstract: In the paper, we begin with introducing a novel scale mixture of normal distribution such
that its leptokurticity and fat-tailedness are only local, with this “locality” being separately controlled
by two censoring parameters. This new, locally leptokurtic and fat-tailed (LLFT) distribution makes
a viable alternative for other, globally leptokurtic, fat-tailed and symmetric distributions, typically
entertained in financial volatility modelling. Then, we incorporate the LLFT distribution into a
basic stochastic volatility (SV) model to yield a flexible alternative for common heavy-tailed SV
models. For the resulting LLFT-SV model, we develop a Bayesian statistical framework and effective
MCMC methods to enable posterior sampling of the parameters and latent variables. Empirical
results indicate the validity of the LLFT-SV specification for modelling both “non-standard” financial
time series with repeating zero returns, as well as more “typical” data on the S&P 500 and DAX
indices. For the former, the LLFT-SV model is also shown to markedly outperform a common,
globally heavy-tailed, t-SV alternative in terms of density forecasting. Applications of the proposed
distribution in more advanced SV models seem to be easily attainable.

Keywords: stochastic volatility; Markov chain Monte Carlo; Bayesian inference; leptokurticity; heavy
tails; scale mixture of normals; modelling financial data

1. Introduction

Most of leptokurtic and heavy-tailed distributions, commonly entertained in financial
volatility modelling, may be derived as scale mixtures of normal (SMN) distributions, with
the concept dating back to [1]. SMN is a very wide and useful class of distributions, which
belongs to an even wider class of elliptical distributions (see [2]). We say that a random
variable ε follows a scale mixture of normals if it has the following stochastic representation:

ε = V−1/2Z, (1)

where Z has a standard normal distribution independent from a positive random variable
V. If V ∼ Gamma(ν/2, ν/2), then ε follows Student’s t-distribution with ν degrees of
freedom, while for V ∼ IGamma(α, β) we obtain a variance gamma distribution (see [3]).
For V ∼ Pareto(1, ν/2) we obtain a modulated normal type I (MN type I) distribution,
while V ∼ Beta(ν/2, 1) yields a modulated normal type II distribution (see [4]), which is
also known in the literature as a slash distribution (see [5]). Extensions of the latter were
introduced by [6,7], who developed a modified slash (MS) and generalized modified slash
(GMS) distributions, respectively.

As mentioned above, the SMN class contains many different subclasses of distri-
butions with different tail behaviour and modal concentration in comparison with the
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Gaussian bell curve. In this paper, we focus particularly on two of them, namely the slash
distribution, as a choice of a heavy-tailed distribution, and the MN type I distribution,
featuring leptokurticity. The author of [8] shows that these two distributions are dual,
meaning that the shape of the spectral density near the mode in the MN type I distribution
is related to the shape of the slash distribution’s tails and vice versa.

The slash distribution seems to be one of the most common heavy-tailed distributions,
with the list obviously topped by the t-distribution. It should be noted that as long as
the slash distribution has many advantages, particularly in modelling financial data, it
also suffers from some limitations, which we discuss in the following paragraph, along
with some drawbacks of the MN type I distribution, stemming from its duality with the
slash distribution.

Similarly to the Student’s t-distribution, the tails of which get thicker with the degrees
of freedom approaching zero, ν → 0 in the slash distribution yields the same effect
(note, however, that the parameter ν in the slash distribution is not termed as degrees of
freedom). This property is much appreciated in modelling heavy-tailed data, including
financial returns. However, an unwanted consequence of using most of the heavy-tailed
distributions (including Student’s t, slash, MS and GMS distributions) is that it may be
the case that a relatively too large probability mass is put far in the tails. Such a shifting
of the probability mass from around the mode to the tails may be somewhat unwanted
(i.e., not necessarily supported by modelled data), since, informally speaking, in many
(even financial) applications, there can be almost no chances of observing data points
that far from the mode. To cope with such a possible discrepancy between the theoretical
distribution and the data, we make some amendments to the slash distribution so that
the resulting, new distribution (hereafter termed as the local slash distribution, LS) allows
the tails to be freely thick but only locally up to some distance from the mode. The effect
is achieved through introducing only one additional parameter, d ∈ (1, ∞), to censor the
distribution of V−1/2 in (1) by inserting min{V−1/2, d}, instead. Consequently, the tails
can be thick, but only locally, while thinning out in the infinity. We show that all moments
exist for this new distribution.

Apart from heavy-tailed distributions, leptokurtic ones have also found applications
in many fields, including finance, with both features being typically concomitant. One of
the possible choices to capture data leptokurticity is the MN type I distribution. However,
it has not gained much popularity in applications, particularly financial ones, mainly due
to its only thin tails. Moreover, as long as the MN type I distribution is able to capture
strong a modal concentration of data, its duality to the slash distribution causes a possibly
overly fat-tailedness of the latter to translate into a possibly overly high concentration of
the probability mass around the mode in the former. To control for the pointedness of the
MN type I distribution, in this paper, we modify it by introducing an additional, censoring
parameter c ∈ (0, 1) and supplanting the random variable V−1/2 in (1) with max{V−1/2, c}.
We term the resulting construct as the local MN (LMN) type I distribution and provide a
detailed description of its properties later on.

In many applications, particularly financial ones, both features of a probability dis-
tribution are desired simultaneously: the heavy tails and leptokurticity. In distributions
commonly employed in practice, such as Student’s t, higher probability mass accumulation
in the tails immediately induces higher modal concentration, with both areas of the distri-
bution controlled for by only a single parameter. In this paper, with prior modifications of
the slash and MN type I distributions, we combine the two resulting (LS and LMN type I)
distributions within the SMN setting to obtain a completely new, symmetric distribution,
termed as the locally both leptokurtic and fat-tailed (LLFT) distribution, which is far more
flexible in modelling the outlying as well as “modal” observations. The LLFT distribution
features five parameters (in its standardized form), with all moments existing but allowed
to be arbitrarily large.

In this paper, we apply the proposed LLFT distribution for the error term in the
basic, otherwise conditionally normal SV model that for a univariate yt can be written
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as yt =
√

htεt, ln ht = γ + φ(ln ht−1 − γ) + ηt, where εt ∼ N(0, 1) and ηt ∼ N(0, σ2)
are i.i.d. and mutually independent. Although it is well-known that such an SV model
has the ability to induce leptokurtosis and heavy tails, typically observed in financial
time series, its underlying conditional Gaussianity is still quite a limitation. Introducing
the LLFT distribution for εt aims at a more adequate capturing of the heavy tails and
leptokurticity of financial assets’ returns, as compared not only to the basic but also
conditionally heavy-tailed SV models, typically entertained in the literature, including t-SV
and slash-SV models.

Modifications of the distribution for εt has been one of the most prolific strands
of SV literature (see, e.g., [9–16]). Other typical directions of generalizing the basic SV
structure focus on capturing the leverage effect and asymmetry (see, e.g., [12,17–19]) as
well as on refining the volatility process by, for example, accommodating realized volatility
and long memory (see, e.g., [18,20]), or allowing for discrete, Markov switches of the
parameters (see, e.g., [21–23]). However, we do not follow these lines of research in our
current paper, focusing rather on the construction of a new distribution “from scratch”
and its introduction into the basic SV model, thereby contributing to the research area of
improving the conditional distribution in SV models. Extending our framework for other,
more elaborate SV specifications is left for future work.

For statistical inference in the resulting LLFT-SV model, we resort to the Bayesian
framework, which is typically considered for SV models (see [14,24–26]). We show that
under certain prior structure, the marginal data density in the LLFT-SV model (and thus,
the posterior distribution) is bounded even when the same values of observations repeat
in the sample, which is not necessarily the case when these were to be modelled with
the slash or MN type I distributions, as duly noted by [27]. The result seems essential in
view of repeating (or at least strongly concentrated around some constant, e.g., the mode)
values of returns that occur quite often for some individual financial assets (such as a
company’s stocks).

Building on the hierarchical representation of SMN distributions, we develop an
effective Markov chain Monte Carlo (MCMC) method for posterior sampling of the LLFT-
SV model’s parameters and latent variables. The procedure suitably adapts standard
techniques of the Metropolis–Hastings algorithm and Gibbs sampler.

To sum up, the contribution of our work is several-fold. Methodologically, a new,
specific scale mixture of normals is constructed, featuring five free parameters, with two
of them censoring separately the leptokurticity and fat tails to be only local, while the
other three controlling for the relative weights and magnitudes of these two features in
a disentangled manner. Then, we introduce this new LLFT distribution into a stochastic
volatility model and develop a Bayesian framework for the resulting LLFT-SV specification,
resolving some additional theoretical considerations about the existence of the posterior
distribution. Next, we adapt relevant MCMC numerical methods for posterior simulations
of the parameters and latent variables. Finally, we conduct an extensive empirical study of
the LLFT-SV model’s workings and density forecasting performance for a selected financial
asset and additionally provide a brief illustration for two common stock market indices.

The article is organized as follows. In Section 2, we define the locally both leptokurtic
and fat-tailed (LLFT) scale mixture of normal distributions. In particular, we show in
detail the properties of the introduced distributions, together with their relations to other,
well-known distribution families. In Section 3, we introduce the stochastic volatility (SV)
model incorporating the proposed distribution for the error term and develop a Bayesian
framework for the resulting LLFT-SV model. Section 4 presents a real-world data analysis
illustrating predictive advantages of the model. Finally, Section 5 concludes and discusses
possible avenues for further research.
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2. Introducing the Locally Both Leptokurtic and Fat-Tailed Scale Mixture of
Normal Distributions
2.1. The Slash Distribution—A Short Review

With begin with a detailed presentation of the slash distribution’ properties, with the
distribution itself parametrized according to [5], where it was introduced. Following the
cited paper, we assume that

X|W ∼ N(0, W2), (2)

where W has Pareto(1, ν) distribution and N(µ, σ2) stands for the Gaussian distribution
with mean µ and variance σ2. Note that recently, some other parametrization has been used
(see for example [14,15]), in which it is assumed that X|W̃ ∼ N(µ, 1/W̃), where W̃ has
Beta(ν̃, 1) distribution. However, both parametrizations are equivalent under ν = 1

2 ν̃, since
Pareto(1, ν) is a inverse distribution for Beta(ν, 1). In this paper, we choose to stick to the
original parametrization by [5], as it enables a direct comparison of the slash distribution’s
properties with the ones of Student’s t. We will discuss this later in this section. The
probability density function (pdf) of the random variable X given by (2) is

pd f (x)=
∫ ∞

1

W−ν−1
(

νe−
x2

2W2

)
√

2πW
dW=


2

ν
2−1ν|x|−ν−1

(
Γ( ν+1

2 )−Γ
(

ν+1
2 , x2

2

))
√

π
, x 6= 0

ν√
2π(ν+1)

, x = 0,
(3)

which is easy to obtain by noticing that the function under the integral above is the kernel
of an inverse gamma distribution (under x 6= 0) at W2, and Γ(a, x) denotes the upper
incomplete gamma function: Γ(a, x) =

∫ ∞
x ta−1e−tdt. The exact form of the pdf (3) of the

slash distribution also admits a recurrent form, which was also shown in [5]. Density is a
continuous function on the real line, symmetric and unimodal. The characteristic function
of X given by (2) has the form E(eitX) = 1

2 νE ν
2 +1

(
t2

2

)
, where En(z) =

∫ ∞
1

e−tz

tn dt is the
exponential integral function. It is well known that the slash distribution reduces to the
standard Gaussian case as ν → ∞. Note that, similarly to Student’s t-distribution, the
moment E(X2r) exists only under assumption ν > 2r, r ∈ N, and is given as

E(X2r) = E

ν2rW2rΓ
(

r + 1
2

)
√

π

 =
ν2rΓ

(
r + 1

2

)
√

π(ν− 2r)
. (4)

Hence, the variance exists only under ν > 2, and is equal to E(X2) = ν/(ν− 2), which is
the same as for Student’s t-distribution with ν > 2 degrees of freedom. The kurtosis of
the slash distribution exists only for ν > 4 and equals Ku(X) = 3(ν− 2)2/[(ν− 4)ν]. For a
given value of ν, the slash distribution’s kurtosis is lower than in the Student’s t-distribution
with ν degrees of freedom, but is analogically a decreasing function of ν, tending to 3 as
ν→ ∞, and approaching ∞ when ν→ 4+. Interestingly, the slash distribution features the
same tail thickness as the t-distribution with ν degrees of freedom, i.e.,

lim
x→∞

pd f (x) given by (3)
x−(ν+1)

=
2

ν
2−1νΓ

(
ν+1

2

)
√

π
6= 0.

Thereby, the probability of extreme values increases as ν→ 0+, while for ν→ ∞, the
slash distribution reduces to the standard Gaussian case.

In view of the above, the properties of the slash distribution with the parameter ν
are comparable with the ones of Student’s t-distribution, with both sharing and ’suffering’
from the same restriction ensuring the existence of their kth moments: ν > k. Otherwise,
relevant integrals do not converge since too much probability is located in the tails.
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In the following subsection, we propose a modification of the slash distribution to
‘curb’ the heaviness of the tails but only far enough from the mode. In consequence, all
moments of such a modified distribution exist.

2.2. The Concept of the Local Slash (LS) Distribution

Here, we modify the slash distribution reviewed in the previous section by introducing
a censored variable in place of W in (2):

X|W ∼ N(0, min{W2, d2}), (5)

where, similarly as before, W follows Pareto(1, ν) distribution with ν > 0, while d ∈ (1, ∞)
is a censoring parameter. The marginal distribution of X given by (5) depends strongly
on parameter d, which is related to the tail thickness. The introduction of parameter d
ensures that the tails’ thickness of X is upheld but only up to some distance from the
mode (with the distance being controlled for by d), while thinning out thereafter. Since
the heavy-tailedness is only “local” now, we name the new distribution as the local slash
(LS) distribution.

The probability density function of the LS distribution can be easily derived and
admits the form

pd f (x) =


√

2d−ν−1e
− x2

2d2 +2ν/2ν
(

1
x2

) ν+1
2
(

Γ
(

ν+1
2 , x2

2d2

)
−Γ
(

ν+1
2 , x2

2

))
2
√

π
, x 6= 0

d−ν−1(νdν+1+1)√
2π(ν+1)

x = 0.
(6)

Note that the LS distribution is symmetric and is a discrete mixture of the zero-mean Gaus-
sian distribution with variance d2 and some unknown distribution with its pdf given by

2ν/2ν
(

1
x2

) ν+1
2
(

Γ
(

ν+1
2 , x2

2d2

)
−Γ
(

ν+1
2 , x2

2

))
2
√

π(1−d−ν)
, x 6= 0

ν(dν+1−1)√
2πd(ν+1)(dν−1)

x = 0.

The weights of this mixture are d−ν and 1− d−ν, respectively. Hence, if ν→ 0+, then the
LS distribution collapses to N(0, d2).

The LS distribution’s cdf is given as

cd f (y) =


1
2

erf
(

y√
2

)
+

2ν/2y−ν

(
Γ
(

ν+1
2 , y2

2

)
−Γ
(

ν+1
2 , y2

2d2

))
√

π
+ 1

, y 6= 0

1
2 , y = 0

(7)

while the characteristic function

E(eitX) =
1
2

(
d−ν

(
2e−

1
2 d2t2 − νE ν

2 +1

(
d2t2

2

))
+ νE ν

2 +1

(
t2

2

))
.

One of the most important properties of the LS distribution is that the moments E(X2r),
r ∈ N, exist for any ν ∈ R+, and

E(X2r) = E(E(X2r|W)) =


2rd−νΓ(r+ 1

2 )(2rd2r−νdν)√
π(2r−ν)

, 2r 6= ν

2rΓ(r+ 1
2 )(2r log(d)+1)√

π
, 2r = ν,

(8)
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which is a continuous function of ν and d, for any fixed r ∈ N. Thus, the variance exists for
any ν ∈ R+ and equals

E(X2) =

{
2d2−ν−ν

2−ν , ν 6= 2
2 log(d) + 1, ν = 2.

(9)

Note that for any fixed ν > 0 we have

lim
d→∞

E(X2) =

{ ν
ν−2 , ν > 2
∞, ν ≤ 2,

(10)

which means that in the limiting case of d→ ∞, the variance stabilizes for ν > 2 and tends
to the variance of the slash distribution (coinciding with the one of Student’s t-distribution).
The above result also indicates that for any ν ≤ 2, the variance exists and can be arbitrarily
high (for sufficiently large d).

The kurtosis exists for any d and ν and equals

Ku(X) =


3(ν−2)2dν(νdν−4d4)
(ν−4)(νdν−2d2)

2 , ν 6= 2, 4
6d2−3

(2 log(d)+1)2 , ν = 2
3d4(4 log(d)+1)

(1−2d2)
2 , ν = 4.

(11)

Hence,

lim
d→∞

Ku(X) =

{
3(ν−2)2

(ν−4)ν , ν > 4
∞, ν ≤ 4.

(12)

Figure 1 presents the shape of the variance and kurtosis of the LS distribution as a
function of both ν and d. Two white lines represent the cases where ν = 2 or ν = 4. Note
that for any fixed d > 1, the variance increases as ν → 0+, while the kurtosis tends to 3
with either ν→ 0+ or ν→ ∞, achieving its maximum at ν = 2 (see Figure 1).

Figure 1. Variance (on the left) and kurtosis (on the right) for LS distribution (given by (5)) as a function of ν

and d.

Figure 2 presents the density functions of the LS distribution for different values of ν
and d. Note that the higher value of d, the more mass is spread out on tails (for fixed ν).
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Figure 2. Probability density functions of the LS distribution for different values of ν and d.

2.3. Local Modulated Normal Type I Distribution

We begin this section with a presentation of the modulated normal (MN) type I
distribution introduced by [4], which we later modify into the local modulated normal
(LMN) type I distribution. Firstly, let us recall that a random variable X follows an MN
type I distribution if

X|R ∼ N(0, R2), (13)

where R is a continuous random variable on (0, 1) with Beta(ρ, 1) distribution, ρ > 0. The
pdf and cdf of random variable X admit the forms

pd f (x) =
∫ 1

0

Rρ−1
(

ρe−
x2

2R2

)
√

2πR
dR

=



2−
ρ
2−1ρ

(
1

x2

) 1
2−

ρ
2 Γ
(

1
2−

ρ
2 , x2

2

)
√

π
, x 6= 0

ρ√
2π(ρ−1)

, x = 0, ρ > 1

∞, i.e., lim
x→0

2−
ρ
2−1ρ

(
1

x2

) 1
2−

ρ
2 Γ
(

1
2−

ρ
2 , x2

2

)
√

π
= ∞, x = 0, 0 < ρ ≤ 1,

(14)

cd f (y) =

 − 1
2 erfc

(
y√
2

)
+

yE ρ+1
2

(
y2
2

)
2
√

2π
+ 1, y 6= 0

1
2 , y = 0.

(15)

The characteristic function equals 2
ρ
2−1ρ

(
t2)− ρ

2
(

Γ
( ρ

2
)
− Γ

(
ρ
2 , t2

2

))
and tends to characteris-

tic function of the standard normal distribution as ρ→ ∞, which indicates the equivalence
of the two distributions in the limiting case. The moments exists for any ρ > 0 and equals

E(X2r) =
ρ2rΓ(r+ 1

2 )√
π(ρ+2r) , r ∈ N. Hence, the variance is E(X2) = ρ

ρ+2 , while the kurtosis equals

Ku(X) = 3(ρ+2)2

ρ(ρ+4) , which is a decreasing function of ρ (yet always taking on higher values

than 3), and tends to ∞ as ρ→ 0+.
Figure 3 presents the pdf of the MN type I distribution for different values of ρ,

compared with the Gaussian curve. Presented cases exhibit the ability of this distribution
to capture leptokurtic data. It is straightforward to show that, for ρ < 2, the pdf is a convex
function on sets (0, ∞) and (−∞, 0). If 1 < ρ < 2 (see Figure 3, green line), the density
is pointed at zero, thus not differentiable at this point. If ρ ≤ 1, the pdf tends to ∞ as
x → 0, and degenerates to a single-point distribution as ρ → 0. Hence, for ρ ≤ 1, the
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normalized probability ε−1P(|X| < ε) tends to ∞ for ε → 0. For ρ > 1, this probability

equals
√

2
π ρ/(ρ− 1), approaching ∞ as ρ→ 1+.

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

2.0

ρ=1/4 ρ=5/4 ρ=2 ρ=5

ρ=20 N(0,1)

Figure 3. Probability density functions of the MN type I distribution for different values of ρ.

Note that the accumulation of the mass near to zero is typical for returns of many
financial assets, corresponding with only small or even no price changes at all. However,
such a behaviour of the data can be observed only locally, in the sense that for a finite sample
size it seems a little far-fetched to assume that the normalized probability ε−1P(|X| < ε)
is unbounded. Note that for a finite sample size, such a property for ρ ≤ 1 becomes an
assumption (somewhat incidental) that could not be validated. To weaken this assumption
and control for the pointedness of the distribution, we introduce a locally leptokurtic
distribution with a continuous pdf function at zero, for which ε−1P(|X| < ε) is bounded
on ε > 0 for any fixed ρ > 0, including ρ ≤ 1. Moreover, the pdf for such a distribution is
differentiable on the entire real line.

The idea for constructing a locally leptokurtic distribution is to use the censored random
variable R as a standard deviation of X, which (conditionally on R) is normally distributed:

X|R ∼ N(0, max{R2, c2}), (16)

where R is a continuous random variable with Beta(ρ, 1) distribution and c ∈ (0, 1) is a
censoring parameter. We refer to the marginal distribution of X as the local modulated
normal (LMN) type I distribution. Its pdf and cdf are given by the following formulas:

pd f (x) =
∫ c

0

Rρ−1
(

ρe−
x2

2c2

)
√

2πc
dR +

∫ 1

c

Rρ−1
(

ρe−
x2

2R2

)
√

2πR
dR

=


2−

ρ
2 ρ
(

1
x2

) 1
2−

ρ
2
(

Γ
(

1
2−

ρ
2 , x2

2

)
−Γ
(

1
2−

ρ
2 , x2

2c2

))
+
√

2cρ−1e
− x2

2c2

2
√

π
, x 6= 0

cρ−cρ
√

2πc(ρ−1)
, x = 0.

(17)

cd f (y) =


y
(

cE ρ+1
2

(
y2
2

)
−cρE ρ+1

2

(
y2

2c2

))
2
√

2πc
− 1

2 erfc
(

y√
2

)
+ 1, y 6= 0

1
2 , y = 0.

(18)

Note that the pdf is continuous on the entire real line. Since the first term of the above
cdf function tends to 0 as ρ→ ∞, the LMN type I distribution reduces to standard normal
distribution in this limiting case, for any fixed c ∈ (0, 1). Moreover, it reduces to a zero-
mean Gaussian case with variance c2, when ρ→ 0+.

The characteristic function of the LMN type distribution admits the form: cρe−
1
2 c2t2 −

1
2 ρ
(

E1− ρ
2

(
t2

2

)
− cρE1− ρ

2

(
c2t2

2

))
. The moments E(X2r) exist for any ρ > 0, c ∈ (0, 1), and
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are given as E(X2r) =
2rΓ(r+ 1

2 )(2rcρ+2r+ρ)√
π(ρ+2r) , r ∈ N. Hence, the variance equals E(X2) =

2cρ+2+ρ
ρ+2 , while the kurtosis Ku(X) =

3(ρ+2)2(4cρ+4+ρ)
(ρ+4)(2cρ+2+ρ)

2 , being higher than 3, and approaching

this value as either ρ→ 0+ or ρ→ ∞.
Figure 4 presents the densities of the LMN type I distribution for different values of

ρ ≥ 1, while Figure 5—for ρ ≤ 5/4, with c ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 0.8} in both cases. The
presented curves exhibit visible flexibility in capturing leptokurtic data. In particular, it
can be noticed that a combination of a small value of ρ with a small value of c can produce
an “extremely” leptokurtic distribution (see Figure 5, with c = 0.02).
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Figure 4. Probability density functions of the LMN type I distribution for different values of ρ ≥ 1, c ∈
{0.02, 0.05, 0.1, 0.2, 0.5, 0.8}.
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Figure 5. Probability density functions of the LMN type I distribution for different values of ρ ≤ 5/4, c ∈
{0.02, 0.05, 0.1, 0.2, 0.5, 0.8}.

2.4. Locally Both Leptokurtic and Fat-Tailed Distribution

To capture both effects in financial modelling, that is, leptokurticity and fat tails, we
construct a new distribution, belonging to the SMN family, that combines the advantages of
both the LS and LMN type I distributions introduced above. Let the conditional distribution
of some random variable X be defined as:

X|R ∼ N(0, min{max{R2, c2}, d2}), (19)
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where R is a mixture of Beta(ρ, 1) and Pareto(1, ν) distributions with weights p and 1− p,
respectively, i.e.,

R =

{
Beta(ρ, 1), with probability p
Pareto(1, ν), with probability 1− p.

(20)

We name the marginal distribution of X as the locally both leptokurtic and fat-tailed
distribution (LLFT, in short), since it has the ability to be (locally) leptokurtic and (locally)
heavy-tailed. Note that LLFT distribution can be written as a mixture of the LS distribution
(given by (5)) and LMN type I distribution given by (16) with weights p and 1− p. The
pdf, cdf, characteristic function and moments follow immediately from the previous two
sections and well-known properties of probability distributions’ mixtures; therefore, we
omit the details. Figure 6 presents the limiting cases of the LLFT distribution, the set of
which comprises the slash, LS, MN type I, LMN type I and Gaussian distributions.

LLFT distribution

X|R~N(0,min{max{R2,c2},d2})

R~
Beta (ρ, 1), with probabilityp
Pareto (1, ν), with probability 1- p

p→0

LS distribution

X|R∼N(0,min{R2,d2})

R∼Pareto(1,ν)

p→1

LMN type I distribution

X|R∼N(0,max{R2,c2})

R∼Beta(ρ,1)

d→∞

Slash distribution

X|R∼N(0,R2)

R∼Pareto(1,ν)

d→1

X∼N(0,1)

ν→0+

X∼N(0,d2)

ν→∞

X∼N(0,1)

c→0

MN type I distribution

X|R∼N(0,R2)

R∼Beta(ρ,1)

c→1

X∼N(0,1)

ρ→0+

X∼N(0,c2)

ρ→∞

X∼N(0,1)

Figure 6. The tree with limiting cases for the LLFT distribution.

Figure 7 compares the LLFT distribution’s pdf for different values of the censoring
parameters c ∈ {0+, 0.02, 0.05, 0.1, 0.2} and d ∈ {3, 4, 5, 6, ∞}, under fixed ν = 1, ρ = 1 and
p = 1/2. Parameter c clearly affects the pointedness of the pdf curve: the lower the value
of c, the more peaked the pdf (see Figure 7b). Moving away from the mode, the curves
behave similarly (see Figure 7c), with their tails’ local heaviness driven by the parameter d:
the higher its values, the longer the tails keep their local heaviness (see Figure 7d), before
they thin out (see Figure 7e). This, however, does not pertain to the case when d→ ∞ (red
line), which represents a simple mixture of the slash and MN type I distributions (without
their “local” modifications).

As regards the moments of the LLFT distribution, they can easily be derived as the
moments of a mixture, and thus we skip their presentation. However, for a reason clarified
below, it merits a mention that the expectation E(erX) exists for any r ∈ N and equals

E(erX) = 1 +
∞

∑
k=1

(p · gk + (1− p) · fk) < ∞, (21)

where

gk =
2−kr2k

(
2kc2k+ρ + ρ

)
(2k + ρ)Γ(k + 1)

and

fk =


2−kd−νr2k(2kd2k−νdν)

(2k−ν)Γ(k+1) , for 2k 6= ν

2−kr2k(2k log(d)+1)
Γ(k+1) , for 2k = ν.

It can be shown that the finiteness of E(erX) stems from the tails of X ∼ LLFT thinning
out beyond the censoring and actually converging to the tails of a zero-mean normal
distribution with variance d2.
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The above feature of the LLFT distribution could prove essential in empirical finances,
particularly option pricing, where predicting the price of a derivative hinges upon some
models built for logarithmic rates return, say yt, the conditional distribution of which
(given the past of the process) belongs to the same family of distributions as the one
assumed for the standardized errors of the observations. Transformation of the return
yt into the price requires using the exponential function for yt. Depending on the family
distribution of the latter, conditional (on the past) expectation of the price simply may not
exist (as it happens in the case of yt following a Student’s t or slash distribution). However,
from (21), it follows that if the conditional distribution of yt is LLFT, then the expectation
of the induced price distribution is finite (conditionally on the past price).

ρ=1, ν=1, c→0, d→∞

ρ=1, ν=1, c=0.02, d=3

ρ=1, ν=1, c=0.05, d=4

ρ=1, ν=1, c=0.1, d=5

ρ=1, ν=1, c=0.2, d=6

N(0,1)
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Figure 7. The pdf of the LLFT distribution for different values of parameters c and d and fixed ν, ρ and p = 1/2.

3. The SV Model with Locally Leptokurtic and Fat-Tailed Innovations

In this section, we use the newly proposed, LLFT distribution (given by (19) and (20))
in the context of modelling financial time series. In volatility modelling of this type of
data, two major classes of models are used: the generalized autoregressive conditionally
heteroscedastic (GARCH) and stochastic volatility (or stochastic variance, SV) models.
Here, we focus on the latter class. The stochastic variance models were introduced to
describe time-varying volatility ([17,24,28–31]), and it seems that they are more flexible
than GARCH. In the basic SV model, a log-normal auto-regressive process is specified for
the conditional variance, with the conditional mean equation’s innovations following the
Gaussian distribution. We generalize such a model by assuming the LLFT distribution
instead, which yields the LLFT-SV specification. Due to the LLFT distribution’s properties
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(see Section 2), such a model is a natural and promising alternative to the heavy-tailed SV
(including t-SV) models proposed in, e.g., [14,17].

The basic stochastic volatility model is defined as follows:

yt = xtβ + εt
√

ht, (22)

ln ht = γ + φ(ln ht−1 − γ) + ηt, (23)

where yt denotes an observable at time t, xt is an 1× r vector of exogenous variables or
lagged observations with parameters comprised in an r× 1 vector β, {εt} ∼ iiN(0, 1) is
a Gaussian white noise sequence with mean zero and unit variance, {ηt} ∼ iiN

(
0, σ2),

ηt and εs are mutually independent (denoted as ηt⊥εs) for all t, s ∈ {1, 2, . . . , T}, T is the
length of the modelled time series, and finally, 0 < |ϕ| < 1.

We extend the above SV specification by waiving the normality εt and replacing it
with the LLFT distribution given by (19):

εt = λt min{max{ωt, c}, d}, (24)

where {λt} ∼ iiN(0, 1), ωt ∼ Beta(ρ, 1) with probability p and ωt ∼ Pareto(1, ν) with
probability 1− p and λs⊥ωt for s, t ∈ {1, 2, . . . , T}, with censoring parameters c and d such
that 0 < c < 1 < d.

The conditional distribution of yt in the LLFT-SV model (given the past of yt and the
current latent variables ht and ωt) is determined by the distribution of λt, so yt follows the
normal distribution with mean µt = xtβ and standard deviation σt =

√
ht min{max{ωt, c}, d}.

For µt we assume an autoregressive structure of order m with a constant: µt = β0 + β1yt−1 +
β2yt−2 + . . .+ βmyt−m, where the polynomial 1−∑m

j=1 β jBj has roots outside the unit circle.

3.1. Bayesian Setup

The Bayesian statistical model amounts to specifying the joint distribution of all obser-
vations, latent variables and parameters. The assumptions presented so far determine the
conditional distribution of the observations and latent variables, given the parameters, thus
necessitating the marginal distribution of the parameters (the prior or a priori distribution)
to be formulated. In the prior structure, we assume mutual independence between pa-
rameters β, φ, γ, σ2, p, ν, ρ, c, d and use standard prior distributions. The vector β, as well
as scalar parameter φ, are assumed to have a truncated normal distribution. Parameter γ
has a normal prior, whereas for σ2, we set an inverse gamma prior distribution IG(ασ, βσ)
with mean βσ/(ασ − 1) under ασ > 1. For ν we assume a gamma distribution G(αν, βν),
with mean αν/βν. For ρ, we also assume a gamma distribution, while for parameter p—a
beta distribution. Finally, for parameters c and d, we assume inverse Nakagami distribu-
tions (see [32]) truncated to intervals (0, 1) and (1, ∞), respectively. A random variable
x follows an inverse Nakagami distribution with parameters α, β > 0, which we write
as x ∼ INK(α, β), if x2 is inverse-gamma distributed with mean β

α−1 (under α > 1) and

variance β

(α−1)2(α−2) (under α > 2), owing to which sampling from INK(α, β) distribution
is straightforward and becomes down sampling from the corresponding IG(α, β) distribu-
tion and taking the square root of the draw. The probability density function is given as

f INK(x|α, β) =
2βα

Γ(α)

(
1
x2

)α+ 1
2 e−β 1

x2 . The inverse Nakagami distribution has been presented
by [32], although in a different parameterization. Note that under c and d following trun-
cated INK distributions, c2 and d2 are then inverse-gamma distributed (with corresponding
truncations). Notice that for c ∈ (0, 1), a beta prior could be considered instead. However,
the resulting full conditional posterior would be far less tractable for MCMC sampling. The
exact specifications of these distributions are presented later in this section.
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Under a sample y1, y2, . . . , yT , where T is the sample’s length, we introduce the fol-
lowing matrix notation: y = [y1, y2, . . . , yT ]

′, h = [h1, h2, . . . , hT ]
′, ω = [ω1, ω2, . . . , ωT ]

′,
y(0) = [h0, y−m+1, y−m+2, . . . , y0] and

X =

 x1
...

xT

, where xt = [yt−m+1, yt−m+2, . . . , yt], for t = 1, 2, . . . , T.

As regards the initial conditions y(0), for ht we fix h0 = 1, while for yt the first m pre-sample
observations are used. The following symbols are used:

f n
N(x|u, V)—the probability density function of the n-variate normal distribution with

mean vector u and positive definite covariance matrix V ,
fN(x|a, b)—the probability density function of the normal distribution with mean a

and variance b,
fLN(x|a, b)—the probability density function of the log-normal distribution with mean

a and variance b,
fG(x|a, b)—the probability density function of the gamma distribution with mean a/b,
f IG(x|a, b)—the probability density function of the inverse gamma distribution with

mean b/(a− 1) for a > 1,
fBeta(x|a, b)—the probability density function of the beta distribution with parameters

a and b,
fPareto(x|a, b)—the probability density function of the Pareto distribution with param-

eters a and b,
I(a, b)(x)—the indicator function for the interval (a, b).

Now the Bayesian model can be fully written as:

p
(

y, h, ω, β, φ, γ, σ2, p, ν, ρ, c, d|y(0)

)
=

T

∏
t=1

fN(yt|µt, ht{min{max{ωt, c}, d}}2)×

×
T

∏
t=1

fLN

(
ht|eγ+φ(lnht−1−γ)+ 1

2 σ2
, (eσ2

− 1)e2γ+2φ(lnht−1−γ)+σ2
)
×

p(ω)p(β)p(φ)p(σ2)p(γ)p( ν)p(ρ)p(c)p(d)p(p), (25)

where

p(ω) =
T

∏
t=1

[p fBeta(ωt|ρ, 1) + (1− p) fPareto(ωt|1, ν)],

and the prior distributions are specified as follows:

• p(β) ∝ f k+1
N
(

β|µβ, Σβ

)
I(0,1)(|λR|max) ∝ e−

1
2

(
β−µβ

)′
Σ−1

β

(
β−µβ

)
I(0,1)(|λR|max), λR is the

vector of eigenvalues of the companion matrix, related to the AR form (if exists) with
characteristic polynomial (1−∑k

j=1 β jBj);

• p(γ) = fN(γ|µγ, σ2
γ) ∝ e

− 1
2σ2

γ
(γ−µγ)

2

;

• p(φ) ∝ fN(φ|µφ, σ2
φ)I(−1,1)(φ) ∝ e

− 1
2σ2

φ
(φ−µφ)

2

I(−1,1)(φ);

• p
(
σ2) = f IG

(
σ2|ασ, βσ

)
= α

βσ
σ

Γ(ασ)

(
1

σ2

)ασ+1
e−βσ

1
σ2 ;

• p(ν) = fG(ν|αν, βν) =
α

βν
ν

Γ(αν)
ναν−1e−βνν;

• p( ρ) = fG
(
ρ|αρ, βρ

)
=

α
βρ
ρ

Γ(αρ)
ραρ−1e−βρρ;

• p(c)∝ f INK(c|αc, βc)I(0,1) ∝
(

1
c2

)αc+
1
2 e−βc

1
c2 I(0,1)(c);
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• p(d)∝ f INK(d|αd, βd)I(1,+∞) ∝
(

1
d2

)αd+
1
2 e−βd

1
d2 I(1,+∞)(d);

• p(p) = fBeta
(

p|αp, βp
)
=

Γ[αp+βp ]pαp−1(1−p)βp−1

Γ[αp ]Γ[βp ]
I(0,1)(p).

3.2. MCMC Method for the Bayesian LLFT-SV Model

The posterior density function, p(θ, ω, h|y, y(0)), where θ comprises all the model’s
parameters, is proportional to (25) and thus, highly dimensional and non-standard. To
make an inference about the parameters and latent variables, relevant numerical methods
are needed. In our paper, we resort to a common Markov chain Monte Carlo (MCMC)
method, namely the Gibbs algorithm, consisting of sequential sampling from the full
conditional posteriors derived from (25), which we present below.

3.2.1. The Full Conditional Posterior Distributions of Parameters

The conditional posterior densities of the LLFT-SV model’s parameters are the follow-
ing (see (25)):

• p
(

β|y, h, ω, γ, φ, σ2, ν, ρ, p, c, d, y(0)

)
∝ f k+1

N (β|µ̃β, Σ̃β)I(0,1)(|λR|max), where µ̃β =

Σ̃β(Σ
−1
β µβ + X

′
Σ−1

y y), Σ̃β = (X
′
Σ−1

y X + Σ−1
β )
−1

, Σy = diag(σ2
1 , σ2

2 , . . . , σ2
T), and σ2

t =

ht{min{max{ωt, c}, d}}2, for t = 1, 2, . . . , T;

• p
(

γ|y, h, ω, β, φ, σ2, ν, ρ, p, c, d, y(0)

)
= fN(γ|µ̃γ, σ̃2

γ), where σ̃2
γ =

[
1

σ2
γ
+ T(φ−1)2

σ2

]−1

and µ̃γ =

[
µγ

σ2
γ
+ (1−φ)

σ2

T
∑

t=1
(ln ht − φ ln ht−1)

]
σ̃2

γ;

• p
(

φ|y, h, ω, β, γ, σ2, ν, ρ, p, c, d, y(0)

)
∝ fN(φ|µ̃φ, σ̃2

φ) I(−1, 1)(φ), where µ̃φ =

[
µφ

σ2
φ
+ 1

σ2

T
∑

t=1
(ln ht − γ)(ln ht−1 − γ)

]
σ̃2

φ and σ̃2
φ =

 1
σ2

φ
+

T
∑

t=1
(ln ht−γ)2

σ2


−1

;

• p
(

σ2|y, h, ω, β, γ, φ, ν, ρ, p, c, d, y(0)

)
= f IG(σ

2|α̃σ, β̃σ), where α̃σ = ασ +
T
2 and β̃σ =

1
2

T
∑

t=1
[ln ht − γ− φ(ln ht−1 − γ)]2 + βσ;

• p
(

ρ|y, h, ω, β, γ, φ, σ2, ν, p, c, d, y(0)

)
= fG(ρ|α̃ρ, β̃ρ), where α̃ρ = αρ +

T
∑

t=1
I(0,1)(ωt)

and β̃ρ = βρ −
T
∑

t=1
ln
[
ωt I(0,1)(ωt) + I(1,+∞)(ωt)

]
;

• p
(

ν|y, h, ω, β, γ, φ, σ2, ρ, p, c, d, y(0)

)
= fG(ν|α̃ν, β̃ν), where α̃ν = αν +

T
∑

t=1
I(1,+∞)(ωt)

and β̃ν = βν +
T
∑

t=1
ln
[
ωt I(1,+∞)(ωt) + I(0,1)(ωt)

]
;

• p
(

p|y, h, ω, β, γ, φ, σ2, ν, ρ, c, d, y(0)

)
= fBeta(p|α̃p, β̃p), where α̃p = αp +

T
∑

t=1
I(0,1)(ωt)

and β̃p = βp +
T
∑

t=1
I(1,+∞)(ωt).

Since the above densities of the full conditional distributions have known closed
forms, we can directly simulate from these distributions using standard pseudo-random
numbers generators.

As regards the parameters c and d, their full posterior conditionals are far more com-
plicated as compared to the remaining ones.



Entropy 2021, 23, 689 15 of 44

• Conditional distribution of c. If ∑T
t=1 I(0,1)(ωt) = 0, then the conditional distribution is

straightforward, since p
(

c|y, h, ω, β, γ, φ, σ2, ν, ρ, p, d, y(0)

)
∝ p(c). If ∑T

t=1 I(0,1)(ωt) =

n > 0 then the full conditional posterior density of c is as follows:

p
(

c|y, h, ω, β, γ, φ, σ2, ν, ρ, p, d, y(0)

)
∝

1
T
∏

t=1
min{max{ωt, c}, d}

e
− 1

2

T
∑

t=1

(yt−xt β)2

ht min{max{ωt ,c},d}2
(

1
c2

)αc+
1
2
e−βc

1
c2 I(0,1)(c), (26)

which can be expressed as a mixture of n + 1 different distributions:

p
(

c|y, h, ω, β, γ, φ, σ2, ν, ρ, p, d, y(0)

)
∝

n

∑
k=1

1
n
∏

t=1
min{max{ω̃t, c}, d}

e
− 1

2

n
∑

t=1

ãy,t
min{max{ω̃t ,c},d}2

(
1
c2

)αc+
1
2

e−βc
1

c2 I(ω̃k−1, ω̃k)(c)

︸ ︷︷ ︸
gc

k(c)

+

+
1
cn e
− 1

2

n
∑

t=1

ãy,t
c2
(

1
c2

)αc+
1
2

e−βc
1

c2 I(ω̃n,, 1)(c)︸ ︷︷ ︸
gc

n+1(c)

, (27)

where ω̃1, ω̃2, . . . , ω̃T are order statistics, defined by sorting the values of ω1, ω2, . . . , ωT
in ascending order, i.e.,

0 = ω̃0 < ω̃1 < . . . < ω̃n < 1 < ω̃n+1 < . . . < ω̃T ,

with corresponding ãy,t for t = 1, . . . , T, where ay,t =
(yt−xt β)2

ht
have been previously

assigned to unordered ωts.
To simulate from this mixture, the mixing weights and probability density functions
with normalizing constants are needed. For k = 1, we have a truncated inverse
Nakagami distribution for c with parameters αc and βc:

gc
1(c) = wc,1

1
n
∏

t=1
ω̃t

e
−
(

1
2

n
∑

t=1

ãy,t
ω̃2

t

) (
1
c2

)αc+
1
2 e−βc

1
c2 I(0, ω̃1)

(c)

wc,1
(28)

where wc,1 = 1
2 β−αc

c Γ
(

αc, βc
ω̃2

1

)
is the normalizing constant for the truncated inverse

Nakagami distribution.
For k = 2, . . . , n, we also have a truncated inverse Nakagami distribution for c with

parameters αc +
k−1

2 and βc +
1
2

k−1
∑

t=1
ãy,t:

gc
k(c) = wc,k

e
− 1

2

n
∑

t=k

ãy,t
ω̃2

t

n
∏
t=k

ω̃t

e
−
(

1
2

k−1
∑

t=1
ãy,t+βc

)
1
c2

wc,k

(
1
c2

)αc+
k
2

I( ω̃k−1, ω̃k)
(c), (29)
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where

wc,k =
1
2

(
1
2

k−1

∑
t=1

ãy,t + βc

)−αc− k−1
2

×

×

Γ

αc +
k− 1

2
,

1
2

k−1
∑

t=1
ãy,t + βc

ω̃2
k

− Γ

αc +
k− 1

2
,

1
2

k−1
∑

t=1
ãy,t + βc

ω̃2
k−1


.

Finally, for k = n + 1 :

gc
n+1(c) = wc,n+1

e
−
(

1
2

n
∑

t=1
ãy,t+βc

)
1
c2

wc,n+1

(
1
c2

)αc+
n+1

2
I( ω̃n , 1)(c), (30)

where

wc,n+1 =
1
2

(
1
2

n

∑
t=1

ãy,t + βc

)−αc− n
2

×

×

Γ

αc +
n
2

,

1
2

n
∑

t=1
ãy,t + βc

1

− Γ

αc +
n
2

,

1
2

n
∑

t=1
ãy,t + βc

ω̃2
n




The mixing weights are proportional to: w0
c,1 = wc,1

1
n
∏

t=1
ω̃t

e
−
(

1
2

n
∑

t=1

ãy,t
ω̃2

t

)
,

w0
c,k = wc,k

e
− 1

2
n
∑

t=k

ãy,t
ω̃2

t
n
∏

t=k
ω̃t

for k = 2, . . . , n, and w0
c,n+1 = wc,n+1.

To simulate from the mixture components, we apply the acceptance-rejection method
by using the uniform distribution on the interval (ω̃k−1, ω̃k) for k = 1, . . . , n, and on
the interval (ω̃n, 1) for k = n + 1.

• Conditional distribution of d. If ∑T
t=1 I(1,+∞)(ωt) = 0, then the conditional dis-

tribution is straightforward, since p
(

d|y, h, ω, β, γ, φ, σ2, ν, ρ, p, c, y(0)

)
∝ p(d). If

∑T
t=1 I(1,+∞)(ωt) = T− n > 1 then the full conditional posterior distribution for d can

be expressed in a very similar manner:

p
(

d|y, h, ω, β, γ, φ, σ2, ν, ρ, p, c, y(0)

)
∝

1
T
∏

t=1
min{max{ωt, c}, d}

e
− 1

2

T
∑

t=1

(yt−xt β)2

ht min{max{ωt ,c},d}2
(

1
d2

)αd+
1
2

e−βd
1

d2 I(1,+∞)(d), (31)
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which can be expressed as a mixture of T − n + 1 different distributions:

p
(

d|y, h, ω, β, γ, φ, σ2, ν, ρ, p, c, y(0)

)
∝

1
dT−n e

− 1
2

T
∑

t=n+1

ãy,t
d2
(

1
d2

)αd+
1
2
e−βd

1
d2 I(1, ω̃n+1)

(d)+

+
T−n

∑
k=2

1
T
∏

t=1+n
min{max{ω̃t, c}, d}

e
− 1

2

T
∑

t=n+1

ãy,t
min{max{ω̃t ,c},d}

2

×

×
(

1
d2

)αd+
1
2
e−βd

1
d2 I(ω̃n+k−1, ω̃n+k)

(d)+

+
1

T
∏

t=1+n
ω̃t

e
− 1

2

T
∑

t=n+1

ãy,t
ω̃2

t

(
1
d2

)αd+
1
2
e−βd

1
d2 I(ω̃T ,+∞)(d), (32)

In this case, the first component is proportional to the truncated inverse Nakagami

distribution for d with parameters αd +
T−n

2 and βd +
1
2

T
∑

t=n+1
ãy,t:

gd
1(d) = wd,1

(
1
d2

)αd+
T−n+1

2 e
−
(

1
2

T
∑

t=n+1
ãy,t+βd

)
1

d2
I(1, ω̃n+1)(d)

wd,1
(33)

where

wd,1 =
1
2

(
1
2

T

∑
t=n+1

ãy,t + βd

)−αd− T−n
2

×

×

Γ

αd +
T − n

2
,

1
2

T
∑

t=n+1
ãy,t + βd

ω̃2
n+1

− Γ

αd +
T − n

2
,

1
2

T
∑

t=n+1
ãy,t + βd

1




is the normalizing constant for the truncated inverse Nakagami distribution.
For k = 2, . . . , T − n, we also have a truncated inverse Nakagami distribution for d

with parameters αd +
T−n−k+1

2 and βd +
1
2

T
∑

t=n+k
ãy,t:

gd
k (d) = wd,k

1
n+k−1

∏
t=1+n

ω̃t

e
− 1

2

n+k−1
∑

t=n+1

ãy,t
ω̃2

t ×

×

(
1
d2

)αd+
1+T−n−k+1

2 e
−
(

1
2

T
∑

t=n+k
ãy,t+βd

)
1

d2
I(ω̃n+k−1,, ω̃n+k)

(d)

wd,k
, (34)
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where

wd,k =
1
2

(
1
2

T

∑
t=n+k

ãy,t + βd

)−αd− T−n−k+1
2

×

×

Γ

αd +
T − n− k + 1

2
,

1
2

T
∑

t=n+k
ãy,t + βd

ω̃2
n+k



− Γ

αd +
T − n− k + 1

2
,

1
2

T
∑

t=n+k
ãy,t + βd

ω̃2
n+k−1


.

The last component is:

gd
T−n+1(d) =

wd,k
T
∏

t=1+n
ω̃t

e
− 1

2

T
∑

t=n+1

ãy,t

ω̃,2
t

(
1
d2

)αd+
1
2 e−βd

1
d2 I(ω̃T,,+∞)(d)

wd,T−n+1
, (35)

where wd,T−n+1 = 1
2 (βd)

−αd

{
Γ(αd)− Γ

(
αd, βd

ω̃2
T

)}
. In this case, the mixing weights

are proportional to: w0
d,1 = wd,1, w0

d,k =
wd,k

n+k−1
∏

t=1+n
ω̃t

e
− 1

2

n+k−1
∑

t=n+1

ãy,t
ω̃2

t for k = 2, . . . , T − n, and

w0
d,T−n+1 =

wd,T−n+1
T
∏

t=1+n
ω̃t

e
− 1

2

T
∑

t=n+1

ãy,t
ω̃2

t .

Similarly to the algorithm for the parameter c, to simulate from the mixture compo-
nents here, the acceptance–rejection method is applied by using the uniform distri-
bution on the interval (ω̃n+k−1, ω̃n+k) for k = 2, . . . , T − n. In turn, for k = T − n + 1,
we simulate from a truncated gamma distribution on the interval (ω̃T , +∞) using the
algorithm proposed by [33].
If ∑T

t=1 I(1,+∞)(ωt) = T − n = 1, then we have only two components in the mixture (32),
the first and last ones.

3.2.2. The Conditional Posterior of hts

We sample each element of the vector h using the independence Metropolis–Hastings
(similarly to [24]) algorithm within a separate Gibbs step, initializing at ht = 0.1y2

t + 1 for
t = 1, . . . , T. The conditional posterior density of ht, t ∈ {1, . . . , T}, is given by

p
(

ht|y, h1, . . . , ht−1, ht+1, . . . , hT , ω, β, γ, φ, σ2, ν, ρ, p, c, d, y(0)

)
∝

h−1
t e
− 1

2σ2
h
(ln ht−sh)

2

h−
1
2

t e
− 1

2
(yt−xt β)2

ht{min{max{ωt ,c},d}}2 , (36)

where σ̃2
h = σ2

1+φ2 , s̃h = γ + φ(ln ht−1 −γ)+φ(ln ht+1 −γ)
1+φ2 for t = 1, . . . , T − 1, and σ̃2

h = σ2,
s̃h = γ + φ(ln ht−1 − γ) for t = T.

The proposal distribution used to draw ht is the inverted gamma:

IG

(
ϕ +

1
2

, (ϕ− 1)es̃h+
1
2 σ̃2

h +
1
2

(yt − xtβ)
2

{min{max{ωt, c}, d}}2

)
,
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where ϕ = 2eσ̃2
h−1

eσ̃2
h−1

. As regards the initial conditions for ln ht, it is assumed that ln h0 = 0.

3.2.3. The Conditional Posterior of ωts

The conditional posterior density of ωt, t ∈ {1, . . . , T}, is given by:

p
(

ωt|y, h, ω1, . . . , ωt−1, ωt+1, . . . , ωT , β, γ, φ, σ2, ν, ρ, p, c, d, y(0)

)
∝

1
min{max{ωt, c}, d} e

− 1
2

(yt−xt β)2

ht{min{max{ωt ,c},d}}2×

×
[

pω
ρ−1
t ρI(0,1)(ωt) + (1− p)νω

−(ν+1)
t I(1,+∞)(ωt)

]
, (37)

which can be written as a mixture of four different distributions:

p
(

ωt|y, h, ω1, . . . , ωt−1, ωt+1, . . . , ωT , β, γ, φ, σ2, ν, ρ, p, c, d, y(0)

)
∝

wω,1 c−ρω
ρ−1
t ρI(0,c)(ωt)︸ ︷︷ ︸

f1(ωt)

+p ρ wω,2
ω

ρ−2
t e−

1
2 ay,t

wω,2
I(c,1)(ωt)︸ ︷︷ ︸

f2(ωt)

+

+ (1− p) ν wω,3

(
1

ω2
t

) ν
2 +1+ 1

2 e− 1
2 ay,t

1
ω2

t

wω,3
I(1,d)(ωt)︸ ︷︷ ︸

f3(ωt)

+

+ wω,4 dν ν

(
1

ωt

)ν+1
I(d,+∞)(ωt)︸ ︷︷ ︸

f4(ωt)

∝
4

∑
i=1

w̃ω,i fi(ωt), (38)

where wω,1 = cρ−1 p e
− 1

2
(yt−xt β)2

htc2 , ay,t =
(yt−xt β)2

ht
,

wω,2 = a
ρ
2−

1
2

y,t 2−
ρ
2−

1
2

[
Γ
(

1
2 −

ρ
2 , ay,t

2

)
− Γ

(
1
2 −

ρ
2 , ay,t

2c2

)]
,

wω,3 = a−
ν
2−

1
2

y,t 2
ν
2−

1
2

[
Γ
(

ν
2 + 1

2 , ay,t
2d2

)
− Γ

(
ν
2 + 1

2 , ay,t
2

)]
,

wω,4 = (1− p) d−ν−1 e
− 1

2
(yt−xt β)2

htd2 .

The weights w̃ω,i, i = 1, 2, 3, 4, of the mixture are as follows:
w̃ω,i =

wω,i
wω,1+pρwω,2+(1−p)νwω,3+wω,4

for i = 1, 4,

w̃ω,2 =
pρwω,2

wω,1+pρwω,2+(1−p)νwω,3+wω,4
,

and w̃ω,3 =
(1−p)νwω,3

wω,1+pρwω,2+(1−p)νwω,3+wω,4
.

It is easy to build an algorithm to generate from the mixture. First, we sample from the
uniform distribution to randomly select the component distribution, and then we generate
a pseudo-random value from it. The first term of the mixture is given by the density:

f1(ωt) = c−ρω
ρ−1
t ρI(0,c)(ωt),

which can be sampled using the inverse cdf technique. The second density is:

f2(ωt) =
ω

ρ−2
t e−

1
2 ay,t

wω,2
I(c,1)(ωt),



Entropy 2021, 23, 689 20 of 44

which for ρ > 1 is the truncated beta density with parameters ρ − 1 and 1. However,
for 0 < ρ < 1, we obtain a non-standard distribution, but an independence Metropolis–
Hastings algorithm can be applied with the proposal distribution being the Beta distribution
with parameters ρ + 1 and 1. The third term of the mixture is:

f3(ωt) =

(
1

ω2
t

) ν
2 +1+ 1

2 e− 1
2 ay,t

1
ω2

t

wω,3
I(1,d)(ωt),

which is the density of an inverse gamma distribution of ω2
t , truncated to the interval

(1, d). Thus, we can sample ω2
t from the truncated inverted gamma distribution with shape

parameters ν
2 + 1 and scale parameters 1

2 ay,t, and then calculate ωt. We simulate from the
truncated gamma distribution using the algorithm proposed by [33]. The last term of the
mixture is given by the following probability density function:

f4(ωt) = dν

(
1

ωt

)ν+1
ρI(d,+∞)(ωt),

which can be easily sampled from via the inverse cdf technique. We initialize the sampler
at starting values ωt = 1.1 for t = 1, . . . , T.

4. Empirical Illustrations

In this section, we apply the LLFT-SV model to describe the volatility of three time series
of daily stock market prices. We begin with the analysis of a quite particular asset, namely the
MS Industries AG (MSAG.DE), which is a Germany-based industrial technology company.
The MSAG.DE data set is specific in the sense of featuring many (repeating) zero returns,
which is typical for many individual companies’ stocks. Sections 4.1 and 4.2 cover the results
for the original and perturbed prices series, respectively, with a very detailed analysis
providing in-depth insights into the LLFT-SV model performance. Then, in Section 4.3, we
shift our attention to two common stock market indices: S&P 500 and DAX, to examine the
LLFT-SV model’s validity also for more ‘typical’ financial data.

The MSAG.DE stock prices were downloaded from http://finance.yahoo.com (ac-
cessed on 31 March 2021) and cover the period from 28 December 2016 through 25 February
2021. The series is transformed into logarithmic rates returns, expressed in percentage
points, and forming a series of 1053 observations. The first two available observations are
spared for the initial condition in the AR(2) structure underlying the mean equation (two
lags are chosen in view of the Lindley type test for the restriction that the autocorrelation
parameters for higher lags are equal to zero). Therefore, xt = (1, yt−1, yt−2), and the final
number of the modelled observation is T = 1051.

Basic descriptive characteristics of the modelled data are presented in Table 1, with the
prices and returns plotted in Figure 8. It can be seen from the graphs that the return rates
are centred around zero, featuring some outliers, as well. The data distribution is highly
non-Normal, as confirmed by kurtosis, which exceeds three by far. From Table 1, it can
also be noted that the returns’ range is fairly spread, with their minimum and maximum at
−22.399 and 30.390, respectively. These extreme observations occurred in March 2020 and
can be explained by the turbulence in financial markets caused by the COVID-19 pandemic.
The data are also characterized by the presence of zero returns, with zero being exactly the
median (while the sample mean is close to zero). The relative frequency of zero returns is
equal to about 0.11. The exact positions of the zero returns are indicated in the figures by
the blue vertical lines. This relatively high concentration of the zero returns manifests in
the histogram through a prominent peak at the mode (see panel (c) in Figure 8). It is worth
noting that the zero returns are not always related to zero volumes. In many cases, the
volume is positive, but the price stays unchanged.

http://finance.yahoo.com
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Table 1. Sample characteristics for the MSAG.DE data set.

Mean St. Dev. Median Min Max Skewness Kurtosis Percent of Zero Returns

−0.035 2.851 0.000 −22.399 30.390 0.635 24.780 11%
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Figure 8. Time plots of (a) daily prices, (b) log returns in percentages for MSAG.DE, (c) histogram of
log returns (in percentages) for MSAG.DE with a Gaussian curve.

In view of the above, it could be argued that the data at hand, with some concentration
in zero, should be modelled by means of mixed, continuously-discrete distributions. These,
however, remain highly unpopular in practice, usually giving way to models based on
families of continuous distributions. As pointed out by [27], Bayesian inference on the basis of
a sample containing repeated observations (not necessarily zero-valued) is not always possible
with the use of a continuous sampling distribution, even under a proper prior distribution.
Admittedly, the LLFT-SV model introduced in this paper, as being based on a mixture of
continuous probability distributions, fails to explicitly model the incidence of zero returns.
However, owing to the properties of the LLFT distribution proposed in this paper, in the
LLFT-SV model, the zero returns or any repeated observations do not pose such a problem,
since (under the assumed prior structure) it can be proved that the marginal likelihood (i.e.,
marginal data density value) is finished (see Theorem A1 in Appendix A). The empirical
study is divided into two subsections. In the first one, we analyze the original series, featuring
repeated zero returns. However, the validity of the LLFT-SV model can also be illustrated in
the case where repeated observations do no occur per se, but the series still contains values
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that concentrate tightly around the median. To this end, we perturb the MSAG.DE prices and
present the results for such a series in Section 4.2.

For the sake of comparison, we also consider the Stochastic Volatility model with
the conditional Student’s t-distribution (t-SV). The t-distribution’s density function can
be expressed as a scale mixture of normals. That is, the t-distributed (with ν degrees of
freedom) random variable εt in the t-SV model can be written as follows: εt = λt

√
ωt, where

{λt} ∼ iiN(0, 1) and {ωt} ∼ iiIG
(

ν
2 , ν

2
)
. The t-SV model is usually used to better explain

the heavy tails of the empirical distributions of returns. However, as exemplified below,
in contrast to LLFT-SV, the t-SV model may still not be flexible enough to simultaneously
allow for fat tails and a very high peak close to the mean (or median) returns.

We set the following values of the hyperparameters of the model under consideration:
µβ = 0, Σβ = I, µγ = 0, σγ = 10, µφ = 0, σφ = 10, ασ = 2.5, βσ = 0.16 (see [34]), αρ = 10,
βρ = 10, αp = 1, βp = 1.

Such prior distributions reflect our rather little prior knowledge about the model’s
parameters. In order to examine the sensitivity of the posterior distributions to the priors,
we try different values of the remaining hyperparameters, which we present in subsec-
tions below.

To obtain a pseudo-random sample from the posterior distribution, we use the hybrid
sampler presented in the previous section—the Metropolis–Hastings algorithm within
the Gibbs procedure, generating 50,000 of burn-in and 200,000 posterior drawings. The
algorithm has been implemented in the authors’ own computer code written in GAUSS.
Computations were carried out on a personal computer with an Intel Core i7-9850H
processor and 16 GB RAM and took about 5–6 h for a single model. A detailed examination
of the MCMC convergence is provided in Appendix B.

4.1. Results for the Original MSAG.DE Data

In this subsection, we present the results obtained for the original MSAG.DE data set
and assumea priori that the values of c very close to 0 are unlikely. To represent such a
prior belief about c, it is assumed that c ∼ INK(2; 0.1) truncated to the interval (0, 1).

Table 2 reports the posterior medians, 90% confidence intervals, and interquartile
ranges. The 90% confidence intervals are calculated using the 5th and 95th percentiles of
the posterior samples.

Figures 9–14 depict the posterior densities of the model parameters obtained under
several different prior distributions. Figures 9–12 show univariate marginal posteriors and
priors. Clear differences between the priors and posteriors indicate that the data contribute
significant information about the parameters, changing our prior assumptions. The dependen-
cies between ν and d, as well as between ρ and p, visible in Figures 13 and 14, are striking. The
plots reveal nonlinear relations and multimodality. Moreover, the posterior distributions
of d and ν are very sensitive to the prior distributions (compare the first three columns by
pairs from Table 2). The sensitivity of the posterior distribution of ν with respect to the
prior can also be seen in the t-SV model (see the last two columns in Table 2). However,
in both types of models considered here, the percentiles of ν indicate that the local slash
and Student’s t-distributions are more appropriate than the normal distribution for the
mean equation innovations. In turn, the posterior distribution of parameter p indicates that
the locally leptokurtic and heavy-tailed mixture normal distribution is more appropriate
than the local slash distribution. The LLFT distribution makes it possible to explain both
the outlying returns and the returns concentrating close to their median. As regards the
persistence in volatility (φ) and the variance of the volatility process (σ2), all models give
similar, though not identical, results.
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Table 2. Posterior characteristics of model parameters for the original MSAG.DE data set. The
first row of each entry: posterior median. The second row: 90% posterior confidence interval (in
parentheses). The third row: interquartile range.

Parameter LLFT-SV LLFT-SV LLFT-SV t-SV t-SV

ν ∼ G(0.2; 0.05) ν ∼ G(8; 0.8) ν ∼ G(8; 0.8) ν ∼ G(0.2; 0.05) ν ∼ G(8; 0.8)

c ∼ INK(2; 0.1) c ∼ INK(2; 0.1) c ∼ INK(2; 0.1) – –

d ∼ INK(9; 100) d ∼ INK(9; 100) d ∼ INK(2; 100) – –

γ 0.947 1.290 1.206 0.982 1.045
(0.492, 1.500) (0.772, 1.682) (0.758, 1.661) (0.709, 1.255) (0.779, 1.304)

0.406 0.413 0.392 0.224 0.210

φ 0.914 0.905 0.911 0.905 0.899
(0.860, 0.950) (0.854, 0.944) (0.860, 0.947) (0.851, 0.947) (0.839, 0.941)

0.036 0.036 0.036 0.036 0.042

σ2 0.150 0.171 0.156 0.156 0.186
(0.078, 0.261) (0.099, 0.282) (0.087, 0.270) (0.087, 0.282) (0.102, 0.324)

0.072 0.072 0.069 0.078 0.087

ν 3.99 6.30 5.60 5.11 6.44
(2.73, 7.35) (3.64, 8.82) (3.57, 8.96) (3.64, 8.54) (4.34, 10.85)

1.82 2.38 2.24 1.68 2.52

ρ 0.64 0.67 0.66 – –
(0.22, 0.98) (0.24, 0.97) (0.23, 0.96) – –

0.33 0.32 0.35 – –

p 0.148 0.240 0.214 – –
(0.046, 0.302) (0.106, 0.363) (0.107, 0.382) – –

0.087 0.125 0.131 – –

c 0.134 0.120 0.118 – –
(0.061, 0.261) (0.058, 0.231) (0.057, 0.220) – –

0.077 0.067 0.067 – –

d 5.161 3.354 7.553 – –
(1.144, 10.673) (1.105, 6.396) (1.105, 16.632) – –

2.951 3.146 4.524 – –

β0 −0.043 −0.040 −0.037 −0.076 −0.082
(−0.130, 0.008) (−0.121, 0.008) (−0.118, 0.008) (−0.163, 0.008) (−0.166, 0.005)

0.066 0.063 0.060 0.069 0.069

β1 −0.046 -0.037 −0.034 −0.115 −0.118
(−0.118, 0.005) (−0.100, 0.005) (−0.097, 0.005) (−0.163, −0.067) (−0.166, −0.067)

0.060 0.048 0.051 0.042 0.039

β2 0.023 0.023 0.023 0.035 0.035
(−0.004, 0.065) (−0.001, 0.065) (−0.001, 0.062) (−0.010, 0.080) (−0.010, 0.083)

0.030 0.030 0.027 0.036 0.039

ν ρ p

0 2 5 8 11 15 18 22 26 29
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Figure 9. Histograms of the marginal posteriors (bars) and priors (red line) of mixture parameters ν,
ρ and p, under ν ∼ G(8; 0.8), c ∼ INK(2; 0.1) and d ∼ INK(2; 100).
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Figure 10. Histograms of the marginal posteriors (bars) and priors (red line) of SV parameters γ, φ

and σ2, under ν ∼ G(8; 0.8), c ∼ INK(2; 0.1) and d ∼ INK(2; 100).
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Figure 11. Histograms of the marginal posteriors (bars) and priors (red line) of c and d, under
ν ∼ G(8; 0.8), c ∼ INK(2; 0.1) and d ∼ INK(2; 100).
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Figure 12. Histograms of the marginal posteriors (bars) and priors (red line) of c and d, under
ν ∼ G(0.2; 0.05), c ∼ INK(2; 0.1) and d ∼ INK(9; 100).

5 10 150.
0

1.
0

2.
0

nu

rh
o

0.0 0.2 0.4 0.6 0.80.
0

1.
0

2.
0

p

rh
o

(a)

0.0 0.5 1.0 1.5 2.0

5
10

15

gamma

nu

5 10 150.
0

0.
2

0.
4

nu

si
gm

a^
2

(b)

Figure 13. Bivariate marginal posteriors: (a) for pairs (ν, ρ) and (p, ρ), (b) for pairs (γ, ν) and (ν, σ2);
obtained in the LLFT-SV model with ν ∼ G(8; 0.8), c ∼ INK(2; 0.1) and d ∼ INK(2; 100).
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Figure 14. Bivariate marginal posteriors for pairs (c, ρ) and (ν, d), obtained in the LLFT-SV model
with (a) ν ∼ G(8; 0.8), c ∼ INK(2, 0.1), d ∼ INK(2; 100), (b) ν ∼ G(8; 0.8), c ∼ INK(2, 0.1),
d ∼ INK(9; 100), (c) ν ∼ G(0.2; 0.05), c ∼ INK(2, 0.1), d ∼ INK(9; 100).

However visible, the posterior sensitivity of the latent processes’ parameters does
not transfer into similar sensitivity of the posterior means of the processes themselves,
especially as it comes to the conditional standard deviations of the returns, σt (see Table 3).
The average of posterior means of σt =

√
ht min{max{ωt, c}, d} is equal to 2.119 with the

standard deviation 1.051. In the t-SV model, the average of posterior means of σt =
√

htωt
is equal to 2.173 with the standard deviation 1.210. The series of the posterior means of σt
obtained in both the models are highly correlated, with the correlation coefficient at 0.964.
In all Bayesian models considered in this subsection, the corresponding latent processes are
highly correlated, indicating their very similar dynamics. It can be seen in Figures 15–21,
where we graphed the posterior means and conditional standard deviations of hts (in both
of the models hts are relatable) and

√
ωt in t-SV that corresponds to min{max{ωt, c}, d}

in LLFT-SV. Notice that due to the non-negativity of these quantities, the two-standard-
deviation bands presented in the figures are truncated only to positive values.
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Figure 15. Posterior means (black line) with two standard-deviation bands (truncated only to positive
values; red) of hts obtained in the LLFT-SV model with: (a) ν ∼ G(0.2; 0.05), c ∼ INK(2, 0.1), d ∼
INK(9; 100), (b) ν ∼ G(8; 0.8), c ∼ INK(2, 0.1), d ∼ INK(9; 100), (c) ν ∼ G(8; 0.8), c ∼ INK(2, 0.1),
d ∼ INK(2; 100).

Finally, we compare the predictive capabilities of the Bayesian LLFT-SV and t-SV
models. For this purpose, the data set is split into two subsets: training and ex post
prediction evaluation sets. As the training set, we take the first 800 observations, with the
resulting posterior that can actually be viewed as the prior distribution before a consecutive
observation is included into the recursive (not rolling) estimation window. The forecast
evaluation period encompasses the most recent 251 trading days. We perform one- to ten-
step-ahead predictions over the period 2 March 2020 through 25 February 2021, which gives
242 predictive distributions for each of the ten forecast horizons under consideration, and
thereby 2420 predictive distributions in total. The predictive distributions are calculated
based on the whole data set available at time 800 + t for each t = 1, . . . , 242 (recursive
forecasting scheme). The models are re-estimated each time, i.e., upon arrival of each new
observation. Each of the predictive densities is based upon 50,000 MCMC posterior draws,
preceded by either 250,000 burn-in passes for t = 1 or 10,000 cycles for t = 2, 3, . . . , 242,
with the sampler each time initiated at the final draw of the previous run. The sequence
of the one-step-ahead predictive distributions covers the period from 2 March 2020 to
12 February 2021, while the sequence of the ten-step-ahead predictive distributions covers
the period 2 March 2020–25 February 2021.
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Figure 16. Posterior means (black line) with two standard-deviation bands (truncated only to positive
values; red) of hts obtained in the t-SV model with: (a) ν ∼ G(0.2; 0.05), (b) ν ∼ G(8; 0.8).
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Figure 17. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) obtained in the LLFT-SV model with ν ∼ G(0.2; 0.05), c ∼ INK(2; 0.1), d ∼ INK(9; 100)
for: (a) ωt, (b) min{max{ωt, c}, d}.
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Figure 18. Posterior means (black lines) with two-stsandard-deviation bands (truncated only to
positive values; red) of min{max{ωt, c}, d}, obtained in the LLFT-SV model with ν ∼ G(8; 0.8),
c ∼ INK(2, 0.1), and: (a) d ∼ INK(2; 100), (b) d ∼ INK(9; 100).
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Figure 19. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) of

√
ωt obtained in the t-SV model with: (a) ν ∼ G(0.2, 0.05), (b) ν ∼ G(8, 0.8).
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Figure 20. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) of σt obtained in the LLFT-SV model with: (a) ν ∼ G(0.2, 0.05), c ∼ INK(2, 0.1), d ∼
INK(9; 100), (b) ν ∼ G(8, 0.8), c ∼ INK(2, 0.1), d ∼ INK(9; 100), (c) ν ∼ G(8, 0.8), c ∼ INK(2, 0.1),
d ∼ INK(2; 100). (d) The series of modelled returns.



Entropy 2021, 23, 689 30 of 44

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

0

5

10

15

20
2017 2018 2019 2020 2021

(a)

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

0

5

10

15

20
2017 2018 2019 2020 2021

(b)

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec Ja
n

F
eb

-20

-10

0

10

20

30

2017 2018 2019 2020 2021

(c)

Figure 21. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) of σt obtained in the t-SV model with: (a) ν ∼ G(0.2; 0.05), (b) ν ∼ G(8; 0.8). (c) The
series of modelled returns.

Table 3. Basic characteristics (averages, standard deviations, correlation coefficients) of the posterior
means of latent processes, in models with ν ∼ G(8; 0.8), c ∼ INK(2; 0.1), and d ∼ INK(2; 100).

Latent Process Model Type Average Standard Deviation Correlation Coefficient

ht
LLFT-SV 5.865 9.126 0.994t-SV 4.854 6.710

min{max{ωt, c}, d} LLFT-SV 1.071 0.234 0.759√
ωt t-SV 1.148 0.154

√
ht min{max{ωt, c}, d} LLFT-SV 2.119 1.051 0.964√

htωt t-SV 2.173 1.210

As the basis of the predictive model comparison, we choose the sum of the so-called
log predictive likelihoods, which for some horizon h in a model M can be written as:

SLP(h, M) =
T̃+nh

∑
t=T̃+1

log p(yo
t+h−1|y

t−1,o
1 , y(0), M), (39)
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where p(yo
t+h|y

t,o
1 , y(0), M) is the predictive density of yt+h at the observed value yo

t+h,

yt,o
1 = (yo

1, . . . , yo
t )
′ denotes the observations up to time t, nh is the number of forecasts, and

finally, T̃ = T − nh. Note that for h = 1, the difference: SLP(1, M1)− SLP(1, M2) amounts
to the cumulative log predictive Bayes factor in favour of model M1 against M2, which
informs us how the posterior chances of M1 versus M2 (based on the observations up to

time T̃) change upon observing predicted data, yT̃+nh
T̃+1

= (yT̃+1, . . . , yT̃+nh
)′.

The use of predictive likelihoods (the predictive density values at the realized “future”
observations) are motivated and described in, e.g., [35]. Note that, in this study, we do
not consider the models’ in-sample “fit”, which is not only due to our intent to avoid
the burden of efficient approximation of marginal data density values (and the issue of
sensitivity with respect to the priors) but mostly because it would be hardly related to the
present context of forecasting.

The predictive density values (predictive likelihoods) in Equation (39) need to be
calculated numerically using draws from the posterior distribution of parameters and
latent variables:

p̂(yo
t+h−1|y

t−1,o
1 , y(0), M) =

1
N

N

∑
j=1

p(yo
t+h−1|y

t−1,o
1 , θ(j), ht+h−1,(j)

1 , ω
t+h−1,(j)
1 , y(0), M),

where θ(j), ht+h−1,(j)
1 = (h(j)

1 , . . . , h(j)
t+h−1)

′, ω
t+h−1,(j)
1 = (ω

(j)
1 , . . . , ω

(j)
t+h−1)

′ are draws from
the posterior (j = 1, 2, . . . , N).

Table 4 presents the results of predictive power comparisons of two alternative models:
LLFT-SV and t-SV, obtained for the original (i.e., not perturbed) data set and assuming
that ν ∼ G(8; 0.8) and fixed values of parameters c and d are the medians of their marginal
posteriors, obtained under two different priors for c (we provide further details below).
Thus, two cases are further considered. In the first one: c = 0.118 and d = 7.553, while in
the second: c = 0.014 and d = 2.808. Note that we decided to fix the values of these two
parameters here (rather than sample them from their posterior), which is intended to spare
much of otherwise largely time-consuming calculations. Even now, the entire forecasting
exercise for a single LLFT-SV model, with fixed values of c and d, takes as much as roughly
two days of calculations (on a personal computer with Intel Core i7-9850H processor and
16 GB RAM). Otherwise, allowing for posterior sampling of these two parameters as well
would extend this time to about eight days (for a single model).

Table 4. Sums of the log predictive likelihoods.

Forecast LLFT-SV LLFT-SV t-SV
Horizon (c = 0.118, d = 7.553) (c = 0.014, d = 2.808)

h = 1 −261.66 −239.82 −263.84
h = 2 −264.43 −241.64 −266.59
h = 3 −264.48 −241.30 −266.15
h = 4 −266.56 −245.16 −267.87
h = 5 −267.93 −246.56 −269.02
h = 6 −264.99 −242.72 −266.61
h = 7 −265.45 −243.37 −267.13
h = 8 −265.57 −242.87 −267.14
h = 9 −265.01 −241.98 −266.73

h = 10 −267.47 −244.50 −269.49

The results in Table 4 show clear evidence that the LLFT-SV models (particularly the
one with c = 0.014) outperform t-SV for all forecast horizons. Due to apparently small
differences in the log predictive likelihoods of the t-SV and LLFT-SV models with c = 0.118
and d = 7.553, one could get an impression that both are quite comparable when it comes
to their predictive power. However, the cumulative decimal logarithm of the predictive
Bayes factor in favour of the LLFT-SV model with c = 0.118 versus t-SV, defined as a
difference of the corresponding sums of the log predictive likelihoods for h = 1 (see the
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column for h = 1 in Table 4), is equal to about 2.175, which indicates that the posterior
odds ratio based on the first 800 observations and calculated in favour of the LLFT-SV
model increased by about 150 times upon observing the predicted data. The LLFT-SV
model with c = 0.014 provides further, even more considerable improvement, since the
cumulative logarithm of the predictive Bayes factor in favour of this model against the one
with c = 0.118 equals about 22. Thus, the posterior odds of these two models increases by
as much as about 22 orders of magnitude upon observing data over the forecast period
(i.e., 2 March 2020 through 25 February 2021). Note that the low value of c = 0.014
allows σt to reach very small values (close to zero), thus enabling the distribution of the
conditional mean equation’s innovations to feature a noticeable peakedness. Therefore, it
may be concluded that enabling a sharp peak at the mode in the conditional distribution
and modelling returns hovering near zero seem to be more important to the predictive
performance than fat tails (at least for the data at hand).

4.2. Results for the Perturbed MSAG.DE Data

Now, we illustrate the validity of the LLFT-SV model in the case where repeated
observations do no occur per se, but the series still contains values that concentrate tightly
around (but not at) the mode. For this purpose, we use slightly perturbed observations,
using two kinds of perturbation applied to the price series, both in the spirit of [27]. In the
first case, the data are perturbed by adding a uniformly distributed random number from
the interval (−5× 10−5, 5× 10−5), while we widen the interval to (−5× 10−4, 5× 10−4)
in the second. As a consequence of the price perturbation, the perturbed returns become
different from each other and different from zero. The perturbed returns corresponding
to the zero returns in the original series fall within the intervals (−0.0072, 0.0049) and
(−0.056, 0.058) in the first and second case, respectively. Basic descriptive characteristics
(not presented in the paper for the sake of brevity) of the perturbed daily returns are very
similar to those of the original data, presented in Table 1. Moreover, the histograms of
the original and both the perturbed data sets practically coincide (thus, we do not present
them, either). Naturally, the medians are now different from zero, equaling −0.0005 in
the first case and 0.0034 in the second. In the first case, the concentration of the returns
around zero is higher than in the second case, with about 11% of the returns lying within
the interval (−0.0072, 0.0049), and only 3.2% in the second case (in the same interval).

It can be seen from Table 5 that upon specifying INK(2; 0.1) as the prior for c in the
LLFT-SV model, thus preferring a priori values of the parameter to be relatively distant
from zero, the results of Bayesian inference about parameters and latent variables turns
out to be quite robust to the considered perturbations. It seems that under such a prior,
the values of c are too high, dominating (i.e., censoring) ωt, to “adequately” explain the
presence of numerous observations very close to the mode. Thereby, the returns that are
close but not equal to zero appear to still be treated here in the same way as the zero returns
in the model for the original series.

Turning back to Table 5, we notice that very similar results are obtained for the t-SV
model. It seems that although the model “adequately” captures the heavy tails of the
empirical distribution of the returns, it fails to explain the observations that are compressed
around the mode. In both types of models, the inference about latent processes, ht and σt,
remains unchanged (again, relevant graphs are not presented in the paper, for the sake
of brevity).

Since both fat tails and a high concentration of financial returns around the mode
need to be accounted for simultaneously, we intend to also consider such LLFT-SV models
that allow c to be closer to zero (as compared with the prior assumptions in the previous
analysis). Recall that smaller values of c lead to a more pointed distribution of the condi-
tional mean equation’s innovations. To investigate this fact, we assume that c follows a
priori the NIK(0.4; 0.009) distribution, so that its mode is now equal to about 0.1 instead of
0.2 considered in the previous analysis. Simultaneously, we impose the restriction ν ≥ 1,
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which is necessary from a numerical point of view. This restriction is not needed when c is
bounded away from zero (then the posterior probability of ν ≤ 1 is equal to zero).

Table 5. Posterior characteristics of model parameters for the perturbed and original MSAG.DE data,
under c ∼ INK(2; 0.1). The first row of each entry: posterior median. The second row: 90% posterior
confidence interval (in parentheses). The third row: interquartile range.

Parameter Original Data Perturbed Data Original Data Perturbed Data

LLFT-SV LLFT-SV t-SV t-SV

U(−5 × 10−4, 5 × 10−4) U(−5 × 10−4, 5 × 10−4)

ν ∼ G(8; 0.8) ν ∼ G(8; 0.8) ν ∼ G(8; 0.8) ν ∼ G(8; 0.8)

c ∼ INK(2; 0.1) c ∼ INK(2; 0.1) – –

d ∼ INK(2; 100) d ∼ INK(2; 100) – –

γ 1.206 1.227 1.045 1.045
(0.758, 1.661) (0.800, 1.654) (0.779, 1.304) (0.786, 1.304)

0.392 0.371 0.210 0.210

φ 0.911 0.914 0.899 0.902
(0.860, 0.947) (0.863, 0.950) (0.839, 0.941) (0.842, 0.944)

0.036 0.033 0.042 0.039

σ2 0.156 0.150 0.186 0.177
(0.087, 0.270) (0.084, 0.255) (0.102, 0.324) (0.096, 0.309)

0.069 0.066 0.087 0.087

ν 5.60 5.67 6.44 6.44
(3.57, 8.96) (3.71, 8.89) (4.34, 10.85) (4.34, 10.71)

2.24 2.17 2.52 2.45

ρ 0.66 0.70 – –
(0.23, 0.96) (0.35, 0.97) – –

0.35 0.26 – –

p 0.214 0.226 – –
(0.107, 0.382) (0.109, 0.381) – –

0.131 0.126 – –

c 0.118 0.127 – –
(0.057, 0.220) (0.072, 0.229) – –

0.067 0.057 – –

d 7.553 7.462 – –
(1.105, 16.632) (1.118, 16.376) – –

4.524 4.472 – –

β0 −0.037 −0.049 −0.082 −0.079
(−0.118, 0.008) (−0.124, 0.005) (−0.166, 0.005) (−0.166, 0.005)

0.060 0.054 0.069 0.069

β1 −0.034 −0.043 −0.118 −0.118
(−0.097, 0.005) (−0.100, −0.001) (−0.166, −0.067) (−0.166, −0.067)

0.051 0.042 0.039 0.039

β2 0.023 0.029 0.035 0.038
(−0.001, 0.062) (−0.001, 0.065) (−0.010, 0.083) (−0.010, 0.086)

0.027 0.027 0.039 0.036

When the prior distribution of c admits relatively more mass close to zero, only the
larger perturbation (the second one) turns out to change the location and dispersion of
the posterior distributions ν and ρ, which also affects, in consequence, the inference about
all the remaining parameters (apparently with the exception of the volatility persistence,
φ), see Table 6. For the original data and the first perturbation, the two parameters: ν
and ρ, have their posterior probability mass at much lower values than in the case of
c ∼ INK(2; 0.1). Moreover, the posterior marginals of these two parameters exhibit a
very high concentration around their modes. Additionally, d gathers almost all of its
posterior mass near 1 (see Figure 22), indicating that the presence of the latent process ht
in the LLFT-SV structure is enough to describe heavy tails of the empirical distribution of
modelled returns.
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Table 6. Posterior characteristics of the LLFT-SV model parameters for the perturbed and original
MSAG.DE data, under c ∼ INK(0.4; 0.009). The first row of each entry: posterior median. The
second row: 90% posterior confidence interval (in parentheses). The third row: interquartile range.

Parameter Perturbed Data Perturbed Data Original Data

U(−5 × 10−4, 5 × 10−4) U(−5 × 10−5, 5 × 10−5)

c ∼ INK(0.4; 0.009) c ∼ INK(0.4; 0.009) c ∼ INK(0.4; 0.009)

d ∼ INK(2; 100) d ∼ INK(2; 100) d ∼ INK(2; 100)

γ 0.800 −0.005 −0.047
(0.408, 1.129) (−0.278, 0.387) (−0.306, 0.219)

0.273 0.231 0.211

φ 0.929 0.917 0.911
(0.881, 0.962) (0.866, 0.950) (0.860, 0.947)

0.033 0.033 0.033

σ2 0.102 0.135 0.153
(0.048, 0.183) (0.081, 0.225) (0.090, 0.255)

0.054 0.057 0.066

ν 3.36 1.040 1.032
(1.47, 4.83) (1.003, 2.394) (1.002, 1.133)

0.98 0.07 0.05

ρ 0.11 0.047 0.046
(0.06, 0.17) (0.027, 0.079) (0.029, 0.078)

0.04 0.02 0.020

p 0.119 0.1170 0.117
(0.097, 0.144) (0.100, 0.136) (0.100, 0.136)

0.019 0.015 0.015

c 0.021 0.014 0.014
(0.018, 0.025) (0.012, 0.015) (0.012, 0.016)

0.002 0.001 0.001

d 9.503 2.795 2.806
(2.316, 18.985) (2.496, 10.764) (2.514, 3.496)

4.706 0.260 0.230

β0 −0.002 −0.0001 −0.0001
(−0.007, 0.003) (−0.0017, 0.001) (−0.001, 0.002)

0.003 0.001 0.001

β1 −0.0003 −0.0002 0.0000
(−0.003, 0.003) (−0.0013, 0.0008) (−0.0004, 0.001)

0.0025 0.0005 0.001

β2 0.0015 0.0000 0.0000
(−0.001, 0.0044) (−0.0009, 0.0011) (−0.0004, 0.001)

0.002 0.0008 0.0007

Although the posterior results for the parameters driving the term min{max{ωt, c}, d}
(i.e., ρ, ν, p, and obviously, c and d ) are very sensitive to the prior assumptions about pa-
rameter c, among others, the posterior inference about the conditional standard deviations
(of the original and perturbed data, σt) are strikingly similar in terms of their dynamics (the
posterior mean series are highly correlated); see Figure 23. However, in the LLSF-SV model
with c ∼ INK(0.4; 0.009), considerably smaller values of the posterior means of σt are noted
for the zero returns, although it can be noticed in the figure only at high magnification. The
average value of the posterior means of σt corresponding to the zero returns is equal to:
0.15 (with standard deviation 0.05) in the case of c ∼ INK(0.4; 0.009), 1.00 (0.44) in the case
of c ∼ INK(2; 0.1), and 1.67 (0.69) in the t-SV model with ν ∼ G(8; 0.8). The zero returns
in the original data and the observations that are concentrated around the mode in the
perturbed data (marked by the blue vertical lines in Figures 23–25) tend to be treated in a
special way by assigning to them relatively small values of ωt; see Figures 24 and 25. Thus,
in this sense, the LLFT-SV model is able to detect “inliers”, defined here as the observations
that lie in the central part of empirical distribution and their occurrence is “atypical” in the
sense of their repeatedness or their “atypically” high concentration around the mode.
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Figure 22. Bivariate marginal posteriors for pairs (c, ρ) and (ν, d), obtained in the LLFT-SV model,
under ν ∼ G(8; 0.8), c ∼ INK(0.4; 0.009) and d ∼ INK(2; 100); (a) for the original MSAG.DE data set,
(b) for the perturbed data, U(−5× 10−5, 5× 10−5), (c) for the perturbed data, U(−5× 10−4, 5× 10−4).
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Figure 23. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) of σt obtained for the original MSAG.DE data in the LLFT-SV model with ν ∼ G(8; 0.8),
and: (a) c ∼ INK(2; 0.1), (b) c ∼ INK(0.4; 0.009).
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Figure 24. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) of min{max{ωt, c}, d}, obtained for the original MSAG.DE data in the LLFT-SV model
with ν ∼ G(8; 0.8), and: (a) c ∼ INK(2; 0.1), (b) c ∼ INK(0.4; 0.009).
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Figure 25. Posterior means (black line) with two-standard-deviation bands (truncated only to positive
values; red) of min{max{ωt, c}, d}, obtained in the LLFT-SV model for the perturbed MSAG.DE data.
The prior distribution: ν ∼ G(8; 0.8), c ∼ INK(0.4; 0.009). The result for: (a) the first perturbation,
(b) the second perturbation.

Note that the inference about the mixing variables, ωts, depends on the size of per-
turbation. It seems that the closer a point observation (yt) is to zero (or to the mode),
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the smaller value of corresponding min{max{ωt, c}, d} in the LLFT-SV model with c ∼
INK(0.4; 0.009). Thanks to this prior assumption, min{max{ωt, c}, d} can take on values
close to zero and, in consequence, atypical “inlying” observations can be better explained.
This result is in accordance with those of the predictive power comparison of models, pre-
sented in the previous subsection. Allowing c to take on low values considerably improves
the predictive performance of the LLFT-SV model, due to its far more appropriate handling
of the very center of the data distribution’s central part.

4.3. Results for Stock Market Indices

In this section, we present only a brief analysis of the LLFT-SV model estimation results
for two common stock market indices: Standard and Poor’s 500 (S&P 500) and Deutscher
Aktienindex (DAX), both representing “typical” financial series, with their dynamics reflecting
movements of the entire market rather than only of a single company’s stock prices (possibly,
of a limited liquidity). Both data sets were downloaded from http://stooq.pl (an open
access web page) and cover the same period as the one considered previously for MSAG.DE:
28 December 2016 through 25 February 2021. As seen in Figure 26, the logarithmic rates of
return reveal strong leptokurticity and fat tails, with the latter built up particularly due to
the market volatility outburst triggered by the COVID-19 pandemic. However, contrary
to the MSAG.DE data set, the series currently at hand do not feature zero returns nor any
repeating value, therefore representing quite distinct characteristics.

Similarly to the analysis for MSAG.DE, the first two available observations are spared
for the initial condition in the AR(2) structure, yielding the final number of modelled
observation of T = 1047 for DAX, and T = 1044 for S&P 500.

Posterior characteristics of the key parameters of the LLFT-SV model (ν, ρ, p) indicate
the validity of modelling the error term through the LLFT distribution, pointing to a
non-negligible contribution of both mixture components: beta and Pareto (in the SMN
representation); see Table 7. As implied by the posterior expectations of p, for DAX,
both components are almost of the same weight, while in the case of S&P 500, the beta
component constitutes roughly 30% of the mixture. Higher posterior medians of c for DAX,
as compared to S&P 500, indicate a lower local conditional peakedness, which is suitably
accompanied by lower posterior medians of d, the values of which, being close to 1, bring
the conditional distribution of εt (given d) closer to a normal distribution. However, it
seems that in the case of S&P 500 the posterior distributions of c and d are visibly affected
by the priors (see relevant panels in Figure 27).

In general, we could conclude that incorporating the LLFT distribution into an SV
model may be an empirically valid extension of the basic stochastic volatility structure also
for “more typical” financial time series, such as market indices, rather than only for some
specific company’s (“less typical”) stock returns.
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Figure 26. The series (left) and histograms (with fitted Gaussian curves; right) of the S&P 500 and
DAX returns.
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Figure 27. Marginal posteriors (blue line) and priors (red line) of the LLFT-SV model parameters
under ν ∼ G(8; 0.8), c ∼ INK(0.4; 0.009) and d ∼ INK(2; 100). The top two rows show plots for S&P
500 and the bottom two rows for DAX.

Table 7. Posterior characteristics of the LLFT-SV model parameters for DAX and S&P 500, under d ∼ INK(2; 100). The first
row of each entry: posterior median. The second row: 90% posterior confidence interval (in parentheses). The third row:
interquartile range.

Parameter DAX DAX S&P 500 S&P 500

ν ∼ G(8; 0.8) ν ∼ G(8; 0.8) ν ∼ G(8; 0.8) ν ∼ G(8; 0.8)

c ∼ INK(2; 0.1) c ∼ INK(0.4; 0.009) c ∼ INK(2; 0.1) c ∼ INK(0.4; 0.009)

γ 0.191 0.296 −0.558 −572
(−0.649, 1.080) (−0.565, 1.269) (−1.377, 0.289) (−1.419, 0.303)

0.560 0.588 0.581 0.588

φ 0.983 0.983 0.980 0.980
(0.962, 0.998) (0.962, 0.998) (0.962, 0.995) (0.962, 0.995)

0.012 0.015 0.012 0.012

σ2 0.033 0.033 0.081 0.078
(0.018, 0.066) (0.015, 0.063) (0.054, 0.120) (0.051, 0.123)

0.021 0.018 0.027 0.027

ν 6.72 7.00 8.33 8.75
(3.99, 10.15) (4.13, 10.85) (5.18, 11.48) (5.53, 11.90)

2.52 2.66 2.52 2.59

ρ 0.83 0.84 0.86 0.85
(0.57, 1.02) (0.59, 1.02) (0.61, 1.05) (0.60, 1.04)

0.19 0.18 0.18 0.17

p 0.506 0.573 0.309 0.294
(0.275, 0.718) (0.332, 0.789) (0.175, 0.476) (0.147, 0.475)

0.197 0.184 0.114 0.121

c 0.408 0.421 0.198 0.103
(0.253, 0.556) (0.294, 0.568) (0.122, 0.586) (0.051, 0.591)

0.115 0.104 0.134 0.101

d 1.079 1.066 5.643 6.369
(1.027, 6.851) (1.027, 5.4866) (1.089, 14.52) (1.089, 15.147)

0.065 0.052 7.326 7.821

β0 0.071 0.071 0.095 0.083
(0.032, 0.110) (0.032, 0.113) (0.068, 0.122) (0.062, 0.119)

0.030 0.033 0.021 0.024

β1 −0.043 −0.040 −0.097 −0.094
(−0.091, 0.005) (−0.088, 0.008) (−0.142, −0.049) (−0.139, −0.052)

0.039 0.039 0.036 0.033

β2 0.008 0.005 −0.004 −0.001
(−0.040, 0.059) (−0.043, 0.056) (−0.052, 0.044) (−0.046, 0.050)

0.042 0.042 0.036 0.042
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5. Discussion

In the paper, we proposed a new scale mixture of normal distributions that features
local leptokurticity and local fat tails. This new LLFT distribution was further incorporated
into a basic stochastic volatility model (yielding a LLFT-SV specification), so as to enhance
the model’s capability of capturing corresponding empirical properties of financial time
series. For the new model, we developed a Bayesian framework along with valid MCMC
methods of posterior sampling. Empirical results indicate the validity of the LLFT-SV
specification for modelling both “non-standard” financial time series with repeating zero
returns (resulting in a single pronounced histogram bar), as well as more “typical” data
on the S&P 500 and DAX indices. For the former, the LLFT-SV model was also shown to
markedly outperform a common, globally heavy-tailed, t-SV alternative in terms of density
forecasting (as measured by the sum of predictive likelihoods). Apparently, the noticeable
predictive superiority of the LLFT-SV model draws on its more adequate handling of
the peak in the central part of the returns’ distribution but not at the expense of a valid
modelling of the outliers.

In general, it can be concluded that it is not only fat tails but also close-to-mode
returns that are vital to financial data modelling. Thus, more flexible than common heavy-
tailed (such as Student’s t or slash) distributions may be empirically required so that both
features can be ’freely’ controlled for by separate parameters (rather than a single one).
Nonetheless, the LLFT-SV specification proposed in this study leaves some important room
for further improvement, with the model’s most obvious limitations being the symmetry of
the conditional distribution and the preclusion of the leverage effect. The symmetry of the
LLFT distribution suggests that it lends itself mainly to modelling either time series with
quite a symmetric data distribution or at least those where an adequate capturing of the
tails and peakedness would empirically prove more important than allowing for skewness
(although this could not be settled without comparing alternative models). Obviously,
extending the LLFT-SV model towards the asymmetry could be directly related to it gaining
the ability of accounting for the leverage effect. Moreover, skewing the LLFT distribution
itself seems a valid and important extension. We leave such generalizations of our current
framework for future work. Finally, and on a different note, evaluation of the LLFT-SV
model in terms of risk modelling and management would also be most desirable.
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Appendix A

In this appendix, we provide and theorems showing that the marginal data density
value (i.e., marginal likelihood) is finished in the Bayesian LLFT-SV model considered in
Section 3.



Entropy 2021, 23, 689 40 of 44

Theorem A1. For the stochastic volatility model presented in Section 3, and under the additional
assumption that the inverse gamma prior distribution of σ2 is truncated to the interval (0, κ2

σ), for
any fixed κ2

σ < ∞, we have that p(y) < ∞.

Proof of Theorem 2. Denote p(ω|p, ρ, ν) =
T
∏

t=1

(
p fBeta(ωt|ρ, 1) + (1− p) fPareto(ωt|1, ν)

)
and h̃ = [ln h1, ln h2, . . . , ln hT ]

′. Note that

p(y) =
∫
ω

∫
h̃

∫
β

∫
σ

∫
γ

∫
φ

∫
p

∫
ν

∫
ρ

∫
c

∫
d

p
(

y, ω, h̃, β, σ, γ, φ, p, ν, ρ, c, d |y(0)

)
dd dc dρ dν dp dφ dγ dσ dβ dh̃ dω ∝

∫
ω

∫
h̃

∫
β

∫
σ

∫
γ

∫
φ

∫
p

∫
ν

∫
ρ

∫
c

∫
d

e
− 1

2

T
∑

t=1

(
yt−xt β

eh̃t/2 min{max{ωt ,c},d}

)2

∏T
t=1 min{max{ωt, c}, d}︸ ︷︷ ︸

f1

× e
− 1

2

T
∑

t=1

((
h̃t−γ−φ(h̃t−1−γ)

σ

)2
+h̃t

)

σT︸ ︷︷ ︸
f2

×

p(ω|p, ρ, ν)p(σ)p(β)p(p)p( ν)p(ρ)p(d)p(c)dd dc dρ dν dp dφ dγ dσ dβ dh̃ dω.

For the term f1, we have the following inequality f1 ≤ e
− 1

2d2
T
∑

t=1

(
yt−xt β

eh̃t/2

)2

cT . Using this inequal-
ity, we get that there exist C1, C2 < ∞ such that

∫
c

∫
d

f1 p(d)p(c)dd dc ≤ C1

(
1
2

T

∑
t=1

e−h̃t(yt − xtβ)
2 + βd

)
−αd×

(
Γ(αd)− Γ

(
αd, βd +

1
2

T

∑
t=1

e−h̃t(yt − xtβ)
2

))
≤ C2 (A1)

The term f2 is the kernel of a multivariate Gaussian distribution for h̃, which can be written as

f2 = |Σh|
1
2 e−

1
2 (h̃−r)′Σh(h̃−r)e−

γ
2 (T−∑T

t=1 φt)e−h0
φ(φT−1)

φ−1 eσ2g(φ), (A2)

where Σh = [aij]T×T is a tridiagonal matrix such that |Σh|
1
2 = σ−T , with the elements on the

main diagonal: aii =
φ2+1

σ2 , for i = 1, 2, . . . , T − 1, aTT = 1
σ2 and aij = −

φ

σ2 , for |i− j| = 1,
and r is the mean vector. The term g(φ) is a polynomial of order T− 2 with positive values
for φ ∈ (−1, 1) and with known coefficients that depend only on the sample’s size, T.
Hence, there exists C3 < ∞, which depends only on T, and such that g(φ) ≤ C3.

Using (A1), (A2) and inequalities e−h0
φ(φT−1)

φ−1 ≤ e|h0|T , e−
γ
2 (T−∑T

t=1 φt) ≤ e|γ|T , eκ2
σ g(φ) ≤

eκ2
σC3 , and integrating over h̃, we get that there exists C4 < ∞ such that

p(y) ≤ C4

∫
ω

∫
β

∫
σ

∫
γ

∫
φ

∫
p

∫
ν

∫
ρ

e|γ|T×

p(ω|p, ρ, ν)p(σ)p(β)p(p)p( ν)p(ρ)dρ dν dp dφ dγ dσ dβ dω = C4

∫
γ

e|γ|T p(γ)dγ < ∞

which ends the proof.
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Appendix B

We examine the convergence of the MCMC sampler through a visual inspection of
ACF, standardized CUSUM ([36–38]) and trace plots; see Figures A1 and A2. Furthermore,
in Table A1, inefficiency factors are reported (calculated with the batch-means method,
using the ACF lags from 1 through 500; see e.g., [39]).

The results presented in Figures A1 and A2 do not display any sort of anomalies that
would invalidate the MCMC convergence for the MSAG.DE data (plots obtained for the
S&P 500 and DAX indices are similar, and therefore, for saving the space, not reported here,
although available upon request). The ACF plots reveal, however, a typical autocorrelation,
most persistent for parameters γ, ν and p, which is further reflected in the inefficiency
factors (see Table A1).
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Figure A1. Standardized CUSUM for the parameters.

Table A1. Inefficiency factors obtained in the LLFT-SV model, under ν ∼ IG(8; 0.8), d ∼ INK(2; 100),
c ∼ INK(2; 0.1).

Parameter MSAG.DE DAX S&P 500

γ 16.743 6.197 2.553
φ 11.507 13.184 7.219
σ2 14.419 17.611 12.23
ν 16.275 11.676 10.114
ρ 11.997 8.651 4.837
p 18.022 21.078 13.499
c 10.688 12.954 15.081
d 7.696 15.471 8.127
β0 7.654 4.012 5.363
β1 9.752 3.137 2.985
β2 6.468 5.554 2.858
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Figure A2. Trace plots and ACF for MCMC samples.
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