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Abstract: In this paper, we investigate the multi-criteria decision-making complications under
intuitionistic fuzzy hypersoft set (IFHSS) information. The IFHSS is a proper extension of the
intuitionistic fuzzy soft set (IFSS) which discusses the parametrization of multi-sub attributes of
considered parameters, and accommodates more hesitation comparative to IFSS utilizing the multi
sub-attributes of the considered parameters. The main objective of this research is to introduce
operational laws for intuitionistic fuzzy hypersoft numbers (IFHSNs). Additionally, based on
developed operational laws two aggregation operators (AOs), i.e., intuitionistic fuzzy hypersoft
weighted average (IFHSWA) and intuitionistic fuzzy hypersoft weighted geometric (IFHSWG),
operators have been presented with their fundamental properties. Furthermore, a decision-making
approach has been established utilizing our developed aggregation operators (AOs). Through the
established approach, a technique for solving decision-making (DM) complications is proposed to
select sustainable suppliers in sustainable supply chain management (SSCM). Moreover, a numerical
description is presented to ensure the validity and usability of the proposed technique in the DM
process. The practicality, effectivity, and flexibility of the current approach are demonstrated through
comparative analysis with the assistance of some prevailing studies.

Keywords: hypersoft set; intuitionistic fuzzy soft set; intuitionistic fuzzy hypersoft set; IFHSWA
operator; IFHSWG operator; SSCM

1. Introduction

Decision-making is an interesting concern to select the perfect alternative for any
particular purpose. Firstly, it is supposed that details about alternatives are accumulated
in crisp numbers, but in real-life situations, collective farm information always contains
wrong and inaccurate information. Fuzzy sets [1] are similar to sets having an element
of membership (Mem) degree. In classical set theory, the Mem degree of the elements
in a set is examined in binary form to see that the element is not entirely concomitant
to the set. In contrast, the fuzzy set theory enables advanced Mem categorization of the
components in the set. It is portrayed by the Mem function, and also the multipurpose unit
interval of the Mem function is [0, 1]. In some circumstances, decision-makers consider the
Mem and non-membership (Nmem) values of objects. In such cases Zadeh’s FS is unable
to handle the imprecise and vague information. Atanassov [2] established the notion of
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intuitionistic fuzzy sets (IFS) to deal with the above-mentioned concerns. In addition,
several other theories have been proposed to overcome such complications, such as cubic
IFS [3], interval-valued IFS [4], entropy and distance measures for IFSS [5], etc.

Atanassov’s IFS accommodates the inadequate information utilizing Mem and NMem
values, but IFS is unable to deal with incompatible and inexact data in which alternatives
have parametric values. To overcome such complications, Molodtsov [6] presented the
soft set (SS) for indeterminate, uncertain, and vague substances. Maji et al. [7] established
the notion of the fuzzy soft set (FSS) by merging FS and SS. Ali et al. [8] proposed a novel
decision-making approach for bipolar FSS utilizing different types of parameter reduction.
Maji et al. [9] developed the notion of IFSS and presented some fundamental operations
with their desirable properties. Garg and Arora [10] introduced the correlation coefficient
for IFSS, and extended the TOPSIS method for IFSS. They also utilized their developed
TOPSIS technique to solve multi-attribute decision-making (MADM) obstacles. Wei and
Zhang [11] presented two novel entropy measures for IFS and interval-valued IFS based
on cosine function with their fundamental properties and established a decision-making
technique to utilize their developed entropy measures. Zulqarnain et al. [12] proposed
the correlation coefficient for IVFSS and developed the TOPSIS technique, utilizing their
presented correlation coefficient. They also introduced the AOs for IVFSS, and used
their established techniques to solve decision-making complications. Garg and Arora [13]
extended the notion of IFSS, proposed the most generalized form of IFSS, and developed
some AOs with their fundamental properties.

Wang et al. [14] extended the PFSs and introduced interactive Hamacher operations
with some novel AOs. They also established a DM method to solve MADM problems by
using their proposed operators. Wang and Li [15] extended the notion of PFSs to interval-
valued PFSs with some desirable operators. They also developed a DM technique utilizing
their proposed operators to solve multi-attribute group decision-making (MAGDM) prob-
lems. Wang et al. [16] established a MADM approach utilizing interval-valued q-rung
orthopair 2-tuple linguistic. Pamucar [17] established an MCDM approach by merging
two existing studies of interval grey numbers and normalized weighted geometric Dombi–
Bonferroni mean operators. Peng and Yuan [18] established some novel operators, such as
Pythagorean fuzzy point operators, and developed a DM technique using their proposed
operators. Garg [19] extended the weighted AOs to PFSs and acquired numerous operators,
introducing a DM technique founded on settled operators. Wang and Liu [20] studied
a intuitionistic fuzzy Einstein weighted geometric operator and established a DM approach
to solving DM complications. Garg [21] developed the logarithmic operational laws for
PFSs and proposed some AOs. Wang and Liu [22] introduced the intuitionistic fuzzy Ein-
stein weighted averaging operator and the intuitionistic fuzzy Einstein ordered weighted
averaging operator with their desirable properties. Arora and Garg [23] presented the
operational laws for linguistic IFS and developed prioritized AOs.

Faizi et al. [24] introduced two novel techniques to obtain the best priority vector
for the solution of MAGDM problems utilizing intuitionist 2-tuple linguistic sets. Based
on Hamacher operations, they presented some operational laws in an under-considered
environment. Xu [25] presented some innovative AOs for IFSs and proposed the compari-
son laws for IFNs. Sinani et al. [26] extended the Hamy mean and Dombi operators for
rough numbers and established a DM approach to resolving MADM challenges based on
their acquired operators. Riaz et al. [27] introduced the soft multi-set topology on a soft
multi-set with aggregation operators and the MCDM technique. Peng et al. [28] presented
the notion of PFSS with its fundamental properties merging two prevailing techniques,
PFS and SS. Athira et al. [29] extended the concept of PFSS, and introduced entropy mea-
sure under-considered environment. Zulqarnain et al. [30] established operational laws
for Pythagorean fuzzy soft numbers (PFSNs) and developed AOs, such as Pythagorean
fuzzy soft weighted average and geometric, by using defined operational laws for PFSNs.
They also planned a DM approach to solve MADM problems with the help of presented
operators. Riaz et al. [31] have established AOs utilizing Einstein Operations and examined
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their fundamental properties; they also proposed a DM technique to solve MCDM obsta-
cles. Faizi et al. [32] extended the notion of normalized interval-valued triangular fuzzy
numbers, and developed an MCDM technique to solve DM issues. Several techniques have
been established to solve multi-criteria decision analysis (MCDA) which provide suitable
results in real-life complications [33,34]. Salabun et al. [35] worked to benchmark selected
MCDA techniques and determined that a set of realistic MCDA approaches. Referring to
the mentioned guide, they propose to organize simulation experimentations.

The existing studies only deal with inadequate information due to membership and
non-membership values. However, these theories cannot handle the overall incompatible,
as well as imprecise, information. When any attribute from a set of parameters comprises
further sub-attributes, the prevailing theories fail to solve such types of problems. To
overcome the aforementioned limitations, Smarandache [36] developed the idea of SS to
hypersoft sets (HSS) by substituting the one-parameter function f to a multi-parameter
(sub-attribute) function. Samarandache claimed that the established HSS can competently
deal with uncertain objects, in comparison to SS. Nowadays, HSS theory and its extensions
have been gaining unexpected traction. Several investigators have examined progressed
distinctive operators along with characteristics under HSS and its extensions [37–43].
Zulqarnain et al. [44] presented the IFHSS, which is the generalized version of IFSS. They
established the TOPSIS method to resolve the MADM problem, utilizing the developed
correlation coefficient.

The essential objective of the following scientific research is to grow novel AOs for the
IFHSS environment and processing mechanism, which can also follow the assumptions of
IFHSNs. Furthermore, we developed an algorithm to explain the MCDM problem, and
presented a numerical illustration to justify the effectiveness of the proposed approach
under the IFHSS environment. Supplier selection and evaluation is a critical factor in
business activity. Recent government policy changes have led to supplier selection being
considered from various perspectives, including environmental and social imperatives.
Thus, in the literature, the problem is referred to as sustainable supplier selection and
described as a problem for MCDM. Simultaneously, many papers [45–48] point to the need
for further research using MCDM methods in sustainable supplier selection, oriented at
properly reflecting uncertainties in the data of the environment and the preferences of the
decision-maker. To improve the computing power and flexibility of IFSS, we first summa-
rize the decision formula to incorporate the views of decision-makers into IFHSS terms, and
propose operational rules for IFHSS. According to the newly developed operational rules,
there are two AOs, namely IFHSWA and IFHSWG operators, which have been established.
Many of the associated properties of these operators are also inspected. The score function
and accuracy function of IHFSS are also discussed to compare IFHSS. The algorithmic rule
following the proposed operator to resolve the DM problems is anticipated, along with
a numerical example used to demonstrate the effectiveness of the introduced DM approach.

The rest of the study is planned thus: In Section 2, we present some initial impressions,
such as SS, HSS, and IFHSS, which help us to build a successful investigation structure. We
formulated some operational laws for IFHSNs in accordance with established operating
laws, and presented the aggregation operators (AOs) with their properties in Section 3.
In Section 4, a DM method is developed for SSCM by using the proposed operator. To
ensure the practicality of the established DM approach a numerical example is presented.
In addition, we utilize some available techniques to indicate analysis within our own
designed technique. Furthermore, we give the benefits of planned algorithms, simplicity,
flexibility, and effectivity. In Section 5, we will concisely discuss and compare existing
techniques along with the projected approach.
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2. Preliminaries

In the following section, we are going to review some fundamental definitions that
support us in establishing the following research structures, such as SS, HSS, FHSS, as well
as IFHSS.

Definition 1. [6] Let U be the universal set and E be the set of attributes concerning U . Let P(U )
be the power set of U and C ⊆ E . A pair (F , C) is called a SS over U and its mapping is given as

F : C → P(U )

It is also defined as:

(F , C) = {F (e) ∈ P(U ) : e ∈ E ,F (e) = ∅ i f e /∈ C}

Definition 2. [7] F (U ) be a collection of all fuzzy subsets over U and E be a set of attributes. Let
C ⊆ E , then a pair (F , C) is called FSS over U , where F is a mapping such as

F : C → F (U )

Definition 3. [36] Let U be a universe of discourse and P(U ) be a power set of U and
k = {k1, k2, k3, . . . , kn},(n ≥ 1) be a set of attributes and set Ki a set of corresponding sub-attributes
of ki respectively with Ki ∩ Kj = ϕ for n ≥ 1 for each i, j ε {1,2,3 . . . n} and i 6= j. Assume
K1 × K2 × K3× . . . × Kn =

...
C = {c1h × c2k × , . . . ,× cnl} be a collection of multi-attributes,

where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤ γ, and α, β, and γ ∈ N. Then the pair (F , K1 × K2 ×
K3× . . . × Kn =

...
C) is said to be HSS over U and its mapping is defined as

F : K1× K2× K3× . . .× Kn =
...
C → P(U )

It is also defined as(
F ,

...
C) =

{
(ǎ, F...

A (ǎ)) : ǎ ∈
...
A, F...

A (ǎ) ∈ P(U )
}

Definition 4. [44] Let U be a universe of discourse and P(U ) be a power set of U and
k = {k1, k2, k3, . . . , kn},(n ≥ 1) be a set of attributes and set Ki a set of corresponding sub-
attributes of ki respectively with Ki ∩ Kj = ϕ for n ≥ 1 for each i, j ε {1,2,3 . . . n} and i 6= j.
Assume K1 × K2 × K3× . . . × Kn =

...
C = {c1h × c2k × · · · × cnl} be a collection of sub-attributes,

where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤ γ, and α, β, and γ ∈ N and IFSU be a collection of all
intuitionistic fuzzy subsets over U . Then the pair (F , K1 × K2 × K3× . . . × Kn =

...
C) is said to be

IFHSS over U , and its mapping is defined as

F : K1× K2× K3× . . .× Kn → IFSU .

It is also defined as(
F ,

...
C
)
=
{(

č, F...
C
(
č
))

: č ∈
...
C, F...

C
(
č
)
∈ IFSU ∈

[
0, 1

]}
where F...

C (č) = {δ, µF (č)(δ), ϑF (č)(δ) : δ ∈ U}, where µF (č)(δ) and ϑF (č)(δ) represents the
MD and NMD of the sub-attributes of the considered parameters such as µF (č)(δ),
ϑF (č)(δ) ∈ [0, 1], and 0 ≤ µF (č)(δ) + ϑF (č)(δ) ≤ 1.
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Remark 1. If µF (č)(δ) + ϑF (č)(δ) ≤ 1 is held and all parameters of a set of attributes have no
further sub-attribute. Then, IFHSS was reduced to IFSS [9].

The IFHSN Fδi

(
čj
)

=
{(

µF (čj)
(δi), ϑF (čj)

(δi)
) ∣∣∣δi ∈ U

}
can be express as

Jčij =
〈

µF (čij)
, ϑF (čij)

〉
for readers’ convenience. To rank the alternatives scoring func-

tion of Jčij is defined in the following:

S
(
Jčij

)
= µF (čij)

− ϑF (cij)
, S
(
Jčij

)
∈ [−1, 1] (1)

However, sometimes the scoring function such as Jč11 = 〈0.4, 0.7〉 and Jč12 = 〈0.5, 0.8〉
is unable to compute the two IFHSNs. In such cases it can be difficult to decide which
value is most suitable S

(
Jč11

)
= 0.3 = S

(
Jč12

)
. Accuracy function has been introduced to

overcome such difficulties:

H
(
Jčij

)
= µF (čij)

+ ϑF (čij)
, H
(
Jčij

)
∈ [0, 1]. (2)

Thus, to compare two IFHSNs Jčij and Tčij , the subsequent ranking and comparison
laws are classified as follows:

1. If S
(
Jčij

)
> S

(
Tcij

)
, then Jčij > Tčij .

2. If S
(
Jčij

)
= S

(
Tčij

)
, then

o If H
(
Jčij

)
> H

(
Tčij

)
, then Jčij > Tčij

o If H
(
Jčij

)
= H

(
Tčij

)
, then Jčij = Tčij .

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers

In this section, we present the operational laws for IFHSNs and propose the IFHSWA,
and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental properties of
IFHSWA and IFHSWG operators utilizing our developed IFHSNs.

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers

Definition 5. Let Jčk =
(
µčk , ϑčk

)
, Jč11 =

(
µč11 , ϑč11

)
, and Jč12 =

(
µč12 , ϑč12

)
be three IFHSNs

and α be a positive real number, by algebraic norms, we have

1. Jč11⊕ Jč12 =
〈
µč11 + µč12 − µč11 µč12 , ϑč11 ϑč12

〉
2. Jč11 ⊗ Jc12 =

〈
µč11 µč12 , ϑč11 + ϑč12 − ϑč11 ϑč12

〉
3. αJčk =

〈[
1−

(
1− µčk

)α,
(

ϑčk

)α
]〉

4. Jα
ˇ̌ck

=
〈[(

µčk

)α, 1−
(
1− ϑčk

)α
]〉

Some average and geometric AOs for IFHSSs are described based on the above rules for
collecting IFHSNs ∆.

Definition 6. Let Jčk =
(
µčk , ϑčk

)
be an IFHSN,
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𝛼
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𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 
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𝑚 γ𝑗 (⊕𝑖=1
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𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i and γj are weight vector for expert’s and
sub-attributes of selected parameters respectively with given conditions
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is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i > 0, ∑n
i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i = 1,
γj > 0, ∑m

j=1 γj = 1. Then IFHSWA operator is defined as
IFHSWA: ∆n → ∆ defined as follows:
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
= ⊕m

j=1γj

(
⊕n

i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij

)
. (3)
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Theorem 1. Let Jčk =
(
µčk , ϑčk

)
be an IFHSN. Then, the aggregated values obtained by using

Equation (3) is also an IFHSN and

IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
=

〈
1−∏m

j=1

(
∏n

i=1

(
1− µčij

)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, ∏m
j=1

(
∏n

i=1

(
ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
.

(4)

where

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i and γj are weight vector for expert’s and sub-attributes of the parameters correspondingly
with given circumstances
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i > 0, ∑n
i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i = 1, γj > 0, ∑m
j=1 γj = 1.

Proof. We can prove this by applying the principle of mathematical induction such
as follows:

For n = 1, we get
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

1 = 1. Then, we have

IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
= ⊕m

j=1γjJčij

IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
=
〈

1−∏m
j=1

(
1− µč1j

2
)γj

, ∏m
j=1

(
ϑč1j

)γj
〉

=

〈
1−∏m

j=1

(
∏1

i=1

(
1− µď1j

2
)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, ∏m
j=1

(
∏1

i=1

(
ϑď1j

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
.

For m = 1, we get γ1 = 1. Then, we have

IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
= ⊕n

i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij

=

〈
1−∏n

i=1
(
1− µči1

2)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
.

This shows that Equation (4) satisfies for n = 1 and m = 1. Consider Equation (4)
holds for m = β1 + 1, n = β2 and m = β1, n = β2 + 1, such as:

⊕β1+1
j=1 γj

(
⊕β2

i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij

)
=

〈
1−∏

β1+1
j=1

(
∏

β2
i=1

(
1− µčij

2
)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, ∏
β1+1
j=1

(
∏

β2
i=1

(
ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
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j=1γj

(
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij
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=

〈
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, ∏
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∏
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉

For m = β1 + 1 and n = β2 + 1, we have
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j=1 γj
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij

)
= ⊕β1+1

j=1 γj

(
⊕β2

i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij ⊕
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1Jč(β2+1)j

)
= ⊕β1+1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

iJčij⊕
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1Jč(β2+1)j
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〈1−∏
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∏
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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)γj

,

∏
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

⊕∏
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1
)γj

〉
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2
)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, ∏
β1+1
j=1

(
∏

β2+1
i=1

(
ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
.

Hence, it is true for m = β1 + 1 and n = β2 + 1. �

3.2. Properties of IFHSWA Operator
3.2.1. (Idempotency)

If Jčij = Jčij =
(

µčij , ϑčij

)
∀ i, j, then,
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IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
= Jč.

Proof. As we know Jčij = Jč =
(

µčij , ϑčij

)
to be a collection of IFHSNs, then by using

Equation (4).

IFHSWA
(
Jč11 , Jč12 , . . . , Jčnm

)
=

〈
1−∏m

j=1

(
∏n

i=1

(
1− µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, ∏m
j=1

(
∏n

i=1

(
ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉

=

〈
1−

((
1− µčij

)∑n
i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)∑m

j=1 γj

,
((

ϑčij

)∑n
i=1
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⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-
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3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 
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𝛼
, 1 − (1 − 𝜗𝑐�̌�)
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Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)∑m

j=1 γj
〉

=
〈

1−
(

1− µčij

)
, ϑčij

〉
=
(

µčij , ϑčij

)
= Jč.

Which completes the proof. �

3.2.2. (Boundedness)

Let Jčij be a collection of IFHSNs and

Jčij
− =

〈
min

j

min

i

{
µčij

}
,

max

j

max

i

{
ϑčij

}〉
and Jčij

+ =
〈

max

j

max

i

{
µčij

}
,

min

j

min

i

{
ϑčij

}〉
, then

Jčij
− ≤ IFHSWA

(
Jč11 , Jč12 , . . . , Jčnm

)
≤ Jčij

+.

Proof. As we know Jčij =
(

µčij , Jčij

)
to be an IFHSN, then

min
j

min
i

{
µčij

}
≤ µčij ≤

max
j

max
i

{
µčij

}
⇒ 1− max

j
max

i

{
µčij

}
≤ 1− µčij ≤1− min

j
min

i

{
µčij

}
⇔
(

1− max
j

max
i

{
µčij

})
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is defined in the following: 
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However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 
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o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   
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𝛼
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Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
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Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

≤
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1− µčij

)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 
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H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i ≤
(

1− min
j

min
i

{
µčij
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i ≤
(

1− min
j

min
i

{
µčij

})∑n
i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

⇔
(

1− max
j

max
i

{
µčij

})∑m
j=1 γj

≤∏m
j=1

(
∏n

i=1

(
1− µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

≤
(

1− min
j

min
i

{
µčij

})∑m
j=1 γj

⇔ 1− max
j

max
i

{
µµ̌ij

}
≤∏m

j=1

(
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i=1

(
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)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
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Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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µčij

}
⇔ min

j
min

i

{
µčij
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
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𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛
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where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗
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, that inequities 5 and 6 could be
turned into the subsequent form:

min

j

min

i

{
µčij

}
≤ µčδ

≤
max

j

max

i

{
µčij

}
and min

j

min

i

{
ϑčij

}
≤ ϑčδ

≤
max

j

max

i

{
ϑčij

}
respectively.

So, by utilizing Equation (1), we have:

S
(
Jčδ

)
= µčδ

− ϑčδ
≤ max

j
max

i

{
µčij

}
− min

j
min

i

{
ϑčij

}
= S
(
Jčij

+
)

,
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S
(
Jčδ

)
= µčδ

− ϑčδ
≥ min

j
min

i
{

µčδ

}
− max

j
max

i
{

ϑčδ

}
= S
(
Jčij
−
)

. Then, by order

relation among two IFHSNs, we have
Jčij
− ≤ IFHSWA

(
Jč11 , Jč12 , . . . , Jčnm

)
≤ Jčij

+ �

3.2.3. (Shift Invariance) If Jčδ
=
〈
µčδ

, ϑčδ

〉
Be an IFHSN. Then,

IFHSWA
(
Jc11 ⊕ Jčδ

, Jč12 ⊕ Jčδ
, . . . , Jčnm ⊕ Jčδ

)
= IFHSWA

(
Jč11 , Jč12 , . . . , Jčnm

)
⊕ Jčδ

.

Proof. Consider Jčδ
and Jčij to be two IFHSNs. Then, by using operational laws defined

under IFHSNs in Definition 5 (1), we have:
Jčδ
⊕ Jcij =

〈
µčδ

+ µčij − µčδ
µčij , ϑčδ

ϑčij

〉
, therefore

IFHSWA
(
Jč11 ⊕ Jčδ

, Jč12 ⊕ Jčδ
, . . . , Jčnm ⊕ Jčδ

)
= ⊕m

j=1γj

(
⊕n

i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

(
Jčij ⊕ Jčδ

) )
=

〈
1−∏m

j=1

(
∏n

i=1

(
1− µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i(
1− µčδ

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

)γj

, ∏m
j=1

(
∏n

i=1

(
ϑčij

)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i(
ϑčδ

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉

=

〈
1−∏m

j=1

(
∏n

i=1

(
1− µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
⊕
〈
µčδ

, ϑčδ

〉
= IFHSWA

(
Jc11 , Jč12 , . . . , Jčnm

)
⊕ Jčδ

.

Which completes the proof �

3.2.4. (Homogeneity)

Prove that IFHSWA
(
αJč11 , αJč12 , . . . , αJčnm

)
= α IFHSWA

(
Jč11 , Jč12 , . . . , Jčnm

)
for any

positive real number α.

Proof. Let Jčij be an IFHSN and > 0, then by using Definition 5 (3), we have

αJčij =
〈

1−
(

1− µčij

)α
, ϑčij

α
〉

.
So,

IFHSWA
(
αJč11 , αJč12 , . . . , αJčnm

)
=〈

1−∏m
j=1

(
∏n

i=1

(
1− µčij

)α
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

)α〉
= α IFHSWA

(
Jč11 , Jč12 , . . . , Jčnm

)
.

Completes the proof. �

Definition 7. Let Jčk =
(
µčk , ϑčk

)
be an IFHSN,
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i and γj be weight vectors for expert’s and multi
sub-attributes of the considered attributes correspondingly along with specified circumstances
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i >
0, ∑n

i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i = 1, γj > 0, ∑m
j=1 γj = 1. Then IFHSWG operator can be defined as follows:

IFHSWG: ∆n → ∆ defined as follows:

IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
= ⊗m

j=1

(
⊗n

i=1J
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
čnm

)γj
. (7)



Entropy 2021, 23, 688 9 of 19

Theorem 2. Let Jčk =
(
µčk , ϑčk

)
be an IFHSN. Then, utilizing Equation (7), we get PFHSN and

IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
=〈

∏m
j=1

(
∏n

i=1

(
µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, 1−∏m
j=1

(
∏n

i=1

(
1− ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
(8)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i and γj be weight vectors for experts and multi sub-attributes of the considered attributes
correspondingly along with specified circumstances
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i > 0, ∑n
i=1
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i = 1, γj > 0, ∑m
j=1 γj = 1.

Proof. The IFHSWA can be proven as follows utilizing the principle of mathematical
induction.

For n = 1, we get
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

1 = 1. Then, we have

IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
= ⊗m

j=1J
γj
č1j

IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
=
〈

∏m
j=1

(
µč1j

)γj
, 1−∏m

j=1

(
1− ϑč1j

)γj
〉

=

〈
∏m

j=1

(
∏1

i=1

(
µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, 1−∏m
j=1

(
∏1

i=1

(
1− ϑč1j

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
.

For m = 1, we get γ1 = 1. Then, we have

IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
= ⊗n

i=1
(
Jči1

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
.

This shows that Equation (8) fulfills for n = 1 and m = 1. Consider Equation (8) holds
for m = β1 + 1, n = β2 and m = β1, n = β2 + 1, such as:

⊗β1+1
j=1

(
⊗β2

i=1

(
Jčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

=

〈
∏
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∏
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(
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)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj
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β1+1
j=1

(
∏

β2
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(
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉

For m = β1 + 1 and n = β2 + 1, we have

⊗β1+1
j=1

(
⊗β2+1

i=1

(
Jčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

= ⊗β1+1
j=1

(
⊗β2

i=1

(
Jčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i ⊗
(
Jč(β2+1)j
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1
)γj

= ⊗β1+1
j=1

(
⊗β2

i=1

(
Jčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

⊗β1+1
j=1

((
Jč(β2+1)j

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1
)γj

=

〈 ∏
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)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1
)γj

,

1−∏
β1+1
j=1

(
∏

β2
i=1

(
1− ϑčij

)

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

⊗ 1−∏
β1+1
j=1

((
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

β2+1
)γj

〉

= ∏
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∏
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, 1−∏
β1+1
j=1

(
∏

β2+1
i=1

(
1− ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

.

Hence, it is true for m = β1 + 1 and n = β2 + 1. �
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We establish some properties for the collection of IFHSNs based on Theorem 2, by
utilizing the proposed IFHSWG operator.

3.3. Properties of IFHSWG Operator
3.3.1. (Idempotency)

Jčij = Jčδ
=
(

µčij , ϑčij

)
∀ i, j, then,

IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
= Jčδ

.

Proof. As we know Jčij = Jčδ
=
(

µčij , ϑčij

)
to be a collection of IFHSNs, then by Equation (8)

IFHSWG (Jč11 , Jč12 , . . . , Jčnm )=

〈
∏m

j=1

(
∏n

i=1

(
µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

)γj

, 1−∏m
j=1

(
∏n

i=1

(
1− ϑčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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µčij , ϑčij
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ϑčij

}〉
and Jčij
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
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𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

≤
(

µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i ≤
(

max
j

max
i

{
µčij

})
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i ≤
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

≤ max
j

max
i

{
µčij
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

≤ max
j

max
i

{
ϑčij

}
(10)
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Let IFHSWG
(
Jč11 , Jč12 , . . . , Jčnm

)
=
〈
µčδ

, ϑčδ

〉
= Jčδ

, then Inequalities 9 and 10 can

be transformed into the following form: min

j

min

i

{
µčij

}
≤ µčδ

≤
max

j

max

i

{
µčij

}
and

min

j

min

i

{
ϑčij

}
≤ ϑčδ

≤
max

j

max

i

{
ϑčij

}
respectively.

So, by utilizing Equation (1), we have:

S
(
Jčδ

)
= µčδ

− ϑčδ
≤ max

j
max

i

{
µčij

}
− min

j
min

i

{
ϑčij

}
= S
(
Jčij

+
)

,

S
(
Jčδ

)
= µčδ

− ϑčδ
≥ min

j
min

i
{

µčδ

}
− max

j
max

i
{

ϑčδ

}
= S
(
Jčij
−
)

. Then, by order

relation among two IFHSNs, we have
Jčij
− ≤ IFHSWG

(
Jč11 , Jč12 , . . . , Jčnm

)
≤ Jčij

+. �

3.3.3. (Shift Invariance)

If Jčδ
=
〈
µčδ

, ϑčδ

〉
be an IFHSN. Then,

IFHSWG (Jč11 ⊗ Jčδ
, Jč12 ⊗ Jčδ

, . . . , Jčnm ⊗ Jčδ
) = IFHSWG (Jč11 , Jč12 , . . . , Jčnm )⊗ Jčδ

.

Proof. Let Jčδ
and Jčij be two IFHSNs. Utilizing Definition 5 (2), we have:

Jčδ
⊗ Jcij =

〈
µč11 µč12 , ϑč11 + ϑč12 − ϑč11 ϑč12

〉
. Therefore

IFHSWG
(
Jč11 ⊗ Jčδ

, Jč12 ⊗ Jčδ
, . . . , Jčnm ⊗ Jčδ

)
= ⊗m

j=1γj

(
⊗n

i=1

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i

(
Jčij ⊗ Jčδ

) )
=

〈
∏m

j=1

(
∏n

i=1

(
µčij

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i(
µčδ

)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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)
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

, 1−
(
1− ϑčδ

)
∏m

j=1

(
∏n

i=1

(
1− ϑčij
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
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〈
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

i
)γj

〉
⊗
〈
µčδ

, ϑčδ

〉
= IFHSWG

(
Jc11 , Jč12 , . . . , Jčnm

)
⊗ Jčδ

.

Which completes the proof. �

3.3.4. (Homogeneity)

Prove that IFHSWG
(
αJč11 , αJč12 , . . . , αJčnm

)
= α IFHSWG

(
Jč11 , Jč12 , . . . , Jčnm

)
for any

positive real number α.

Proof. Similar to Section 3.2.4. �

4. Multi-Criteria Decision-Making Approach under IFHSS Information

An MCDM technique is constructed here with underdeveloped operators and de-
scribed as a numerical illustration to demonstrating their competence.
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4.1. Proposed Approach to Solve the MCDM Problem

Consider Q =
{
Q1, Q2, Q3, . . . , Qs}to be a set of s alternatives and X = {X1,X2,X3, . . . ,Xn}

to be a set of n experts. The weights of experts are given as
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The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 

⟨𝜇ℱ(𝑐�̌�𝑗), 𝜗ℱ(𝑐�̌�𝑗)⟩ for readers' convenience. To rank the alternatives scoring function of 𝔍𝑐�̌�𝑗 

is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 

2. If 𝕊(𝔍𝑐�̌�𝑗) = 𝕊(𝔗𝑐�̌�𝑗), then 

o If H(𝔍𝑐�̌�𝑗) > H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗 

o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 

1. 𝔍𝑐1̌1⊕ 𝔍𝑐1̌2 = ⟨𝜇𝑐1̌1 + 𝜇𝑐1̌2 − 𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1𝜗𝑐1̌2⟩   

2. 𝔍𝑐1̌1⊗𝔍𝑐12 = ⟨𝜇𝑐1̌1𝜇𝑐1̌2 , 𝜗𝑐1̌1 + 𝜗𝑐1̌2 − 𝜗𝑐1̌1𝜗𝑐1̌2⟩ 

3. 𝛼𝔍𝑐�̌� = ⟨[1 − (1 − 𝜇𝑐�̌�)
𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-
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o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 
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𝛼
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𝛼
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4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
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𝑖=1 )
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𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 
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Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 
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o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 
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𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
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Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
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𝑖=1 )
γ𝑗

𝑚
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𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  
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where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 

1, . . . ,

Entropy 2021, 23, 688 5 of 18 
 

 

The IFHSN ℱ𝛿𝑖(�̌�𝑗)  = {(𝜇ℱ(𝑐�̌�)(𝛿𝑖), 𝜗ℱ(𝑐�̌�)(𝛿𝑖))  ⎸𝛿𝑖 ∈ 𝒰}  can be express as 𝔍𝑐�̌�𝑗  = 
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is defined in the following: 

𝕊(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) − 𝜗ℱ(𝑐𝑖𝑗), 𝕊(𝔍𝑐�̌�𝑗) ∈ [−1, 1] (1) 

However, sometimes the scoring function such as 𝔍𝑐1̌1  = ⟨0.4, 0.7⟩  and 𝔍𝑐1̌2  = 

⟨0.5,0.8⟩ is unable to compute the two IFHSNs. In such cases it can be difficult to decide 

which value is most suitable 𝕊(𝔍𝑐1̌1) = 0.3 = 𝕊(𝔍𝑐1̌2). Accuracy function has been intro-

duced to overcome such difficulties: 

H(𝔍𝑐�̌�𝑗) = 𝜇ℱ(𝑐�̌�𝑗) + 𝜗ℱ(𝑐�̌�𝑗), H(𝔍𝑐�̌�𝑗) ∈ [0, 1]. (2) 

Thus, to compare two IFHSNs 𝔍𝑐�̌�𝑗 and 𝔗𝑐�̌�𝑗, the subsequent ranking and compar-

ison laws are classified as follows: 

1. If 𝕊(𝔍𝑐�̌�𝑗) > 𝕊(𝔗𝑐𝑖𝑗), then 𝔍𝑐�̌�𝑗 > 𝔗𝑐�̌�𝑗. 
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o If H(𝔍𝑐�̌�𝑗) = H(𝔗𝑐�̌�𝑗), then 𝔍𝑐�̌�𝑗 = 𝔗𝑐�̌�𝑗. 

3. Aggregation Operators for Intuitionistic Fuzzy Hypersoft Numbers 

In this section, we present the operational laws for IFHSNs and propose the 

IFHSWA, and IFHSWG operators for IFHSS. Furthermore, we discuss the fundamental 

properties of IFHSWA and IFHSWG operators utilizing our developed IFHSNs. 

3.1. Operational Laws for Intuitionistic Fuzzy Hypersoft Numbers 

Definition 5. Let 𝔍𝑐�̌�  = (𝜇𝑐�̌� , 𝜗𝑐�̌�) , 𝔍𝑐1̌1  = (𝜇𝑐1̌1 , 𝜗𝑐1̌1) , and 𝔍𝑐1̌2  = (𝜇𝑐1̌2 , 𝜗𝑐1̌2)  be three 

IFHSNs and 𝛼 be a positive real number, by algebraic norms, we have 
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𝛼
, ( 𝜗𝑐�̌�)

𝛼
]⟩ 

4. 𝔍
𝑐̌̌𝑘

𝛼  = ⟨[(𝜇𝑐�̌�)
𝛼
, 1 − (1 − 𝜗𝑐�̌�)

𝛼
]⟩ 

Some average and geometric AOs for IFHSSs are described based on the above rules for col-

lecting IFHSNs ∆.  

Definition 6. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN, Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and 

sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 

> 0, ∑ 𝛾𝑗
𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) = ⊕ 𝑗=1
𝑚 γ𝑗 (⊕𝑖=1

𝑛 Ω𝑖𝔍𝑐�̌�𝑗  ). (3) 

Theorem 1. Let 𝔍𝑐�̌� = (𝜇𝑐�̌� , 𝜗𝑐�̌�) be an IFHSN. Then, the aggregated values obtained by using 

Equation 3 is also an IFHSN and 

𝐼𝐹𝐻𝑆𝑊𝐴 (𝔍𝑐1̌1 , 𝔍𝑐1̌2 , … , 𝔍𝑐�̌�𝑚) 

= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
𝑗=1 , ∏ (∏ ( 𝜗𝑐�̌�𝑗)

Ω𝑖𝑛
𝑖=1 )

γ𝑗
𝑚
𝑗=1 ⟩.  

(4) 

where Ω𝑖 and 𝛾𝑗 are weight vector for expert’s and sub-attributes of the parameters correspond-

ingly with given circumstances Ω𝑖 > 0, ∑ Ω𝑖
𝑛
𝑖=1  = 1, 𝛾𝑗 > 0, ∑ 𝛾𝑗

𝑚
 𝑗=1  = 1. 
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sub-attributes of selected parameters respectively with given conditions Ω𝑖 > 0, ∑ Ω𝑖
𝑛
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𝑚
 𝑗=1  = 1. Then IFHSWA operator is defined as 

IFHSWA: ∆𝑛 → ∆ defined as follows: 
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= ⟨1 − ∏ (∏ (1 − 𝜇𝑐�̌�𝑗)
Ω𝑖𝑛

𝑖=1 )
γ𝑗

𝑚
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i = 1. Let L = {c1, c2, . . . , cm} be a set of attributes with their corresponding
multi sub-attributes such as L′ = {(c1ρ × c2ρ × . . .× cmρ) for all ρ ∈ {1, 2, . . . , t} } with

weights γ =
(
γ1ρ, γ2ρ, γ3ρ, . . . , γmρ

)T
such as γρ > 0, ∑t

ρ=1 γρ = 1. The components in the
collection of sub-attributes are multi-valued; for the sake of accessibility, the components
of L′ can be stated as L′ = {č∂ : ∂ ∈ {1, 2, . . . , k}}. The team of experts {Xi: i = 1, 2, . . . ,
n} appraise the alternatives {Q(z): z = 1, 2, . . . , s} under the preferred sub-attributes of
the considered parameters {č∂: ∂ = 1, 2, . . . , k} given in the form of IFHSNs such as(
J
(z)
čij

)
n×∂

=
(

µ
(z)
čij

, ϑ
(z)
čij

)
n×∂

, where 0 ≤ µ
(z)
čij

, ϑ
(z)
čij
≤ 1 and µ

(z)
čij

+ ϑ
(z)
čij
≤ 1 for all i, j.

4.2. Algorithm for Developed Aggregation Operators under IFHSS Information

Step 1. Acquire a decision matrix from experts for each alternative {Q(z): z = 1, 2, . . . , s}
such as follows:

č1 č2 . . . . . . č∂

(
Q(z), L′

)
n×∂

=

X1
X2
...
Xn



(
µ
(z)
č11

, ϑ
(z)
č11

) (
µ
(z)
č12

, ϑ
(z)
č12

)
· · ·

(
µ
(z)
č1∂

, ϑ
(z)
č1∂

)(
µ
(z)
č21

, ϑ
(z)
č21

) (
µ
(z)
č22

, ϑ
(z)
č22

)
· · ·

(
µ
(z)
č2∂

, ϑ
(z)
č2∂

)
...

...
...

...(
µ
(z)
čn1

, ϑ
(z)
čn1

) (
µ
(z)
čn2

, ϑ
(z)
čn2

)
· · ·

(
µ
(z)
čn∂

, ϑ
(z)
čn∂

)


Step 2. Transforming cost type sub-attributes to benefit type sub-attribute using the

normalization rule and obtain the normalized decision matrix.

〈ij=

 Jc
čij

=
(

ϑ
(z)
čij

, µ
(z)
čij

)
; cost type parameter

Jčij =
(

µ
(z)
čij

, ϑ
(z)
čij

)
; benefit type parameter

Step 3. Utilizing the developed aggregate, operators obtained a collective decision matrix
Jčij for each alternative T =

{
T 1, T 2, T 3, . . . , T s}.

Step 4. If T =
{
T 1, T 2, T 3, . . . , T s} are a collection of considered alternatives, then

calculate the score values utilizing Equation (1).

Step 5. Pick the most suitable alternate with a supreme score value.

Step 6. Rank the alternatives.
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The above presented approach can be expressed graphically in Figure 1 such
as follows:

Start 

Define the alternatives Appoint a team of experts Choose the parameters accord-

ing to DM problem with their 

corresponding sub-attributes 

Development of decision matrices for alternatives according to 

experts evaluation in form of IFHSNs 

Identify the cost type attributes Converts rating value of its into benefit type sub-

attributes by using normalization rule 

IFHSWA operator IFHSWG operator 

Collect aggregated Intuitionistic fuzzy hypersoft numbers 

(IFHSNs) 

Aggregation process 

Compute the score value of aggregated numbers 

Choose the alternative with maxi-

mum score value  

Rank the alternatives 
End 

Figure 1. Flow chart of the presented decision-making approach.

4.3. Case Study

The problem of supplier selection is important in both methodical and practical dimen-
sions. It is a key issue for the firm as the optimal choice of supplier is the basis for effective
management of the supply chain and the source of competitive advantage. Including
pro-environmental imperatives and other aspects of sustainable development in the sup-
plier selection process makes the correct supplier selection difficult and multidimensional.
Depending on the scope of pro-environmental or pro-social activities, supplier selection
is often referred to in the literature as “sustainable supplier selection”. It is a complex
and multidimensional problem, where there are conflicting criteria, and the evaluation
process itself requires consideration of many perspectives. From these points of view,
the supplier selection problem is often treated in the literature as a “reference” problem,
where multi-criteria decision support methods (MCDM) have been widely applied. The
problem of selecting and evaluating a sustainable supplier is addressed in many works.
Analyzing papers [49–51] and using review papers [52–54] in this example of sustainable
supplier selection, it was decided to extract the following set of five basic criteria. These
are: c1, quality of service; c2, pollution control; c3, environmental efficiency; c4, price; and
c5, corporate social responsibility.
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Let {X (1), X (2), X (3), X (4), X (5)} be a set of substitutes and
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bility, the components of 𝔏′ can be stated as 𝔏′ = {�̌�𝜕: 𝜕 ∈ {1, 2, … , 𝑘}}. The team of ex-

perts {𝒳𝑖: 𝑖 = 1, 2,…, 𝑛} appraise the alternatives {𝒬(𝑧): 𝑧 = 1, 2, …, 𝑠} under the pre-

ferred sub-attributes of the considered parameters {�̌�𝜕: 𝜕 = 1, 2, …, 𝑘} given in the form 

of IFHSNs such as (𝔍𝑐�̌�𝑗
(𝑧)
)
𝑛×𝜕

= (𝜇𝑐�̌�𝑗
(𝑧)
, 𝜗𝑐�̌�𝑗
(𝑧)
)
𝑛×𝜕

, where 0 ≤ 𝜇𝑐�̌�𝑗
(𝑧)
, 𝜗𝑐�̌�𝑗
(𝑧)

 ≤ 1 and 𝜇𝑐�̌�𝑗
(𝑧)
+ 𝜗𝑐�̌�𝑗

(𝑧)
 

≤ 1 for all 𝑖, 𝑗.  

4.2. Algorithm for Developed Aggregation Operators under IFHSS Information 

Step 1. Acquire a decision matrix from experts for each alternative {𝒬(𝑧): 𝑧 = 1, 2, …, 𝑠} 

such as follows:  
�̌�1                   �̌�2         … . .        �̌�𝜕  

(𝒬(𝑧), 𝔏′)
𝑛×𝜕

= 

𝒳1
𝒳2
⋮
𝒳𝑛

 

(

  
 

(𝜇𝑐1̌1
(𝑧)
, 𝜗𝑐1̌1
(𝑧)
) (𝜇𝑐1̌2

(𝑧)
, 𝜗𝑐1̌2
(𝑧)
) ⋯ (𝜇𝑐1̌𝜕

(𝑧)
, 𝜗𝑐1̌𝜕
(𝑧)
)

(𝜇𝑐2̌1
(𝑧)
, 𝜗𝑐2̌1
(𝑧)
) (𝜇𝑐2̌2

(𝑧)
, 𝜗𝑐2̌2
(𝑧)
) ⋯ (𝜇𝑐2̌𝜕

(𝑧)
, 𝜗𝑐2̌𝜕
(𝑧)
)

⋮ ⋮ ⋮ ⋮

(𝜇𝑐�̌�1
(𝑧)
, 𝜗𝑐�̌�1
(𝑧)
) (𝜇𝑐�̌�2

(𝑧)
, 𝜗𝑐�̌�2
(𝑧)
) ⋯ (𝜇𝑐�̌�𝜕

(𝑧)
, 𝜗𝑐�̌�𝜕
(𝑧)
))

  
 

 

 

 

Step 2. Transforming cost type sub-attributes to benefit type sub-attribute using the 

normalization rule and obtain the normalized decision matrix. 

𝒽𝑖𝑗 = {
𝔍𝑐�̌�𝑗
𝑐 = (𝜗𝑐�̌�𝑗

(𝑧)
, 𝜇𝑐�̌�𝑗
(𝑧)
) ;        cost type parameter

𝔍𝑐�̌�𝑗 = (𝜇𝑐�̌�𝑗
(𝑧)
, 𝜗𝑐�̌�𝑗
(𝑧)
) ;  benefit type parameter

  

Step 3. Utilizing the developed aggregate, operators obtained a collective decision matrix 

𝔍𝑐�̌�𝑗 for each alternative 𝒯 = {𝒯1, 𝒯2, 𝒯3, … , 𝒯𝑠}. 

Step 4. If 𝒯 = {𝒯1, 𝒯2, 𝒯3, … , 𝒯𝑠} are a collection of considered alternatives, then calcu-

late the score values utilizing Equation 1. 

Step 5. Pick the most suitable alternate with a supreme score value. 

Step 6. Rank the alternatives. 

The above presented approach can be expressed graphically in Figure 1 such as 

follows: 

=
{c1 = Superiority, c2 = Delivery, c3 = Services, c4 = Troposphere, c5 =
Commercial societal concern} be a collection of considered attributes given as Superiority
= c1 = {c11 = national level, c12 = international level}, Delivery = c2 = {c21 = by carriar,
c22 = by hand}, Services = c3 = {c31 = services}, Troposphere = c4 = {c41 = f riendly,
c42 = non serious}, and Commercial societal concern = c5 = {c51 = Commercial societal concern}.
Let L′ = c1 × c2 × c3× c4 × c5 be a set of sub-attributes

L′= c1 × c2 × c3× c4 × c5= {c11, c12} × {c21, c22} × {c31, c32}×{c41} × {c51}

=

{
(c11, c21, c31, c41, c51), (c11, c21, c32, c41, c51), (c11, c22, c31, c41, c51), (c11, c22, c32, c41, c51),

(c12, c21, c31, c41, c51), (c12, c21, c32, c41, c51), (c12, c22, c31, c41, c51), (c12, c22, c32, c41, c51)

}
,

L′ = {č1, č2, č3, č4, č5, č6, č7, č8} be a set of all sub-attributes with weights
(0.12, 0.18, 0.1, 0.15, 0.05, 0.22, 0.08, 0.1)T . Consider {Q(1), Q(2), Q(3), Q(4)} be a set of
experts with weights (0.2, 0.3, 0.4, 0.1)T to assess the finest alternate. Experts give their
preferences in terms of IFHSNs using considered multi sub-attributes. The following is
that the procedure progressed to get the most productive choice.

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average
Operator

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi sub-
attributes of the considered attributes, along with a summary of their score values
are given in Tables 1–4.

Table 1. Decision Matrix for Alternative Q(1).

Q(1)
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

1
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𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

2
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that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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X1 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3)
X2 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5)
X3 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5)
X4 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3)

Table 2. Decision Matrix for Alternative Q(2).

Q(2)
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

1
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

2
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

3
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

6

Entropy 2021, 23, 688 13 of 18 
 

 

{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

8

X1 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5)
X2 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8)
X3 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2)
X4 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5)

Table 3. Decision Matrix for Alternative Q(3).

Q(3)
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

1
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

2
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

3
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

8

X1 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5)
X2 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1)
X3 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3)
X4 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2)

Table 4. Decision Matrix for Alternative Q(4).

Q(4)
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

1
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

2
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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{𝑐41 = 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑦, 𝑐42 = 𝑛𝑜𝑛 𝑠𝑒𝑟𝑖𝑜𝑢𝑠} , and Commercial societal concern  = 𝑐5  = {𝑐51 =

Commercial societal concern}. Let 𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 be a set of sub-attributes 
𝔏′ = 𝑐1 × 𝑐2 × 𝑐3× 𝑐4 × 𝑐5 = {𝑐11, 𝑐12} × {𝑐21, 𝑐22} × {𝑐31, 𝑐32} × {𝑐41} × {𝑐51} 

= {
(𝑐11, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐11, 𝑐22, 𝑐32, 𝑐41, 𝑐51),
(𝑐12, 𝑐21, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐21, 𝑐32, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐31, 𝑐41, 𝑐51), (𝑐12, 𝑐22, 𝑐32, 𝑐41, 𝑐51) 

},   

𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 
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𝔏′  = {�̌�1, �̌�2, �̌�3, �̌�4, �̌�5, �̌�6, �̌�7, �̌�8}  be a set of all sub-attributes with weights 

(0.12, 0.18, 0.1,0.15, 0.05, 0.22, 0.08, 0.1)𝑇. Consider {𝒬(1), 𝒬(2), 𝒬(3), 𝒬(4)} be a set of ex-

perts with weights (0.2, 0.3, 0.4, 0.1)𝑇 to assess the finest alternate. Experts give their 

preferences in terms of IFHSNs using considered multi sub-attributes. The following is 

that the procedure progressed to get the most productive choice. 

4.4. Sustainable Supplier Selection Using Intuitionistic Fuzzy Hypersoft Weighted Average 

Operator 

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi 

sub-attributes of the considered attributes, along with a summary of their score values 

are given in Tables 1–4. 

Step 2. There is no need for normalization, as all attributes are identical. 

Step 3. Using Equation 4, expert’s opinion can be summarized as follows: 

ℒ1 = ⟨0.23054, 0.42563⟩, ℒ2 = ⟨0.291197, 0.415560⟩, ℒ3 = ⟨0.447878,0 .363226⟩, and ℒ4 

= ⟨0.441142, 0.345641⟩. 

Step 4. Calculate the score values using Equation 1. 

𝕊(ℒ1) = −0.195086, 𝕊(ℒ2) = −0.124363, 𝕊(ℒ3) = 0.084652, and 𝕊(ℒ4) = 0.095501. 

Step 5. By using the obtained score values, we can see that 𝒬(4) is the best alternative. 

Step 6. Hence, the following is an arrangement of alternatives: 𝕊(ℒ4) > 𝕊(ℒ3) > 𝕊(ℒ2) 

> 𝕊(ℒ1). So, 𝒬(4) > 𝒬(3)  > 𝒬(2) > 𝒬(1), hence, the alternative 𝒬(4) is the most suitable 

alternative. 

Table 1. Decision Matrix for Alternative 𝒬(1). 

𝓠(𝟏) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.3, 0.5) (0.2, 0.3) (0.1, 0.3) (0.3, 0.6) (0.2, 0.4) (0.2, 0.6) (0.5, 0.4) (0.1, 0.3) 

𝓧𝟐 (0.2, 0.7) (0.4, 0.6) (0.3, 0.4) (0.1, 0.2) (0.1, 0.2) (0.2, 0.4) (0.2, 0.5) (0.4, 0.5) 

𝓧𝟑 (0.2, 0.3) (0.2, 0.5) (0.1, 0.6) (0.3, 0.4) (0.4, 0.6) (0.1, 0.4) (0.2, 0.3) (0.2, 0.5) 

𝓧𝟒 (0.2, 0.4) (0.2, 0.3) (0.2, 0.4) (0.4, 0.6) (0.3, 0.5) (0.3, 0.6) (0.4, 0.5) (0.1, 0.3) 

Table 2. Decision Matrix for Alternative 𝒬(2) 

𝓠(𝟐) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.2, 0.6) (0.3, 0.4) (0.4, 0.5) (0.3, 0.5) (0.5, 0.4) (0.4, 0.6) (0.3, 0.5) (0.4, 0.5) 

𝓧𝟐 (0.3, 0.5) (0.2, 0.4) (0.1, 0.2) (0.1, 0.2) (0.4, 0.5) (0.1, 0.3) (0.2, 0.7) (0.1, 0.8) 

𝓧𝟑 (0.3, 0.7) (0.4, 0.5) (0.2, 0.8) (0.3, 0.4) (0.2, 0.3) (0.3, 0.4) (0.1, 0.2) (0.7, 0.2) 

𝓧𝟒 (0.5, 0.4) (0.1, 0.6) (0.2, 0.3) (0.2, 0.3) (0.1, 0.2) (0.2, 0.4) (0.4, 0.6) (0.5, 0.5) 

Table 3. Decision Matrix for Alternative 𝒬(3) 

𝓠(𝟑) �̌�𝟏 �̌�𝟐 �̌�𝟑 �̌�𝟒 �̌�𝟓 �̌�𝟔 �̌�𝟕 �̌�𝟖 

𝓧𝟏 (0.4, 0.5) (0.3, 0.5) (0.4, 0.5) (0.3, 0.4) (0.2, 0.4) (0.4, 0.5) (0.3, 0.4) (0.3, 0.5) 

𝓧𝟐 (0.3, 0.4) (0.1, 0.3) (0.1, 0.8) (0.1, 0.2) (0.4, 0.6) (0.3, 0.7) (0.6, 0.1) (0.8, 0.1) 

𝓧𝟑 (0.6, 0.2) (0.3, 0.4) (0.7, 0.3) (0.3, 0.4) (0.1, 0.2) (0.4, 0.5) (0.3, 0.5) (0.6, 0.3) 

𝓧𝟒 (0.5, 0.4) (0.2, 0.3) (0.4, 0.6) (0.3, 0.4) (0.3, 0.6) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2) 

8

X1 (0.2, 0.7) (0.4, 0.5) (0.2, 0.4) (0.4, 0.3) (0.1, 0.2) (0.2, 0.4) (0.3, 0.4) (0.2, 0.4)
X2 (0.3, 0.5) (0.2, 0.4) (0.8, 0.1) (0.5, 0.2) (0.4, 0.3) (0.4, 0.5) (0.7, 0.2) (0.6, 0.3)
X3 (0.6, 0.3) (0.4, 0.5) (0.6, 0.2) (0.6, 0.4) (0.1, 0.2) (0.3, 0.4) (0.5, 0.3) (0.4 0.5)
X4 (0.5, 0.4) (0.1, 0.3) (0.3, 0.5) (0.5, 0.3) (0.3, 0.5) (0.8, 0.1) (0.3, 0.5) (0.2, 0.5)
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Step 2. There is no need for normalization, as all attributes are identical.

Step 3. Using Equation (4), expert’s opinion can be summarized as follows:
L1 = 〈0.23054, 0.42563〉, L2 = 〈0.291197, 0.415560〉, L3 = 〈0.447878, 0.363226〉,
and L4 = 〈0.441142, 0.345641〉.

Step 4. Calculate the score values using Equation (1). S(L1) = −0.195086,
S(L2) = −0.124363, S(L3) = 0.084652, and S(L4) = 0.095501.

Step 5. By using the obtained score values, we can see that Q(4) is the best alternative.

Step 6. Hence, the following is an arrangement of alternatives: S(L4) > S(L3) > S(L2)
> S(L1). So, Q(4) > Q(3) > Q(2) > Q(1), hence, the alternative Q(4) is the most
suitable alternative.

4.5. Sustainable Supplier Selection Using the Intuitionistic Fuzzy Hypersoft Weighted
Geometric Operator

Step 1. Experts examine the circumstances in the instance of IFHSNs. The multi sub-
attributes of the considered attributes, along with a summary of their score values
are given in Tables 1–4.

Step 2. There is no need for normalization, as all attributes are identical.

Step 3. Using Equation (8), expert’s opinion can be summarized as follows:
L1 = 〈0.201387, 0.461254〉, L2 = 〈0.238098, 0.480574〉, L3 = 〈0.317227, 0.459177〉,
and L4 = 〈0.366312, 0.402225〉.

Step 4. Calculate the score values using Equation (1). S(L1) = −0.259867,
S(L2) = −0.242376, S(L3) = −0.141950, and S(L4) = −0.035913.

Step 5. By using the obtained score values, we can see that Q(4) is the best alternative.

Step 6. Hence, the following is an arrangement of alternatives S(L4) > S(L3) > S(L2)
> S(L1). So, Q(4) > Q(3) > Q(2) > Q(1), therefore, the alternate Q(4) is the most
appropriate alternative.

5. Comparative Analysis and Discussion

In the subsequent section, we are going to talk over the usefulness, easiness, and
manageability of the assistance of the planned method. We also performed an ephemeral
evaluation of the undermentioned: the planned technique, along with some prevailing
methodologies.

5.1. Superiority of the Proposed Method

Through this study and comparison, it could be determined that the consequences
acquired by the suggested approach have been more common than either available meth-
ods. However, overall, the DM procedure associated with the prevailing DM methods
accommodates extra information to address hesitation. In addition, FS’s various hybrid
structures are becoming a special feature of IFHSS, along with some appropriate circum-
stances which have been added. The general information associated with the object can
be stated precisely and analytically (see Table 5). Therefore, it is a suitable technique to
syndicate inaccurate and ambiguous information in the DM process. Hence, the suggested
approach is practical, modest, and in advance of fuzzy sets’ distinctive hybrid structures.

5.2. Discussion

Using MD, Zadeh’s [1] FS only handled the inexact and imprecise information of
sub-attributes of considered attributes for each alternative. However, the FS has no evi-
dence regarding the NMD of the considered parameters. The existing FS only contracts
the ambiguous difficulties using MD, though our planned technique accommodates the
vagueness applying MD and NMD. Additionally, Zhang et al. [55] and Xu et al. [56] devel-



Entropy 2021, 23, 688 16 of 19

oped IFS which deals with the vague information using MD and NMD. However, these
theories are unable to deal with the parametric values of the alternatives. Maji et al. [7]
presented the notion of FSS to deal with the parametrization of the objects which contain
uncertainty by considering the MD of the attributes. However, the presented FSS pro-
vides no information about the NMD of the object. To overcome the presented drawback,
Maji et al. [9] offered the concept of IFSS; the presented notion handles the uncertain object
more accurately, utilizing the MD and NMD of the attributes with their parametrization
and MD+ NMD ≤ 1. All the above mentioned studies have no information about the
sub-attributes of the considered attributes. Therefore, the above mentioned theories are
unable to handle the scenario when attributes have their corresponding sub-attributes.
Our presented approach can resolve these complications simply, and bring additional
operational consequences in the DM method. It may be seen that the best selection of
the suggested approach is to resemble the verbalized own method, and this ensures the
liableness along with the effectiveness of the recommended approach.

Table 5. Comparison of IFHSSs with some prevailing studies.

Set Truthiness Falsity Attributes Sub-Attributes Loss of
Information Parametrization Advantages

Zadeh [1] FS � × � × × × Deals uncertainty by
using fuzzy interval

Maji et al. [7] FSS � × � × × � Deals uncertainty by
using fuzzy soft intervals

Zhang et al. [55] IFS � � � × � × Deals uncertainty by
using MD and NMD

Xu et al. [56] IFS � � � × × × Deals uncertainty by
using MD and NMD

Maji et al. [9] IFSS � � � × × � Deals uncertainty by
using MD and NMD

Proposed
approach IFHSS � � � � × � Deals more uncertainty

comparative to IFHSS

5.3. Comparative Analysis

We recommend another algorithmic rule under IFHSS by utilizing the established
IFHSWA and IFHSWG operators in the following section. Subsequently, we utilize the sug-
gested algorithm to a realistic problem, namely the supplier selection in SSCM. The overall
outcomes prove that the algorithmic rule is valuable and practical. It can be observed that
Q(4) supplier is the finest alternative for SSCM (see Table 6). The recommended approach
may be compared to other available methods. From the research findings, it has been
concluded that the outcomes acquired by the planned approach exceed the consequences
of the prevailing ideas. Therefore, comparative to existing techniques, the established AOs
competently handled the uncertain and ambiguous information. However, under existing
DM strategies, the core advantage of the planned method is that it can accommodate extra
information in data comparative to existing techniques. It is also a beneficial tool to solve
inaccurate, as well as imprecise, information in DM procedures.

Table 6. Comparative analysis with existing operators.

Method Q(1) Q(2) Q(3) Q(4) Ranking Order

IFWA [25] 0.21173 0.22017 0.33215 0.27008 Q(4) >Q(1) > Q(2) >Q(3)

IFWG [21] 0.20587 0.23066 0.32902 0.25462 Q(4) >Q(1) > Q(2) >Q(3)

IFEWA [22] 0.51686 0.54833 0.60467 0.59021 Q(4) >Q(1) > Q(2) >Q(3)

IFEWG [20] 0.54219 0.56597 0.62190 0.59381 Q(4) >Q(1) > Q(2) >Q(3)

IFSWA [13] 0.08158 0.07674 0.14762 0.09959 Q(4) >Q(1) > Q(2) >Q(3)

IFSWG [13] 0.49830 0.41735 0.40935 0.46175 Q(4) >Q(1) > Q(2) >Q(3)

Proposed IFHSWA operator −0.195086 −0.124363 0.084652 0.095501 Q(4) >Q(3) > Q(2) >Q(1)

Proposed IFHSWG operator −0.259867 −0.242376 −0.141950 −0.035913 Q(4) >Q(3) > Q(2) >Q(1)
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The existing operators are unable to cope with parametrization and multi sub-attributes
of the alternatives. However, our developed IFHSWA and IFHSWG operators competently
handle the parametrization and multi sub-attributes of the considered attributes. Therefore,
it is a suitable tool to merge inexact as well as hesitant information in the DM method.

6. Conclusions

This study focuses on IFHSS to resolve the problems of inadequate, indistinct, and
discrepant information by considering the MD and NMD on the n-tuple sub-attributes
of the considered attributes. This research puts forward the novel aggregation operators
for IFHSS, such as IFHSWA and IFHSWG operators with their fundamental properties.
Additionally, a DM approach has been developed by using IFHSWA or IFHSWG operators
to solve MCDM complications. Furthermore, a comparative analysis was performed to
ensure the effectiveness and manifestation of the presented approach. Lastly, according to
the obtained outcomes, it can be determined that the planned method displays advanced
constancy and feasibility for experts in the DM procedure. Based on the obtained results, it
can be determined that the planned technique shows that the experts have higher stability
and availability in the DM process. The forthcoming study will focus on presenting DM
techniques utilizing numerous other measures, such as entropy measures and similarity
measures, etc., under IFHSS. Moreover, many other structures can be established and
proposed, such as topological structure, algebraic structure, ordered structure, etc. We
believe that this research opens new vistas for investigators in this field.
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