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Abstract: Attaining reliable gradient profiles is of utmost relevance for many physical systems.
In many situations, the estimation of the gradient is inaccurate due to noise. It is common practice to
first estimate the underlying system and then compute the gradient profile by taking the subsequent
analytic derivative of the estimated system. The underlying system is often estimated by fitting or
smoothing the data using other techniques. Taking the subsequent analytic derivative of an estimated
function can be ill-posed. This becomes worse as the noise in the system increases. As a result,
the uncertainty generated in the gradient estimate increases. In this paper, a theoretical framework
for a method to estimate the gradient profile of discrete noisy data is presented. The method was
developed within a Bayesian framework. Comprehensive numerical experiments were conducted
on synthetic data at different levels of noise. The accuracy of the proposed method was quantified.
Our findings suggest that the proposed gradient profile estimation method outperforms the state-of-
the-art methods.

Keywords: computational techniques; inference methods; probability theory

1. Introduction

Estimating the gradient of a system from a discrete set of data has a vast number of
applications in many fields, such as biology, engineering, and physics. For instance, deter-
mining the particle velocity from the discrete time-position data in particle image velocime-
try and particle tracking velocimetry experiments is important in plasma physics [1–4].
Applications of velocity estimation in motion control systems using discrete-time data
have increased with the invention of microprocessors (see [5], and the references therein).
Moreover, with improved technology, faster equipment is now available to measure high-
speed discrete data [1]. The state-of-the-art method for determining the gradient from data
is to estimate an underlying smoothing function of the data and to take its subsequent
analytic derivative [6–13] (similar approaches with Bayesian methods are used in [14–19]).
Finite differencing is also used for this purpose [2]. However, when there is noise in the
data, the results can be ill-posed because the derivative tends to blow up the uncertainty in
the estimates [5]. The estimates become worse when these data are measured in shorter
intervals, especially when position data are measured using high-speed cameras in particle
tracking experiments [1,2].

On the other hand, the cubic splines used in these methods of estimating the data
can produce drastic results depending on the recorded speed of data or noise levels.
Exponential cubic splines are superior to cubic splines because of their capacity to capture
abrupt changes in the data due to its extra parameter of smoothness [20,21]. However,
special attention must be paid to this extra smoothing parameter because its extreme values
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can produce unrealistic results. In the literature, Jeffreys prior was used for this smoothing
parameter as a means of scaling down [1,20,21].

In our study, motivated by the work in [1], we present a detailed investigation on
gradient profile estimation as a Bayesian inference problem by directly estimating the
gradient, which avoids taking the analytic derivative of noisy data. Moreover, we use
exponential cubic spline as the underlying smoothing function of the gradient. We also
introduce a more meaningful choice of prior distribution for the smoothing parameter of
this spline. Moreover, we present a comprehensive sensitivity analysis of noise on the
gradient estimates and, additionally, we present the estimates for position and acceleration
obtained by the subsequent integration and derivative of our gradient estimates.

The paper is organized as follows. Section 2 develops the idea of separating spaces
with mathematical background. The Bayesian framework of the algorithm is demonstrated
in Section 3. Thereafter, the computational details are presented in Sections 4 and 5. In
particular, in these sections, our findings are compared to those obtained by means of more
traditional methods, such as smoothing data with the subsequent analytic derivative. Our
concluding remarks are given in Section 6.

2. Separating Spaces in Bayesian Context

In this section, we explain how the spaces are separated, which permits one to directly
infer the gradient along with its mathematical forms. From this point forward, we use
the terms (and mathematical notations) x-space (U) and v-space (V) to denote the space
where measured data lives and the space where the gradient resides, respectively. We
then use Bayes’ theorem to map the information between these two spaces (examples are
given in [22–28]). The mapping is done using the obvious relationship between an object’s
position and its velocity,

x(t) def
=
∫

v(t)dt, (1)

where x(t) and v(t) represent the object’s position and velocity, respectively. By the use of
our notations, x(t) lives in x-space and v(t) lives in v-space. In our approach, a functional
form (mathematical model) is given to velocity, rather than to measured data as in the
traditional approach. Therefore, our mapping is such that the positions in x-space are
’obtained’ by integrating the functional form placed in v-space. The Bayes’ theorem allows
us to do this as an inference problem to infer the unknowns of the functional form in
v-space with the information available in x-space.

The exponential cubic spline is proven to capture abrupt changes due to its high
flexibility compared to the cubic spline [1,20,21]; thus we use the exponential cubic spline
(denoted by Sv) as the functional form to represent the velocity, i.e., the exponential cubic
spline lives in v-space (shown by the subscript v). This spline is the solution to the following
minimal bending energy functional [1]:

∫ tn

t1

{[
d2Sv(t)

dt2

]2

+ λ(t)2
[

dSv(t)
dt

]2
}

dt for ξvi ≤ t ≤ ξvi+1 . (2)

for Sv(ξvi ) = fvi , i = 1, . . . , Ev and λ(t) = λvi for ξi ≤ t ≤ ξi+1, where t1 = ξv1 and
tn = ξvEv

. Here, fvi is the function value at ξvi and λvi is proportional to tension between
two knots, ξvi , ξvi+1 . A numerically convenient reformulation of the spline at the i-th
interval is then given by [21,29]

Svi (t, fv, λv, ξv, Ev)
def
= fvi (1− hv) + fvi+1 hv (3)

+
Mvi

λ2
vi

{
sinh[µvi (1− hv)]

sinh(µvi )
− (1− hv)

}
+

Mvi+1

λ2
vi

[
sinh(µvi hv)

sinh(µvi )
− hv

]
,
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for i = 1, . . . , Ev. The quantities hv, µvi , and Mvi in Equation (3) are defined as

hv
def
=

t− ξvi

ξvi+1 − ξvi

, µvi
def
= λvi

(
ξvi+1 − ξvi

)
, and (4)

Mvi
def
=

{
d2

dt2 [Svi (t, fv, λv, ξv, Ev)]

}
t=ξvi

,

respectively. Using the arrow notations for vectorial quantities, the exponential cubic spline
in Equation (3) can also be viewed in matrix form as [1]

Sv
(
~t
)
= W

(
~t, ~λv, ~ξv

)
~fv. (5)

In Equation (5), W denotes the design matrix of~t-locations of the function values ~fv, the
support points (knots) ~ξv, and tension parameters~λv. The second derivative of Sv, Mv, can
be found explicitly by solving the tri-diagonal system of equations in Equation (5).

We used the exponential cubic spline to model the gradient. Since the gradient is
the unknown quantity here, the variables, ~fv, ~λv, ~ξv, Ev in Equation (3) are unknown.
Therefore, it is important at this stage to identify data and parameters in this inference
problem and they are given in Table 1.

Table 1. The definition of data and parameters of the inference problem. The spaces where they
reside are given in parentheses.

Data (x-space) ~t, ~x
Parameters (v-space) ~fv,~λv, ~ξv, Ev

Now, the general relationship given in Equation (1) can be rewritten precisely using
to our model for an arbitrary i-th data point (i = 1, . . . , n where n is the total number of
measured data values) as

xi =
∫ ti

t1

Sv(t, fv, λv, ξv, Ev)dt, (6)

with Sv(t, fv, λv, ξv, Ev) given in Equation (3). That is, i-th position (i-th data point) is the
integrated spline from first time point (time of the initial position) to the i-th time point
(time of the i-th position). The relationship in Equation (6) can be further reduced to

xi = xi−1 +
∫ ti

ti−1

Svi−1(t, fv, λv, ξv, Ev)dt, 2 < i < n. (7)

The starting and ending values of xi in Equation (7) are the initial and the last positions
recorded. Here, Svi−1 is the spline in (i− 1)th interval. We point out that the exponential cu-
bic spline is analytically integrable and its technical details are given in Appendix A. When
a relationship (as in (1) and (7)) is used to match an unknown quantity (gradient/velocity)
and the observable data (position), the relationship should be able to generate data as
close as possible to the observable information if the desired/unknown quantity is known.
This is called the forward problem in Bayesian language. However, what is required here in
our study is to be able to solve the inverse problem. That is, making inferences about the
desired/unknown quantity using the observed information and the functional form of the
unknown (here, the exponential cubic spline) [30–32]. An example of solving a forward
problem by computing positions when the velocity is known is shown in Figure 1.
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Figure 1. An example of solving a forward problem from a velocity curve (top) to calculate posi-
tions/distances (bottom). The velocity curve is obtained by the exponential cubic spline computed
at ~ξ = [0, 1, 3, 6, 8, 10, 11, 12]. The positions were calculated at n = 13 different time instances from
the velocity by solving the forward problem. The time axis is given at arbitrary units (a.u.).

3. The Bayesian Recipe

The inverse problem for the position-velocity problem discussed in the previous
section can be written using Bayes’ rule as follows:

p(velocity ∈ V|position ∈ U) = p(velocity ∈ V)p(position ∈ U|velocity ∈ V)
p(position ∈ U) , (8)

which shows how the joint posterior probability distribution is built to infer the velocity
(gradient) profile when the position profile is known. Bayes’ rule in Equation (8) can be
rewritten using data and parameters given in Table 1 as follows:

p
(
~fv, ~λv, ~ξv, Ev|~t, ~x, I

)
=

p
(
~fv, ~λv, ~ξv, Ev|I

)
p
(
~x|~fv, ~λv, ~ξv, Ev,~t, I

)
p(~x|I) , (9)

where p
(
~x|~fv, ~λv, ~ξv, Ev,~t, I

)
is the likelihood and the quantity I represents all the relevant

background information. We assume the spline variables are independent. It then enables
us to write the following:

p
(
~fv, ~λv, ~ξv, Ev|I

)
= p

(
~fv|I

)
p
(
~λv|I

)
p
(
~ξv|I

)
p(Ev|I). (10)

The special case of when the number of knots and the position of knots are known (decided
prior to computing the spline), we can write (10)

p(~fv, ~λv, ~ξv, Ev|I) = p
(
~fv|Ev, ~ξv, I

)
p
(
~λv|Ev, ~ξv, I

)
. (11)
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Substituting Equation (10) into Equation (9), we get the general form of the posterior
distribution:

p
(
~fv, ~λv, ~ξv, Ev|~t, ~x, I

)
=

p
(
~fv|I

)
p
(
~λv|I

)
p
(
~ξv|I

)
p(Ev|I)p(~x|~fv, ~λv, ~ξv, Ev,~t, I)

p(~x|I) . (12)

The evidence p(~x|I) in Equation (9) is given by

p(~x|I) def
=
∫∫∫∫

p
(
~fv|I

)
p
(
~λv|I

)
p
(
~ξv|I

)
p(Ev|I)p(~x|~fv, ~λv, ~ξv, Ev,~t, I)d~fvd~λvd~ξvdEv.

The relationship between the gradient and position in Equation (7) is included in the likeli-

hood. We then assume the noise (or the uncertainty) in the measured data,~εdef
=(ε1, . . . ,εn),

has a Gaussian process with
~ε ∼ N(~µ, Σ), (13)

where the quantity~µ is the (n× 1)-dimensional mean vector and Σ is a (n× n)-dimensional
covariance matrix of the noise. We further assume ~µ = 0 and the noise is uncorrelated
which, in turn, makes Σ a diagonal matrix with diagonal elements, {σ1, . . . , σn}. Omitting
the arrow notation for vectorial quantities, we can write the following:

xi =


x1 +∑i−1

γ=1

(∫ ξvγ+1
ξvγ

Svγ(t, fv, λv, ξv, Ev)dt
)

+
∫ ti

ξvi
Svi (t, fv, λv, ξv, Ev)dt + εi, for ξvi < ti < ξvi+1

x1 +∑i−1
γ=1

(∫ ξvγ+1

ξvγ
Svγ(t, fv, λv, ξv, Ev)dt

)
+ εi, for ti = ξvi

(14)

In Equation (14), the first line (case 1) showcases when the time ti, in which xi is measured,
falls between two knots of the spline, in which case Svi , calculated from ξvi to ti, is a partial
interval. The second line (case 2) showcases when ti falls exactly on a knot, in which case
Svγ , calculated at ti = ξvi , is a full interval. Note that case 2 is a special case of case 1.
In other words, case 2 can be achieved via case 1 when ti = ξvi . Therefore, we rewrite
Equation (14) for the general case subjecting the noise:

εi = xi −
(

x1 +
i−1

∑
γ=1

∫ ξvγ+1

ξvγ

Svγ(t, fv, λv, ξv, Ev)dt +
∫ ti

ξvi

Svi (t, fv, λv, ξv, Ev)dt

)
, (15)

for i = 1, . . . , n. By the assumption of iid (independent and identically distributed), we
write our likelihood function:

p(~x|~fv, ~λv, ~ξv, Ev,~t, I) =
n

∏
i=1

p(xi|~fv, ~λv, ~ξv, Ev, ti, I). (16)

Combining Equations (15) and (16) together with the additional assumption that σi =
σe =constant for any 1 ≤ i ≤ n, the likelihood distribution becomes (case 1 of Equation (14)
is assumed here for generality)

p(~x|~fv, ~λv, ~ξv, Ev,~t, I) =
n

∏
i=1

1√
2πσ2

e
exp

[
− 1

2σ2
e
(εi)

2
]

=
(

2πσ2
e

)−n/2
exp

n

∑
i=1
G(xi, ~fv, ~λv, ~ξv, Ev,~t), (17)

where,

G(xi, ~fv, ~λv, ~ξv, Ev,~t) def
= − 1

2σ2
e

[
xi −

(
x1 +

i−1

∑
γ=1

∫ ξvγ+1

ξvγ

Svγ(·)dt +
∫ ti

ξvi

Svi (·)dt

)]2

. (18)
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The Choice of Prior Probability Distributions

According to Equation (11), we have three prior distributions to look at. We assume
that there is no prior information about the spline values, p

(
~fv|Ev, I

)
, or the position of

knots, p
(
~ξv|Ev, I

)
. However, we give our attention to the tension parameter,~λv, because

the shape of the spline between knots depends on it. The tension value is a scale parameter
and it can take any real number. With the change in λvi from 0 to ∞, the spline changes from
a polygonal function to a cubic spline [21,29]. A polygonal function lacks the smoothness
required by a moving object and the cubic spline can sometimes overestimate the curvature
by producing cubic curves when knots are placed close. Hence, estimating an optimum
tension value plays a big role in getting a reliable gradient estimate profile and choosing an
appropriate prior adds a great value to it.

Previous studies in the literature [21,33] used Jeffreys prior to merely scale down large
tension values to avoid unrealistic results. In this work, we used a Gaussian distribution as
a prior for the tension (Jeffreys and uniform priors were used in previous work by the same
authors related to this problem [34]) because: (1) it allows one to have a higher probability
for sensible values for the spline and lower probability for nonsensible values for the
spline; and (2) a conjugate prior makes the posterior a Gaussian family of distribution (the
known parametric form), thus making the computations easy. As stated earlier, polygonal
functions lack the smoothness of a moving object and thus values of tension that produce
polygonal functions are considered nonsensible values in this problem.

Assuming the prior distribution of tension parameters, ~λv, are iid Gaussian distribu-
tions with mean µi and variance σθλi

, we can write

p(~λv|Ev, I) =
Ev−1

∏
i=1

p(λvi |Ev, I)

=
Ev−1

∏
i=1

1√
2πσ2

θλi

exp

− (λvi − µi)
2

2σ2
θλi


=
(

2πσ2
θλ

)−(Ev−1)/2
exp

[
−

Ev−1

∑
i=1

(λvi − µi)
2

2σ2
θλ

]
(19)

(by taking σθλi
= σθλ

∀i with 1 ≤ i ≤ Ev − 1).

Finally, the posterior distribution p
(
~fv, ~λv, ~ξ, Ev|~t, ~x, I

)
in Equation (9) can be written as

p
(
~fv, ~λv, ~ξ, Ev|~t, ~x, I

)
∝ p
(
~λv|Ev, I

)
p(~x|~fv, ~λv, ~ξ, Ev,~t, I)

∝
(

2πσ2
θλ

)−(Ev−1)/2(
2πσ2

e

)(−n/2)
exp

[
−

Ev−1

∑
i=1

(λvi − µi)
2

2σ2
θλ

+
n

∑
i=1
G
(

xi, ~fv, ~λv, ~ξ, Ev,~t
)]

,

where G(xi,
~~fv, ~λv, ~ξv, Ev,~t) is given in Equation (18). In this work, the Gaussian prior

distribution uses µi = 0 and σθλ
= 5. As noted previously [34], even though lambda has a

range of 0 to ∞, the impact of lambda on the spline starts to flatten around 10. Thus, by
setting σθλ

= 5, 2σθλ
covers 95% of the prior distribution.

4. Numerical Simulation

In this section, we discuss the numerical method followed to simulate the posterior
distribution for inferring the velocity/gradient using positions/distances. We first created
synthetic data from the velocity curve showcased for forward problem in Figure 1. We
generated a sample of n = 121 position data points. Thereafter, we added Gaussian noise
of µ = 0 and different levels of σe to create different datasets of different noise levels (σe).
In this work, we hand-picked the number of knots and their positions for simplicity and to
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demonstrate the inference (Equation (11)). Thus, we have 2Ev − 1 number of parameters to
infer: spline values, fv, and tension values λv. However, in future work, it is important
that these two sets of parameters are inferred.

For the synthetic data, following the work in [29], we selected Ev = 8 knots at
~ξv = [0, 1, 3, 6, 8, 10, 11, 12] in inferring the spline. Then, the posterior distribution with
different priors (see Equation (12)) were simulated using a hybrid MCMC algorithm
called DRAM [35,36]. The simulation begins with an initial minimization process. It
should be noted that the posterior distribution is undefined at λv = 0 due to numerical
instability of the spline. Therefore, the smallest value that was used for λv was 0.001.
Thus, the values of the parameters were initialized with the following values for the initial
minimization process:

fvinitial = 0, and λvinitial = 0.001. (20)

The initial minimization acts as a jump start to the DRAM algorithm. The proposal
distributions of the parameters used in DRAM that generate the candidate sample values
are Gaussian distributions. The parameter values of the proposal distributions (i.e., the
mean and variance of Gaussian distributions) are user inputs and are showcased in Table 2,
where LB and UB are the lower and upper bounds of the parameters, respectively.

Table 2. The sets of parameters in initial probability distributions of DRAM.

Parameter Proposal Distribution Prior Distribution

fvi for i = 1, . . . , Ev
Gaussian (µvi , σ2

vi
)

∈ (LBvi , UBvi )
µθvi

, σθvi

λvi for i = 1, . . . , Ev − 1
Gaussian (µλi , σ2

λi
)

∈ (LBλi , UBλi )
µθλi

, σθλi

The optimum values ~fv
∗

and ~λv
∗

produced by the initial minimization were used
as the mean values of the proposal distributions (µvi , µλi ), so that the initial proposal
distributions are centered around ~fv

∗
and ~λv

∗
. The information of prior distributions can

be specified with prior means µθvi
, µθλi

and prior variances σθvi
, σθλi

. The DRAM procedure
takes the variance of the prior as the initial variance of the parameters if the covariance
matrix is not specified by the user. When the prior variance is not specified, the variances
of the proposal distributions are calculated as

σ2
vi
= (µvi × 0.05)2, and σ2

λi
=
(
µλi × 0.05

)2. (21)

In other words, if no prior information is available about the variance of the parameter,
5% of the mean of the initial distribution is taken as the initial variance. Finally, samples
were drawn from these Gaussian proposals and the marginal densities of the parameters
were computed. The MCMC simulations were run until convergence was observed. Each
sampling procedure of length Ω was repeated M = 100 times. At each of the M-th
repetitions, a different dataset of same noise level was created followed by an initial
minimization process. All the sample chains were stored and, in addition, for a given
sample chain, the first few samples were burnt during Ω× p% period. The quantity p
denotes the burn-in time. The average of M marginal densities of each parameter were then
computed. In what follows, we assume that ω denotes the remaining number of samples

after the burn-in period, that is, ω
def
= (1− p)%×Ω. Then, for any k = 1, . . . , Ev, the mean

values
{

f ∗vk

}
of those average marginal densities were calculated as

f ∗vk

def
=

1
ω

ω

∑
i=1

fvki, (22)

where fvki denote the average sample values of fvk after M number of iterations,
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fvki
def
=

1
M

M

∑
j=1

fvkij . (23)

Following the same line of reasoning presented for Equations (22) and (23), we also have

λ∗vs

def
=

1
ω

ω

∑
i=1

λvsi =
1

ωM

ω

∑
i=1

M

∑
j=1

λvsij , (24)

for any s = 1, . . . , Ev − 1 with λvsi denoting the average sample values of tension after M
number of iterations:

λvsi
def
=

1
M

M

∑
j=1

λvsij . (25)

Finally, the standard deviations
{

σ∗vk

}
and

{
σ∗λs

}
of the parameters are calculated from the

average of all chains after M iterations as

σ∗vk

def
=

√
1

ω− 1

ω

∑
i=1

(
fvki − f ∗vk

)2
, (26)

for any k = 1, . . . , Ev and

σ∗λs

def
=

√
1

ω− 1

ω

∑
i=1

(
λvsi − λ∗vs

)2
, (27)

for any s = 1, . . . , Ev − 1, respectively.

5. Results

This section presents the results obtained from the methodology built throughout
the previous sections. The sensitivity of gradient estimates at different noise levels (of
the position data) were tested. The noise levels (denoted by σe) on x-space are depicted
in Figure 2 with five different noise levels: σe ∈ {0.001, 0.3, 0.7, 1.0, 1.3}. The noise levels
were selected so that they cover almost all possibilities of the standard Gaussian noise.
That is, by the definition of the Gaussian distribution, the first four noise levels cover a
probability of 68.2% and the last noise level covers a probability of 95%.

The sensitivity of noise levels to the posterior distribution was investigated when the
Gaussian prior was used for the tension parameter. These results of the sensitivity analysis
were compared against a common traditional method of fitting the same type of exponential
cubic spline in x-space and the gradient was obtained by analytically differentiating the
resulting fitted spline function. The notation “i-fit (i-space) with i = x, v” denotes that
i-fit was fitted on the i-space, where the x-fit is the distance profile, while the v-fit is the
gradient profile.
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Figure 2. The panel of time-position data with error bars at five different noise levels. Noise levels
increase from left to right and top to bottom. The length of error bars is relative to the magnitude of
the noise.

A constant force was observed between the times 0–8 (a.u.) and short impulses were
observed between the times 8–11 (a.u.). Moreover, it was observed that as the noise level
increased, the data around the short impulses tended to become fuzzier so that it was hard
to identify the trajectory. When the noise increased, the width of the marginal distributions
were expanded. This, in turn, resulted in an increased length of the error bars of the
parameter estimates. As a demonstration, we show the marginal probability distribution
of fv1 in Figure 3 at all noise levels. The gradient estimates at all noise levels are depicted
in Figure 4 and the uncertainties of fvi parameters are shown in the same figure using
error bars (top panel) and Bayesian credible intervals (bottom panel). The estimates almost
overlap with the ground truth data at all noise levels, except at the boundaries and near
t = 10 (a.u.), where the short impulses were present in the position profile.
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Figure 3. The comparison of marginal probability densities of the fv1 parameter at all noise levels.

v-fit (v-space) at 
e
=0.001

v-fit (v-space) at 
e
=0.3

v-fit (v-space) at 
e
=1.0

v-fit (v-space) at 
e
=0.7

v-fit (v-space) at 
e
=1.3

Ground truth

Figure 4. The gradient estimates obtained at the five different noise levels. The uncertainty of the
velocity estimates (σ̂v) are shown using error bars (top panel) and credible intervals (bottom panel).

The uncertainties of both velocity and tension parameters are characterized in Figure 5.
The uncertainties of the velocity parameters with the noise level exhibit a linear relationship
reflecting the linear relationship of velocity parameters in the likelihood function. The
uncertainties of the tension parameters converge to the Gaussian prior uncertainty when
the data noise exceeds the prior uncertainty. To help illustrate this, additional noise levels
were added in these graphs in Figure 5 to show the relationship more clearly.



Entropy 2021, 23, 674 11 of 19

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5. The relationship between uncertainty of the estimates and the noise level of the system. The
top panel depicts the relationship of velocity parameters (here, vi indicates fvi ), whereas the bottom
panel shows the relationship of tension parameters (here, λi indicates λvi ). Note that additional
noise levels are included to demonstrate how the uncertainty in the estimated lambda converges to
the Gaussian prior uncertainty when the data noise exceeds the prior uncertainty.

The gradient estimates are compared with the analytic derivative of the x-fit obtained
in U. The x-fit is obtained by fitting the same exponential cubic spline to the time-position
data in U. This was performed at the same knot positions. The gradient profile, the
acceleration profile, and the position profile were obtained from the two methods (via v-fit
from V and x-fit from U) and are compared in Figures 6–8, respectively. The acceleration
profile from our method (v-fit in V) was obtained by differentiating the exponential cubic
spline, i.e., the analytic derivative of exponential cubic spline. It should be noted that
ideally the acceleration should be inferred directly. Then, velocity and position could be
found via integration. However, the focus and motivation of this paper was velocity. We
are only using this as a quick comparison to illustrate how poor the acceleration fit would
be when differentiating twice. The same was obtained using the traditional method by
finite-differencing its gradient profile, i.e., finite differencing the analytic derivative of the
exponential cubic spline.
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Figure 6. The panel of velocity estimates from the two spaces compared at five different noise
levels. The noise level increases from left to right and top to bottom. v-fit (v-space) shows the
gradient inferred by placing the exponential cubic spline in v-space (solid lines). The derivative
profile shows the gradient estimates obtained by differentiating the exponential cubic spline fit in
x-space (dashed-dot lines).
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Figure 7. The panel of acceleration estimates obtained from the two methods are compared at five
different noise levels. Solid blue lines shows the estimates obtained from our method and dashed-dot
red lines shows the estimates obtained from the traditional method.
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Figure 8. The panel of x-fit estimates obtained from two different methods compared at five different
noise levels. Dashed-dot lines shows the estimates obtained from our method and solid lines shows
the estimates obtained from the traditional method.

The gradient estimates that emerge from the two spaces (namely, the x-space and
v-space) clearly show some remarkable differences. In particular, the difference in accuracy
is shown in Table 3 using the error norm:

||e||2 def
=

L

∑
i=1

(
fvestimatedi

− fvtruei

)2
, (28)

where L is the sample size [37].
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Table 3. The comparison of accuracy of velocity fit from our method (in v-fit (v-space)) and the
traditional method (derivative of x-fit in x-space).

||e||2

Noise Level v-Fit (v-Space) Derivative
of x-Fit (x-Space)

0.001 0.2077 14.4107
0.3 1.9679 15.0792
0.7 3.1793 20.9974
1 3.1569 30.1122

1.3 3.8159 31.2719

The acceleration characterizes the acting forces on the object. The acceleration estimate
(x-space) could not achieve constant force where it is expected. The errors at short impulses
around t = 10 a.u. started becoming very large, which indicates the possibility of infinite
forces. Moreover, the acceleration profile from the x-space (red dashed-dot lines) is not
realistic with its very sharp turns. Therefore, the acceleration estimate from the velocity
space is a reliable estimator of acting forces. The goodness of fit was tested by studying the
squared sum of errors (SSE) defined as [38]

SSE def
=

n

∑
i=1

(
f̂i − fi

)2
(29)

where f̂i represent the estimated function values. The quantity fi in Equation (29) is
replaced with noisy fi to obtain the second and the third columns in Table 4, while fi is
replaced with the original fi without noise to calculate the fourth and fifth columns in the
same table.

Table 4. The comparison of the quality of x-fit from x- and v-spaces respectively using squared sum
of errors (SSE).

SSE with Noisy Data SSE with True Data

σe x-Fit (U) x-Fit (V) x-Fit (U) x-Fit (V)

0.001 1.1743 0.6082 1.1753 0.6089
0.3 12.4677 12.6049 2.1946 0.8541
0.7 62.4582 63.4059 4.1855 0.8176
1.0 121.0864 120.8161 13.3478 1.1253
1.3 163.1339 264.3176 18.9582 3.1651

The trajectory estimate (position profiles) is a bonus product from the gradient profile
(v-space) and is obtained by integrating the gradient estimate (v-space). They are compared
in Figure 8. The x-fit (x-space) follows the noisy data closely. This is because, when fitting
a curve in the same space as data, that curve is trying to minimize the SSE, which means
it tries to match the data as much as possible. Therefore, the x-fit from U tries to satisfy
the noisy data as much as possible. However, the x-fit (v-space) follows the ground truth
data more than it follows the noisy data (see Table 4). When integrating the v-fit (v-space),
an additional order of differentiability is added to the trajectory estimate. Therefore, the
x-fit (v-space) has a higher order of differentiability than that of the x-fit (x-space). This
additional order of differentiability ensures the continuity of the velocity and, therefore, it
satisfies the constraint of the finite force of the object.

The calculated SSE with true data and noisy data are shown in the Table 4. The SSE
values for noisy data are smaller for the x-fit (x-space). This, in turn, reflects the fact that
the x-fit (x-space) better follows noisy data. However, the SSE values for true data are
smaller for the x-fit (v-space). This, instead, reflects the fact that the x-fit (v-space) better
follows true data.
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6. Conclusions

In this paper, we proposed a method to compute the gradient profile of a noisy system
using the Bayesian inference method. It allowed us to infer the unobservable quantity,
the gradient (velocity), by building a meaningful relationship between the unobservable
quantity in velocity space and the observable quantity in data space. Furthermore, the
unobservable quantity (the gradient) was modeled using the exponential cubic spline in
velocity space. Using Bayesian methods, the parameters of this exponential cubic spline
were inferred. The results of this new method were compared against those of a traditional
method of modeling noisy data, which uses the exponential cubic spline in data space and
takes the subsequent analytic derivative to obtain the gradient.

The results show that the gradient estimates obtained by modeling in velocity space
are more accurate than the estimates obtained via the traditional method (see Table 3).
Moreover, our method was able to produce better acceleration estimates with reliable and
accurate values, where a constant force is expected (see Figure 7). We also compared the
trajectory profile. We conclude that when the traditional method is used, the trajectory
estimates tend to follow noisy data, whereas when our method is used, the estimates
tend to follow the ground truth data, which, in return, produce more accurate estimates
(see Figure 8 and Table 4). It is argued that by integrating the model in velocity space to
compute the trajectory values, an extra order of differentiability is added. This argument
can be further extended to suggest that the acceleration should be inferred first. Then,
velocity and trajectories can be inferred by integration. However, this was not the focus
of the paper. In conclusion, the method demonstrated in this paper is superior when
estimating the velocity of a moving object under finite force as compared to others in the
literature (for instance, see [1] and the references therein). It provided better results in all
three estimates: trajectory, velocity, and acceleration.

It is necessary to note that, although our main focus in this paper was on the proposal
of a novel theoretical method to estimate a gradient profile from discrete noisy data, a
number of improvements can be sought in its practical implementation. For instance, the
use of an MCMC algorithm gains precision at the expense of speed. A faster algorithm (such
as the expectation maximization algorithm [39]) may be needed for real-time estimation.
Furthermore, the amount and placement of the knots lacks a systematic guiding principle.
In the future, we plan to use Bayesian model selection for determining the amount of
knots. For the placement issue, we can adopt a hierarchical approach by including spline
knot location algorithms [40] in conjunction with our main algorithm. This would provide
estimates for the values associated with the knots and where they should be located.
Finally, we hope to apply our Bayesian estimation technique to more realistic problems in
which acceleration, velocity, and trajectory estimations are needed. In particular, from both
theoretical and applied perspectives, in the future, we think it may be worth exploring the
possibility of characterizing velocity profiles in ferromagnetic fluids [41] with the use of
entropic inference methods that encompass Bayesian techniques [42] and, moreover, show
promising results in inferring the ferromagnetic properties of materials [43].

Author Contributions: Conceptualization, A.G.; Methodology, K.D.S.; Supervision, A.G.; Writing—
original draft, K.D.S.; Writing—review & editing, C.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the meaningful and helpful discussions had
with Udo Von Toussaint at the Max-Planck Institute in Garching, Germany.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we present some details on the integration of the exponential cubic
spline. The integration is performed in two cases. In one case, one integrates the spline
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function between two knots, and it is referred to as Ifull. In the other case, one integrates
the spline function from a knot to a random point before the next knot, and it is referred to
as Ipartial. The two types of integrals yield

Ifull =
∫ ξvk+1

ξvk

Sv(t, fv, λv, ξv, Ev)dt, (A1)

with k = 1, . . . , Ev − 1, and

Ipartial =
∫ ti

ξvk

Sv(t, fv, λv, ξv, Ev)dt (A2)

with k = 1, . . . , Ev − 1, i = 1, . . . , n, and ξvk ≤ ti < ξvk+1 , respectively. The solutions to
these two cases presented in Equations (A1) and (A2) can be found analytically and result
in the following expressions:

Ipartial =
fvi+1

2hvi

(ti − ξvi )
2 +

fvi (ti − ξvi )

2hvi

(2ξvi+1 − ti − ξvi ) (A3)

− Mvi (ti − ξvi )

2λ2
vi

hvi

(2ξvi+1 − ti − ξvi )

+
Mvi

λ3
vi sinh(λvi hvi )

{
cosh(λvi hvi )− cosh

[
λvi (ti − ξvi+1)

]}
+

Mvi+1

λ3
vi sinh(λvi hvi )

{cosh[λvi (ti − ξvi )]− 1} −
Mvi+1

2λ2
vi

hvi

(ti − ξvi )
2, (A4)

and

Ifull =
fvi hvi

2
+

fvi+1 hvi

2
− Mvi hvi

2λ2
vi

−
Mvi+1 hvi

2λ2
vi

+
(Mvi+1 + Mvi )

λ3
vi

tanh
(

λvi hvi

2

)
. (A5)

Appendix B

In this appendix, as it is in the framework of Markov chain Monte Carlo (MCMC)
methods, we present some details on the Delayed Rejection Adaptive Metropolis (DRAM)
algorithm used to compute posterior distributions in our work. DRAM is a hybrid algo-
rithm in which the concepts of Delayed Rejection (DR) and Adaptive Metropolis (AM)
are combined for enhancing the performance of Metropolis-Hastings (MH)-type MCMC
algorithms [35]. In the basic MH algorithm, upon the rejection of the new candidate at a
(j + 1)th state, the sample remains at the current point (j). However, when the Delayed
Rejection is introduced, upon rejection, another new candidate z is drawn. Then, one finds
out whether it can be accepted. The AM feature, instead, is a global adaptive strategy,
which is combined with the partial local adaptation caused by the DR strategy. The idea of
AM is to tune the proposal distribution at each time step depending on the past. In other
words, the covariance matrix of the proposal distribution depends on the history of the
sample chain (sequence of samples). Usually, the adaptation starts after an initial period of
time (0, t).

The basic steps of the DRAM algorithm are given in Algorithm A1 with an arbitrary ini-
tial point Θ(0). The acceptance probabilities at steps 6 and 15 are shown in Equations (A6a)
and (A6b), respectively.
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α1(x, y) =

{
min

[
π(y)q(y, x)
π(x)q(x, y) , 1

]
if π(x)q(x, y) > 0,

1 otherwise.
(A6a)

α2(x, y, z) =


min

[
π(z)
π(x)

q(z, y)
q(x, y)

q(z, y, x)
q(x, y, z)

[1−α1(z, y)]
[1−α1(x, y)] , 1

]
if π(x)q(x, y)q(x, y, z)[1− α1(x, y)] > 0,

1 otherwise.

(A6b)

where q(θ) represents the proposal distribution and Θ(j) represents the set of parameters
of the proposal distribution at j-th iteration.

Algorithm A1 DRAM

1: for j = 1 : N do
2: Generate y from q

(
Θ(j), .

)
and u from U(0, 1)

3: if y is outside (L, U) then
4: Reject y (level 1)
5: else
6: Calculate α1(Θ(j), y)
7: if u ≤ α1(Θ(j), y) then
8: Θ(j+1) = y
9: else

10: Reject y (level 2) {starts delayed rejection}
11: Generate new candidate z from q(y, .)
12: if z is outside (L, U) then
13: Reject z (level 3)
14: else
15: Calculate α2(Θ(j), y, z) and u from U(0, 1)
16: if u ≤ α2(Θ(j), y, z) then
17: Θ(j+1) = z
18: else
19: Reject z (level 4)
20: Θ(j+1) = Θ(j)

21: end if
22: end if
23: end if
24: end if
25: end for
26: Return the values {Θ(0), Θ(1), Θ(2), . . . , Θ(N)}.
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